
Persistent State Pattern
ANDRÉ V. SAÚDE, Federal University of Lavras, Department of Computer Science

RICARDO A. S. S. VICTÓRIO, Mitah Technologies Inc.
GABRIEL C. A. COUTINHO, Mitah Technologies Inc.

Finite State Machines (FSM) provide a powerful way to describe dynamic behavior of systems and components. Implementations of FSM in
Object-Oriented (OO) languages have been widely studied since the classical State Pattern has been introduced. Various design patterns
were derived from the State Pattern, but all of the focus on object’s behavior. This paper describes the Persistent State Pattern, an exten-
sion to the State Pattern for persistent data. The Persistent State Pattern integrates transaction management with classical and enterprise
design patterns. It can be used with OO databases and relational databases, and it can also be incorporated by an object-relation mapping
framework. We show how the Persistent State Pattern may be useful for model or event driven development.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—Object-oriented design methods; D.2.10
[Design] Methodologies; H.2.8 [Database Management]: Database Administration—Security, integrity, and protection

General Terms: Design

Additional Key Words and Phrases: Persistent states, state machine, design patterns

ACM Reference Format:

Saúde, A. V., Victório, R. A. S. S. and Coutinho, G. C. A. 2010. Persistent State Pattern. Proc. 17th Conference on Pattern Languages of
Programs (PLoP), (October 2010), 16 pages.

1. INTRODUCTION

Finite State Machines (FSM) provide a powerful tool to describe dynamic behavior of systems and components.
There are several implementations of FSM in Object-Oriented (OO) languages. OO implementations of FSM have
been widely studied, and several existent design patterns deal with states in OO. The basic design pattern for
states is the State Pattern, popularized by the most cited design pattern reference [Gamma et al. 1994].

The State Pattern is a solution to the problem that an object’s behavior is a function of its state, and it must
change its behavior at runtime depending on that state. In short, it is a behavioral design pattern. The various
design patterns derived from the State Pattern also have the focus on object’s behavior [Adamczyk 2003; 2004;
Yacoub and Ammar 1998a; 1998b]. None of them deals with states in a persistence framework.

Persistent states exist when a database entity (of an Entity-Relationship Model (ERM) [Elmasri and Navathe
2010]), takes part in a process or a workflow. Processes and workflows may be executed by various actors and
must be able to be persistent. A database entity which is part of the process may be persisted in different states.

Enterprise applications are usually OO, and they usually rely on Object-Relational Mapping (ORM) frame-
works [Ambler 2003]. In ORM, a database entity is mapped to a class. An instance of such class is an object that

This work is supported by Mitah Technologies Inc., Fapemig, CNPq and Finep.
Author’s address: A. V. Saúde, Departamento de Ciência da Computação, Universidade Federal de Lavras, CP 3037, CEP 37200-000,
Lavras/MG, Brazil; email: saude@dcc.ufla.br. R. A. S. S. Victório, G. C. A. Coutinho, Mitah Technologies Inc., Av. Álvaro A. Leite, 370, CEP
37200-000, Lavras/MG, Brazil; email: {ricardo.victorio,gabriel}@mitahtech.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 17th Conference on Pattern Languages of Programs (PLoP).
PLoP’10, October 16-18, Reno, Nevada, USA. Copyright 2010 is held by the author(s). ACM 978-1-4503-0107-7



Fig. 1. UML statechart for the PurchaseRequest entity. See text.

may not change its behavior when changing its state. This means that persistent states are mostly not associated
with specific behavior. This is the main difference between this problem and the problem solved by the behavioral
State Pattern and its extensions. Such patterns are not applicable to persistent states. Since we are dealing with
persistent data, we must deal with issues related to persistence, such as transaction management policies.

This paper proposes the Persistent State Pattern, an extension to the State Pattern where persistent data is
taken on account. The Persistent State Pattern integrates classical and enterprise design patterns, for enterprise
applications. Enterprise applications are strongly based on OO design patterns, and the basic reference patterns
have been proposed as solutions to problems posed by the Enterprise JavaTM Beans (EJB) [Alur et al. 2003;
Panda et al. 2007] and the MicrosoftTM .NET Framework [Esposito and Saltarello 2008] specifications. The
proposed pattern is adherent to existing transaction management frameworks [Panda et al. 2007; Walls and
Breidenbach 2007] and to any type of persistence framework, including ORM frameworks. We present the close
relationship between the Persistent State Pattern and the concepts of model and event driven design. We show
that the pattern can be used with both design approaches.

