

Multiple Secure Observers using

J2EE

Version 1.4 | 11-Aug-10

Author: Vivek Gondi

 MindTree Limited  www.mindtree.com

http://www.mindtree.com/

Abstract

The concept of notifying messages to multiple parties is a common scenario in several applications.
The sender might need to send messages to a particular receiver but cannot reach him directly due to
some constraints like lack of access, cumbersome to reach etc. We use this problem to model a pat-
tern to send notifications/messages from source to destination in a secure and automatic way. The
pattern uses multiple observers and security concepts to demonstrate this problem.

The paper discusses notifying messages between multiple objects using observer classes. It also dis-
cusses how messages can be transmitted between them by using encrypted messages at each step.
In this way secure transmission of messages between them is achieved.

1 Introduction

1.1 Name of the Pattern

This pattern is called „Multiple Secure Observers‟ as it uses a combination of observer classes

and security mechanisms to relay messages from the starting point to the end point in a secure

manner. Messages are sent to several subscribers using the framework of PKI and observer pat-

tern. It is specific to J2EE framework as it uses observer classes provided by the Java framework

but can be used in other languages using the similar idea. [2]

1.2 Classification

It can be categorized under behavioral pattern where the different objects communicate via “ob-

servers” located in the system. „Observers‟ are chained in the system so a chain of observers are

initiated for a particular action. It also uses the idea behind Façade pattern where the sender in-

vokes a simple method to execute his service but is oblivious of the complexity behind the

scenes. [4]

1.3 Context

In distributed systems, communication between objects is a key factor for a good system design. It is

required that the starting point and end point needs to be connected in a secure and automatic fa-

shion. Often at each step in the intermediate steps, action needs to be taken without any effort from

the sender. For e.g.: look ups need to be performed and proper action needs to be taken in the inter-

mediate steps. Based on the result of the lookup, another action needs to be initiated. And actions

might need to be initiated in a chained manner. This kind of situation can be addressed using this pat-

tern.

1.4 Problem

In several applications, it is hard for user to send messages to multiple subscribers in a secure fa-

shion. Since many external subscribers are involved, the message can be intercepted by unautho-

rized persons. This is not a desired situation. This pattern addresses a secure way to transmit the re-

quired information using encryption using public/private key pairs.

3

Also many times, it is a cumbersome task to contact several subscribers for sending a uniform mes-

sage. The problem being the user tries to contact several parties but cannot achieve it in a simple

manner. This pattern allows the user to complete this task by invoking appropriate observer classes.

Both of the above aspects are dealt with this pattern and the following sections explain how this pat-

tern can help in solving these problems [Ref 1]

2 Solution

Overview: The overall workflow for the solution is explained here. Assume a typical use case, where

the user would like to communicate to an end point for some requirement. In the beginning, the cre-

dentials of the user are verified by an „Authentication Service‟. The credentials could be valid

SSN/Date of Birth/password etc or any identity that the user has registered. Once the authentication is

successful, the flow passes on to the „Broker‟ Class. In the solution, a „Broker Class‟ mediates all re-

quests from the user and routes them to the „Service Provider‟ using lookup tables. Both the „Broker‟

and „Service Provider‟ implement „Observer‟ and extend „Observable‟ classes. The service provider in

turn routes the request message to the required „Service Implementer‟. The end point in this pattern

which executes the user‟s request is called „Service Implementer‟. Encryption and decryption of mes-

sages is handled by the „Message Handler‟ class. All key related information is obtained from the

„KeyStore‟ class.

The details of the flow are discussed individually in each class below.

Login Class: The first step it performs is validating the credentials of the user using „Authentication

service‟ class. The credentials could be valid SSN, Date of Birth, Bank Details etc or any identity that

the system is registered with. Upon successful login, it instantiates the „MessageHandler‟ class and

sets the required input message to the handler object. It is an „Observable‟ class with add and notify

methods. The addObserver() contains the Broker as the observer and notifyObserver() is responsible

for publishing the message to the Broker automatically using Observable class

Finally, it contains the executeService() method. This method sends the encrypted message received

from the MessageHandler class and calls the notifyObserver() method to notify the observers sub-

scribed to this object.

MessageHandler Class: This is an utility class for handling all encrypted messages between different
objects. The main responsibility of this class is to return an encrypted message (getEncryptedMsg())
to the calling class using the private key of the subscriber. When a subscriber gets an encrypted mes-
sage, it is also responsbile for decrypting the message (getDecryptedMsg()) by obtaining the required
public key from the „KeyStore‟ class. So essentially, this class is responsible for the security aspects
of messaging based on keys obtained from „KeyStore‟ class.

ServiceLookup Class: This class provides the list of observers for a particular object. For e.g.: If
Broker class is the input to the lookup() method, the method would return the list of „Service Observ-
ers‟ for the particular „Broker‟ class. It contains one overloaded method to accept different objects.

Broker Class: This class extends „Observable‟ class and also implements the „Observer‟ interface.

The Broker is the „Observer‟ for the Login class. Broker acts as the first „Observer‟ for calls received

4

by the client. Broker class also extends the „Observable‟ class as any change to this object is „ob-

served‟ by the Service Provider class. The addObserver() contains the list of „Service Provider(s)‟ that

are “watching” the changes in Broker class. The relationship between the broker and service provider

is provided by the Service Lookup class. Broker class gets the encrypted message from the message

handler and decrypts the message by obtaining the public key from the „KeyStore‟ class.

Service Provider Class: The service provider class receives requests from the „Broker Observer‟.