2. RUNNING EXAMPLE

We start our explanation by a running example, so the problem can be clearly exposed. Let us consider the
purchase process of a company. Many actors are enrolled with this process, and the complexity of the process
varies depending on the company. So, we simplify such purchase process by splitting it in two steps: i) the purchase
request, which is launched by an operator and must be approved by the financial office, and ii) the purchase order,
which is an approved purchase, and must be performed by the company’s purchase division.

While modeling the purchase process, we create two entities: PurchaseRequest and PurchaseOrder. An
instance of PurchaseRequest is created when the company’s operator starts the purchase process by requesting
to purchase something. An instance of PurchaseOrder is created only if the purchase request is approved.

A PurchaseRequest may pass by several states, from the elaboration to the approval. One possible state
machine model for the PurchaseRequest entity is represented in Figure 1 by a UML statechart. We consider a
constraint where the PurchaseRequest must be of type ’DURABLE’ or ’CONSUMABLE’. Any purchase of durable
goods must be approved by a superior.

The state machine in Figure 1 has five states: ELABORATION, INVALID, EVALUATION, ACCEPTED or
REJECTED. This state machine starts when an operator creates a purchase request, i.e., an instance of the
PurchaseRequest entity. By creating a PurchaseRequest, the state machine starts and goes to the ELABORATION
state. While the operator has not yet finished to fill out the form for the PurchaseRequest, the entity stays in the
ELABORATION state. When the operator submits the form, there are three triggers based on the ’type’ attribute. If
the type is not set, the PurchaseRequest goes to the INVALID state. If it is a purchase request for consumable
goods, it goes directly to the ACCEPTED state, and if the request is for durable goods, it goes to the EVALUATION
state. In the EVALUATION state, an entry action is set: ’createActivity’. So, when this state is achieved, an activity
must be created for who will evaluate the request. If the request is accepted, it goes to the ACCEPTED state.
Otherwise, it goes to the REJECTED state. The ACCEPTED state also has an entry action: ’createPurchaseOrder’.

Persistent State Pattern — Page 2



Fig. 2. The Abstract Factory Pattern UML class diagram

So, when this state is achieved, a PurchaseOrder instance is created, and the second step of the purchase process
starts.

The example statechart is very simple, but it is possible to observe that it cannot be executed without persistence,
since there are different actors (operator and its superior) interacting with the entity to cause state transitions.
Furthermore, in an Enterprise Resource Planning (ERP) system, it may be a requirement to keep the history of all
the requested purchases, accepted or rejected, thus the PurchaseRequest must be persistent.

Suppose that the operator’s superior accepts the request. The PurchaseRequest is persisted and the ’createPur-
chaseOrder’ action is launched. If the ’createPurchaseOrder’ action fails, for any reason, the persistent data will
become inconsistent, since there will be an accepted purchase request but no purchase order has started. In this
case, the PurchaseRequest state should be reverted to EVALUATION, so the operator’s superior could try again
his activity of evaluating and accepting the request.

This problem is always present when a state machine is associated to a persistent entity and actions are
executed as consequence of state transitions. Depending on the complexity of the action, there may be several
reasons for the action to fail, and the integrity of the system’s database must be guaranteed.

3. PATTERNS BACKGROUND

In this section we recall the background on classical and enterprise design patterns needed for the comprehension
of the text.

The book by Gamma et al. [Gamma et al. 1994] (known as the Gang of Four or simply GoF) compiles various
classical design patterns. In this paper we deal with information systems for the web, with large databases,
and with business processes and workflows largely present. Such systems are known as enterprise systems or
enterprise applications. GoF patterns are not sufficient for enterprise applications. There are several enterprise
design patterns. This paper is based on the Core J2EE enterprise patterns [Alur et al. 2003]. In the following
we present the GoF and Core J2EE needed for this paper. The background on the State Pattern is presented
separately in Section 4, due to its strongest relationship with the subject of this paper.

3.1 Factory Method and Abstract Factory

The Factory Method and the Abstract Factory are used as the standard way to create objects. The implementation
of Factory Method overlaps with that of Abstract Factory in [Gamma et al. 1994]. In Figure 2 we present the most
popular implementation.

The goal is to avoid a client to directly instantiate a class. This is especially interesting when the object created
must have its lifecycle monitored.

Persistent State Pattern — Page 3



Fig. 3. The Data Access Object Pattern UML class diagram.

3.2 Command

A Command encapsulates a request as an object. The Command Pattern is largely used for events, errors and
exceptions. The idea is to have the same interface for several different actions, so the same client can launch
different executions by calling the same signature method in different Command objects.

3.3 Data Transfer Object

In enterprise applications, it is usual to implement a database entity as a Data Transfer Object (DTO), an arbitrary
serializable Java object. The DTO is usually implemented as a class with only attributes and getter or setter
methods. The idea is to avoid network overhead when transferring data in a remote call. So the DTO does not
provide fine-grained setter methods for the attributes. The logic for the attributes is implemented by the Business
Object. The DTO is sometimes called Value Object [Alur et al. 2003; Fowler 2002].

3.4 Business Object

The Business Object is defined by the Core J2EE Patterns as the object that requires access to data. In this paper,
the Business Object will always implement the business logic about those data, so the business logic and the
persistent data are decoupled in two objects.

3.5 Data Access Object (DAO)

The Data Access Object (DAO) is a Core J2EE pattern. The DAO is an abstraction to the access of a data source.
We show its structure in Figure 3.

In Figure 3 the Entity class represents a database entity, and it is implemented as a DTO. The BusinessObject
interacts with this DTO by modifying it, based on its business logic.

The DAO abstracts and encapsulates all access to the data source, it manages the connection with the data
source to obtain and store data. The data source may be of any kind, a Relation Database Management System
(DBMS), an Object-Oriented DBMS, a XML repository, a flat file system, and so forth.

4. STATE PATTERN AND VARIATIONS

The State Pattern is a behavioral software design pattern [Gamma et al. 1994] used to represent the state of an
object, a clean way for an object to partially change its type at runtime. It is the basic reference for many other
state related patterns. The UML class diagram representing the basic State Pattern is presented in Figure 4.

As Figure 4 shows, the State Pattern is a solution to the problem of creating a state dependent behavior. The
Context class is the interface with the client. The context is associated with the State abstract class, whose
method handle() represents the state behavior. Concrete classes that extend the State Pattern must give different
implementations of the method handle(), and each of these classes (e.g. ConcreteStateA and ConcreteStateB) is
a different state.

Persistent State Pattern — Page 4



Fig. 4. The basic State Pattern UML class diagram

Fig. 5. A representation of FSM Pattern

The State Pattern does not specify where the state transition logic is defined. It can be defined in the Context
object or in individual ConcreteState classes. However, defining the transition logic in concrete states introduces
dependencies between subclasses, which is an undesired coupling.

The unclear information about where to define transition logic is only a very simple limitation of the State Pattern.
The authors in [Adamczyk 2003; 2004; Yacoub and Ammar 1998a] shows many extensions of the basic State
Pattern, all able to solve a specific problem. Some problems solved are related to flexibility of design [van Gurp
and Bosch 1999; Odrowski and Sogaard 1996], loose coupling between elements [Ferreira and Rubira 1998;
Martin 1995], performance [Douglas 1998] ability of reverting states [Odrowski and Sogaard 1996].

4.1 The FSM Pattern

In this paper we are especially interested in aspects of loose coupling between elements and the ability to revert
states. Loose coupling between elements has been largely studied. The State Pattern is extended by a Finite State
Machine (FSM) Pattern [Shalyto et al. 2006]. Relationship between statecharts and state machines are treated
by the Basic Statechart Pattern and by the Hierarchical Statechart Pattern [Yacoub and Ammar 1998a; 1998b].
Nowadays we have advanced free software that implements FSM and generates code from statecharts [Gurov
and Mazin 2010; Korotkov 2010]. Considering the evolution of statechart tools, we give a representation of a FSM
Pattern in Figure 5.

In this representation, the transition logic is described in an XML file, and it is interpreted by a generic and
reusable class named FSM Manager. The FSM Manager decouples transition logic from the State Pattern. This
representation could be seen as a new pattern, while in fact it is an interpretation of the patterns cited above.

An example XML file describing the FSM is presented in Figure 6. It describes two states and one transition of
Figure 1. An outline Java code of the generic FSM manager is presented in Figure 7.

The FSMManager class has at least the two methods presented in Figure 7. The method tryStateChange
analyses the entity attributes and interprets if there is a state change to be performed. If there is a state change,
the method changeState is called. The changeState method may need to execute actions. If the only transition
described in the XML of Figure 6 is performed, the FSM will enter the state “1”, and the entry action must be

Persistent State Pattern — Page 5



<fsm startState="ELABORATION">

...

<state name="ELABORATION" id="0"/>

<state name="EVALUATION" id="1">

<entryAction service="createActivity"/>

</state>

<transition from="0" to="1" id="0">

<trigger>

<expression>type=='DURABLE'</expression>

</trigger>

</transition>

...

</fsm>

Fig. 6. PurchaseRequestFSM.xml, part of the XML description of the FSM statechart for the PurchaseRequest entity

public class FSMManager {

public FSMManager(String entityName) {

// load <entityName>FSM.xml file

}

public static FSMManager getFSMManager(

String entityName) {

// optionally consult cache

return new FSMManager(entityName);

}

public void tryStateChange(

Object e) throws Exception {

/*

* state <- e.state, by reflection

* get transitions from state e.state

* for each Transition tr

* test its trigger's expressions

* if expression evaluates to true

* call changeState(tr,e)

*/

}

private void changeState(

Transition tr, Object e)

throws Exception {

/*

* e.state <- tr.toState

* for each entry action of new state

* call action.execute(param)

*/

}

}

Fig. 7. FSMManager.java, a Java outline for the generic FSM manager

Persistent State Pattern — Page 6



public class Action {

String serviceName;

public void execute(int param) {

/*

* call <serviceName>Service.execute(param),

* by reflection

*/

}

}

Fig. 8. Action.java, a Java outline for an Action

executed. The FSMManager class may instantiate Actions in its constructor, based on the information of the XML
file. An Action can be the simple class presented in Figure 8.

While loose coupling has been largely studied, the problem of reverting object states has not, because the
solution proposed in [Odrowski and Sogaard 1996] is usually enough. We could not find in the literature a solution to
the problem of reverting a state of a persistent object during a database transaction. When dealing with databases,
the ability to revert the state of an object requires the ability to revert the state of the database. We need to link the
FSM Manager to a database transaction manager, so to be able to perform rollbacks in the transaction when a
state transition cannot be accomplished. The Persistent State Pattern solves this problem.

5. PATTERN DESCRIPTION

The State Pattern and its derived patterns are clearly focused on object’s behavior. None of them deal with the
need of persisting states. The Persistent State Pattern fills the lack of patterns for applications with persistent
states.

5.1 Context

Several entities in an entity-relationship model may be related to processes or workflows. Such entities may
assume various states during a process or workflow execution. An entity in this situation is a FSM. The FSM may
invoke actions, actions may invoke services in cascade, and many changes may be persisted in cascade. The
FSM must be transaction aware, and its transaction must be managed in a way to allow database rollbacks if any
problem occurs in any level of the cascade.

5.2 Intent

The intent of this pattern is to provide a safe design for the use of finite state machines associated to persistent
objects that participate to business processes or workflows.

5.3 Problem

When a state machine is associated to a persistent entity, and actions are executed as consequence of state
transitions, a new constraint is imposed: database integrity must be guaranteed. Several reasons may cause an
action to fail. If an action fails for any reason, the system must be able to rollback all the database changes since
the first state change occurred, to guarantee the data consistency.

5.4 Solution

Use the Persistent State Pattern to integrate transaction management to finite state machines.

5.5 Structure

In Figure 9, we show the class diagram representing the relationships for the Persistent State Pattern.

Persistent State Pattern — Page 7



Fig. 9. Class diagram representing the relationships for the Persistent State Pattern.

In Figure 10, we show a sequence diagram to illustrate the interaction between the various participants in the
Persistent State Pattern.

The participants and the responsibilities of this pattern are described below.

—Service
The Service represents the data client. It is the object that requires access to the data source to obtain and
store data. A Service may call other services directly after the sequence of Figure 10. A Service may also call
other services indirectly, if the transition logic of the FSM launches actions that call other services. The Service
in this pattern represents a primary Service, i.e., a Service which has not been called by another Service. The
Service called by another Service has been represented by participant Other Service, in Figure 10.

—TransactionFactory
The TransactionFactory implements the Abstract Factory Pattern [GoF]. It is used to create and control a
Transaction lifecycle, so it is possible to perform transaction control in the service level. The idea is to not allow
the Service to create an instance of Transaction, so the TransactionFactory can monitor its lifecycle safely. We
discuss deeper about the TransactionFactory in Section 7.

—Transaction
The Transaction represents a database open transaction. The Transaction is requested by the Service to the
TransactionFactory. The TransactionFactory creates a data transaction and starts monitoring its lifecycle. The
Service will pass the Transaction as parameter to every method call that may result in a database access. Every
other participant in the sequence does the same. Notice the Transaction being passed as parameter from left to
right in Figure 10. When the Service execution finishes, the Transaction is closed. If any error occurs and the
Service execution is not finished, the TransactionFactory will perform the rollback of all operations executed by
the Transaction.

—Business Object
The Business Object implements the business logic for the persistent entity.

—Data Access Object (DAO)
The DAO is an abstraction layer for the communication with the database.

Persistent State Pattern — Page 8



Fig. 10. Sequence diagram to illustrate the interaction between the various participants in the Persistent State Pattern.

Persistent State Pattern — Page 9



Fig. 11. Class diagram representing the relationships for the Persistent State Pattern and the FSM Pattern to include behavioral changes.

—Entity
The Entity is the persistent object. An Entity represents an entity of an entity-relationship model. The DAO is
responsible for translating this object to the format of the database in use.

—DataSource
This represents a data source implementation. A data source could be a database such as a Relation Database,
OO Database, XML repository, flat file system, and so forth.

—FSM Manager
The FSM Manager is responsible to control transition logic of the Finite State Machine (FSM) description. It has
the same role as the FSM Manager of the FSM Pattern presented in Figure 5.

—Other Service
The Other Service represents a Service that is called by a primary Service or by another Service in a cascade
Service call.

5.6 Integrating Behavior

The diagrams presented above are the core of the Persistent State Pattern. There is no runtime behavioral variation
when state changes. Indeed, the Persistent State Pattern itself does not cover the solution given by the basic State
Pattern. However, they can be combined.

The participant that implements any behavior is the BusinessObject, since it is responsible for the implementation
of the business logic. In the context of enterprise applications, if there is an object that may change its behavior in
runtime, this object is the BusinessObject.

The Persistent State Pattern can be combined with the FSM Pattern (Figure 5) to cover this problem. The
BusinessObject is made abstract, and it must be extended by concrete BusinessObjects, each one representing
the behavior of one state of the FSM. The transition logic of the FSM is maintained in the FSM Manager.

In Figure 11, we show the class diagram representing the relationships for the Persistent State Pattern combined
with the FSM Pattern, to include behavioral changes.

The participants and the responsibilities that change in this combination are described below.

Persistent State Pattern — Page 10



—BusinessObject, BusinessObjectA, and BusinessObjectB
The BusinessObject becomes an abstract class, just like the State class of the basic State Pattern presented in
Figure 4. The participants BusinessObjectA, and BusinessObjectB are concrete versions of the BusinessObject,
implementing specific behavior for each state. BusinessObjectA, and BusinessObjectB have the same role as
ConcreteStateA and ConcreteStateB in Figure 4. The abstract BusinessObject has now access to the FSM
XML-description. The FSM XML-description must map each state to a concrete BusinessObject implementation.
That way, the abstract BusinessObject is able to instantiate each concrete BusinessObject. The updateState() :
BusinessObject will return the correct concrete instance based on the current state.

—FSM Manager
In the behavioral version of the Persistent State Pattern the FSM Manager shares the FSM XML-description file
with the abstract BusinessObject.

All the other participants have the same responsibilities as they had in the simpler version of the pattern.

5.7 Related patterns

All the following patterns are related with this pattern:

—Abstract Factory [GoF]
The Abstract Factory Pattern is used to create and control a Transaction lifecycle, so it is possible to perform
transaction control in the service level.

—Business Object [Core J2EE]
The Business Object implements the business logic for the persistent entity.

—Data Access Object (DAO) [Core J2EE]
The DAO is an abstraction layer for the communication with the database.

—Finite State Machine Patterns (FSM)
The FSM Pattern is used to control transition logic in the simplified version of the Persistent State Pattern. In the
behavioral version, it is also responsible to instantiate the concrete Business Objects.

5.8 Example

Let us give an example of the use of the Persistent State Pattern. First of all, we update some lines of the
FSMManager and the Action classes, such as they handle Transactions. It is shown in Figure 12.

A Transaction is a class that represents a database open transaction. The rollback method is responsible for the
rollback of the entire transaction.

For our example, we show in Figure 13 the code for the PurchaseRequest, the PurchaseRequestDAO, and the
GoodType classes. PurchaseRequest represents the entity, PurchaseRequestDAO represents its correspondent
Data Access Object. GoodType is a simple enumeration for the type of request.

Note that we have shown only two attributes for the PurchaseRequest entity: ’state’ and ’type’. The ’type’ attribute
is important to the PurchaseRequest FSM, described by the PurchaseRequestFSM.xml file in Figure 6. It is part of
the trigger expression.

The PurchaseRequestDAO has only two methods. The getEntityInstance method queries the database (rep-
resented by a class named MyDataSource) and creates a PurchaseRequest instance from relational data. The
persist method does the opposite, it populates a relational database from data found in a PurchaseRequest object.
The persist method updates the entity, and it may cause a state transition. Thus, the FSMManager generic class
is instantiated, and it loads the PurchaseRequestFSM.xml file. The PurchaseRequestDAO delegates the state
transition to the tryStateChange method of the FSMManager. If no Exception is thrown by the tryStateChange, it
means that the PurchaseRequest has successfully changed its state, and it can finally be persisted. Otherwise,
the Exception is throw to whom has called the persist method.

Persistent State Pattern — Page 11



public class Transaction {

public void rollback() {

// stub

}

}

public class FSMManager {

//...

public void tryStateChange(Transaction t,

Object e) throws Exception {

//...

* if trigger is true, call changeState(t,tr,e)

//...

private void changeState(Transaction t,

Transition tr, Object e)

throws Exception {

//...

* call action.execute(t,param)

//...

}

public class Action {

String serviceName;

public void execute(Transaction t, int param) {

/*

* call <serviceName>Service.execute(t, param),

* by reflection

*/

}

}

Fig. 12. FSMManager, Action, and the introduction of the Transaction

In Figure 14 we show the code for the PurchaseRequestBO class, which is the Business Object for the
PurchaseRequest entity. Regarding persistence, the Business Object will always delegate the work to the
DAO. The only specific method in the PurchaseRequestBO class is setType, which is the setter method for
the PurchaseRequest.type attribute. The code that implements logic has been omitted.

Finally, we present in Figure 15 the code for the ExampleService, a service that manipulates data on a
PurchaseRequest. The implementation of the service has two methods. The method execute(int) and the method
execute(Transaction,int). When the service is called from a remote request, a new transaction must be created,
and the execute(int) must be used. The execute(int) creates a Transaction by calling the TransactionFactory (the
TransactionFactory is specific to the database or the persistence API used by the application), and then calls
execute(Transaction,int) inside a try scope. The execute(int) method is the method that starts the sequence
presented in Figure 10. From that point on, no other try statement need to be added, because all the subsequent
operations are performed in the same Transaction. Note that the Action class presented in Figure 12 is Transacion
aware, and it will always forward the Transaction when calling another service.

With the Persistent State Pattern, the implementation of the service becomes simpler, since the transaction
management is performed by the other participants of the pattern, which have standardized code.

Persistent State Pattern — Page 12



public class PurchaseRequest {

public int state = 0;

public GoodType type;

}

public class PurchaseRequestDAO {

public PurchaseRequest getEntityInstance(Transaction t,

int param) {

PurchaseRequest e = null;

// get relational data

MyDataSource ds = new MyDataSource();

Object o = ds.getEntityRelationalData(t, param);

//... populate 'e' by reading 'o'

return e;

}

public void persist(Transaction t, PurchaseRequest e)

throws Exception {

Object o = null;

// change state if needed

FSMManager fsm = FSMManager.

getFSMManager("PurchaseRequest");

fsm.tryStateChange(t, e);

//... populate 'o' by reading 'e'

// persist

MyDataSource ds = new MyDataSource();

ds.persist(t, o);

}

}

public enum GoodType {

DURABLE, CONSUMABLE

}

Fig. 13. The PurchaseRequest and PurchaseRequestDAO classes.

6. THE PERSISTENT STATE PATTERN FOR MODEL AND EVENT DRIVEN DEVELOPMENT

The Persistent State Pattern is directly applicable to the contexts of Model Driven Development (MDD) and Event
Driven Development (EDD).

The participants presented in Figure 11 are organized. Each participant has its role, and some of them are
fix or can be generated from models. The TransactionFactory is a generic component, it is not dependent of the
application. The same is true for Transaction, DataSource, and FSMManager. The others are discussed below.

—Entity
The Entity is just a representation of an entity of the database. It has no logic implemented. It is a Data Transfer
Object (DTO). All the information necessary to implement such DTO is available in an entity-relationship model
(ERM). An ERM may be described by a UML class diagram. In this case, a class represents an entity, but no
operation is added to the class. There are several tools for automated processing of UML diagrams. We are
able to automatically generate the entities from UML models.

Persistent State Pattern — Page 13



public class PurchaseRequestBO {

public PurchaseRequest getEntityInstance(

Transaction t,int param) {

PurchaseRequestDAO dao = new PurchaseRequestDAO();

return dao.getEntityInstance(t, param);

}

public void persist(Transaction t, PurchaseRequest e)

throws Exception {

PurchaseRequestDAO dao = new PurchaseRequestDAO();

dao.persist(t,e);

}

public void setType(PurchaseRequest e, GoodType type) {

// ... some logic implementation

e.type = type;

}

}

Fig. 14. The PurchaseRequestBO class

public class ExampleService {

public void execute(int param) {

// get a transaction

Transaction t = TransactionFactory.getTransaction();

try {

execute(t, param);

} catch (Exception ex) {

t.rollback();

}

}

public void execute(Transaction t, int param)

throws Exception {

// get entity

PurchaseRequestBO bo = new PurchaseRequestBO();

PurchaseRequest e = bo.getEntityInstance(t, param);

// modify entity

bo.setType(e, GoodType.DURABLE);

// persist

bo.persist(t, e);

}

}

Fig. 15. The ExampleService (see text)

—Data Access Object (DAO)
For each DataSource type, there are rules to map the entity data to the DataSource. It means that, once the
DataSource has been defined, it is possible to automatically generate DAOs from the entities definition in UML.

—Service
A Service may implement basic operations or complex ones. Of course, automatic code generation for complex
Services from models would certainly depend on other model types, such as Business Process or Business
Rules models. However, there are plenty of simple Services that can be automatically generated from UML class

Persistent State Pattern — Page 14



diagram: the Data Services. Data Services are services for data access. A single data Service serves only to
create, read, update or delete (CRUD) a single entity of the database. These Services can also be automatically
generated.

—Business Object
The Business Object is the most complex participant in the pattern. It implements logic about the entity. One
Business Object exists for one Entity. For the version of the Persistent State Pattern that includes behavioral
changes, it is difficult to generate fully functional concrete state classes. Only stubs can be generated. However,
it is rare the need for behavioral changes in a Business Object. Most of the logic present in a Business Object is
related to state transitions or field validation rules. Both can be described in the UML model, and such definitions
can be used for automatic code generation.

In Figures 9 and 11, there is also the FSM XML model, which is essential to the FSM Manager. The FSM XML
model is a direct mapping of the UML State Diagram exported to XML. There are available tools that automatically
generates such code too [Gurov and Mazin 2010; Korotkov 2010].

It is clear how the Persistent State Pattern is useful in an MDD context. The EDD concept is also useful, specially
for the implementation of the FSM Manager.

In statecharts, transitions and states may have actions associated. An action may be launch when entering
(entry action) or exiting (exit action) a state. Transitions may also launch actions. In the MDD approach, such
actions will be modeled in the UML State Diagram, and so they will be available in the FSM XML model. The idea
is to associate to each action, a Command class that implements it.

The EDD approach is a little different. All the actions of a state chart are handled by a single class, and such
class implements also an Event Listener. In that approach, the FSM Manager implementation is much simpler,
since it will only throw out events without carrying on executing and managing the actions.

7. THE PERSISTENT STATE PATTERN AND TRANSACTION MANAGEMENT

The most important difference between the Persistent State Pattern and other patterns derived from the State
Pattern is the presence of the TransactionFactory and Transaction participants.

Managed transactions are available for enterprise development platforms. JavaTM Enterprise Edition defines
container and bean-managed transactions, based on the JavaTM Transactions API [Jendrock et al. 2006; Panda
et al. 2007], the MicrosoftTM .NET Framework defines transaction scopes [Esposito and Saltarello 2008]. For the
JavaTM platform, there is also the Spring Framework transaction management [Walls and Breidenbach 2007].

It is not the scope of this paper to compare these frameworks. Transaction propagation is supported by all of
them. As an example, with the Spring Framework, the transaction propagation needed for the Persistent State
Pattern can be achieved by setting the propagation to required.

When the propagation is set to required, a logical transaction scope is created for each method to which the
setting is applied. Each such logical transaction scope can determine rollback-only status individually, with an outer
transaction scope being logically independent from the inner transaction scope. This means that the Persistent
State Pattern can be implemented without loss o generality. By using the pattern, software designers remain
flexible for the implementation.

8. DISCUSSION

We have presented the Persistent State Pattern, a design pattern for OO programing with persistent states. We
have recalled the classical State Pattern definition and the extensions of such pattern. We have shown that the
State Pattern and its extensions are focused on the objects’ behavior, while the problem of persistent states is
related to the transaction management. There was no published design pattern for persistent states.

The Persistent State Pattern has been presented in two forms. In the simple form, where the pattern is sufficient
for managing the state transition logic of a persistent object in a managed transaction framework. The simple

Persistent State Pattern — Page 15



form is sufficient for the most part of the information systems, where states are related to business processes
or workflows. The state of an entity that is part of a process or workflows usually reflects simply the state of the
process or workflow themselves. If the persistent object needs to behave differently for each different state, the
behavioral form of the Persistent State Pattern must be used. In this case, the basic of the State Pattern is added
to the simple Persistent State Pattern, and the result is a pattern that is able to manage different behaviors for
persistent objects in an environment with managed database transactions.

We showed that the Persistent State Pattern can be used by software designers without loss of flexibility
or generality in programming. The pattern is perfectly adherent to model and event driven development. The
participants of the pattern can be automatically generated from UML models, which is useful for MDD. The state
machine management can be implemented in a synchronous approach, where actions are mapped to methods
directly, and the execution of an action means calling a method. But it can also be implemented in an event driven
approach, where event listeners implement actions, the listeners are registered in the finite state machine (FSM)
Manager, and the FSM Manager simply rises an event to inform the listener that an action must be executed.

Finally, we conclude that the Persistent State Pattern fills a lack in the literature on patterns for state management,
by providing an extension to the State Pattern to be used in a persistence viewpoint.

Acknowledgments

This work is a result of the Brazilian public support to the research in Mitah Technologies Inc. private company as
well as regular public research funding. The authors would like to thank the Brazilian government public funding
agencies Fapemig, CNPq and Finep for the financial support.

REFERENCES

ADAMCZYK, P. 2003. The anthology of the finite state machine design patterns. In Proceedings of Pattern Languages of Programs (PLoP).
ADAMCZYK, P. 2004. Selected patterns for implementing finite state machines. In Proceedings of Pattern Languages of Programs (PLoP).
ALUR, D., MALKS, D., AND CRUPI, J. 2003. Core J2EE Patterns: Best Practices and Design Strategies 2nd Ed. Prentice Hall / Sun

Microsystems Press.
AMBLER, S. W. 2003. Agile Database Techniques: Effective Strategies for the Agile Software Developer. John Wiley & Sons.
DOUGLAS, B. P. 1998. Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks and Patterns. Addison Wesley.
ELMASRI, R. AND NAVATHE, S. 2010. Fundamentals of Database Systems 6th Ed. Addison Wesley.
ESPOSITO, D. AND SALTARELLO, A. 2008. Microsoft .NET: Architecting Applications for the Enterprise (PRO-Developer). Microsoft Press.
FERREIRA, L. AND RUBIRA, C. M. F. 1998. The reflective state pattern. In Proceedings of Pattern Languages of Programs (PLoP).
FOWLER, M. 2002. Patterns of Enterprise Application Architecture 1st Ed. Addison-Wesley Professional.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. M. 1994. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional.
GUROV, V. AND MAZIN, M. 2010. UniMod project website. Access in September – http://unimod.sourceforge.net.
JENDROCK, E., BALL, J., CARSON, D., EVANS, I., FORDIN, S., AND HAASE, K. 2006. Java(TM) EE 5 Tutorial 3rd Ed. Prentice Hall.
KOROTKOV, M. 2010. Automatic layout of state diagrams. White Paper - UniMod website. Access in September –

http://unimod.sourceforge.net/articles.html.
MARTIN, R. 1995. Three Level FSM. In Proceedings of Pattern Languages of Program Design (PLoPD).
ODROWSKI, J. AND SOGAARD, P. 1996. Pattern integration - variations of state. In Proceedings of Pattern Languages of Programs (PLoP).
PANDA, D., RAHMAN, R., AND LANE, D. 2007. EJB 3 in Action 1st Ed. Manning Publications.
SHALYTO, A., SHAMGUNOV, N., AND KORNEEV, G. 2006. State machine design pattern. In 4th Intl. Conf. on .NET Thechnologies. 51–57.
VAN GURP, J. AND BOSCH, J. 1999. On the implementation of finite state machines. In Proceedings of the IASTED International Conference.
WALLS, C. AND BREIDENBACH, R. 2007. Spring in Action 2nd Ed. Manning Publications.
YACOUB, S. AND AMMAR, H. 1998a. Finite state machine patterns. In Proceedings of the European Conference on Pattern Languages of

Programs (EuroPLoP).
YACOUB, S. AND AMMAR, H. 1998b. A pattern language of statecharts. In Proceedings of Pattern Languages of Programs (PLoP).

PLoP’10, October 16-18, Reno, Nevada, USA. Copyright 2010 is held by the author(s). ACM 978-1-4503-0107-7

Persistent State Pattern — Page 16