Just like Broker it is both „Observable‟ and also extends the „Observer‟ interface. This class observes‟

changes to the Broker class and notifies the Service Implementer classes. This class is responsible

for categorization of requests and passing the control to the appropriate „Service Implementer‟ using

look up. Just like the Client-Broker-Service Provider channel, the Broker-Service-Provider-Service

Implementer communicates in a similar way. Thus multiple secure observer structure is set up.

Service Implementer Class: They are the „Observer(s)‟ to the Service Providers and hence listen to

all updates in the Service Provider class. The service implementers actually execute the service re-

quested by the client and are the destination point for which the client is looking to. They are the end-

point in this hierarchy to achieve the service what the client is looking for. It contains the execute()

which accepts the service message, decrypts using the public key and performs the required action.

KeyStore Class: This contains public key for all observers to decode the encrypted messages. The

key pair generation for each of the Observer classes is handled here. Every Observer object gets its

public key from this class to read the encrypted messages when required. For e.g.: The Broker Ob-

server class decrypts the message, deciphers what service the client is looking for using the key ob-

tained from this class. It then forms the required content for message using the Message Handler

class getEncryptedMessage(). The message is signed using Broker private key and passed to Ser-

vice Provider Observer. Upon receiving the message by the „Service Provider‟, it calls getDecrypted-

Message() and decrypts the message as per key obtained from the „KeyStore‟.

Since the messages pass via various third parties, asymmetric keys are used for generation. We want

that the messages intended to service provider 1 should be not be read by service provider 2. Hence

these asymmetric keys would help in keeping the privacy of the data.

The class diagram is illustrated below.

5

2.1 Class Diagram

Fig 2.1.1: Class diagram for multiple secure observers

LoginVO

+BrokerObserver
+serviceMessage
+MessageHandler

+validateLogin()
+setServiceMessage()
+addObserver(BrokerObs)
+notifyObserver()

ServiceObserver

+loginVO
+serviceImplementers(HashMap)

+update()
+setLoginInfo(loginVO)
+getServiceMessage()

MessageHandler

+MessageHandler(String)
+getDecryptedMsg(publickey)
+getEncryptedMsg(privatekey)

BrokerObserver

+observerList(ArrayList)
+loginVO
+SrvLkupFilter()

+update()
+addObserver(ServiceObs)
+notifyObserver()
+getServiceMessage()

KeyStore

+brokerObserver
+serviceObserver
+serviceImpl

+getPrivateKey(brokerObserver)
+getPublicKey(brokerObserver)
+getPrivateKey(serviceObserver)
+getPublicKey(serviceObserver)
+getPrivateKey(serviceImpl)
+getPublicKey(serviceImpl)

java.util.Observable

ServImpl

+execute()

ServiceImplInterface
<<interface>>

+execute()

Observer
<<interface>>

AuthenticationService

+validate(LoginVO)

ServiceLookup

+lookupSP(Observer)

6

2.2 Collaboration

Fig 2.2.1: Sequence Diagram depicting the publishing of messages to subscribers

(We assume that the registering of the subscribers is done prior to this step)

Client contacts the broker for a particular action. Broker uses lookup service to find the ser-

vice providers (e.g. Bank Entity, Insurance Entity etc). Each service provider has in turn ser-

vice implementers. For e.g.: A bank entity would have Savings Account, Credit Card, Loan etc

as service implementers. The service implementers execute the service requested by the us-

er.

2.3 Sample Code

The detailed sample code is placed in the Appendix section (Section 2.5)
Only the test class is shown here for brevity.

Test Class:

LoginVO Authentication Service BrokerObserver KeyStore ServiceObserver ServiceLookup ServiceImplementersMessageHandler

1 : validateLogin()

2 : setServiceMessage()

3 : notifyObserver()

4 : getEncryptedMessage()

5 : getPrivateKey()

6 : getPublicKey()

7 : SrvLookup()

8 : notifyObserver()

9 : getEncryptedMessage()

10 : getPrivateKey()

11 : getPublicKey() 12 : srvImplLookup()

13 : notifyObserver()

14 : execute()

7

package util.test;

public class TestEncryptedObserver {

 public static void main (String args[]){
 try{
 LoginVO loginVO = new LoginVO();
 MessageHandler messageHandler = new MessageHandler();
 messageHandler.setMessage("Test message from client- update personal Info");
 loginVO.setMessageHandler(messageHandler);
 loginVO.executeService();
 }catch(Exception ex){
 //catch and log exceptions
 }
 }
}

Output after running the Test class in Eclipse IDE:

called the message Test message from client- update personal Info
called the validate method
called the broker update method
service observers added in loop
called the update method in ServiceObserver
called the service implementor method for client

Process finished with exit code 0

3 Consequences

Benefits:

 The pattern brings ease of transmission of information by the client to several other parties in

a single call. It brings about uniform dissemination of information to all parties concerned via

the broker interface in an encrypted manner and hence there is no ambiguity of information

being sent to several parties.

 It aids in sending immediate warning message to several providers in a short span of time

with less effort from the client.

 The secure transmission aids in privacy of the data being considered and is therefore very

useful in many situations. The customer can be rest assured that his data is not being made

public and misused by unwanted parties.

 It is also possible to add digital signatures to let the recipients verify the authenticity of mes-

sages.

 The pattern can be expressed also in other languages, e.g. .NET, with a few changes.

 It brings forth integration between client, broker and subscribers for different queries and is-

sues. Since the information is securely transmitted, all communications between the parties

can be stored, analyzed and can be used for non-repudiation purposes.

8

Downside:

 This pattern assumes proper communication channels between broker provider and the sub-

scriber interfaces. But there might be disagreements to terms and conditions between all par-

ties involved and hence messages might not reach concerned party in time.

 The customer information to some extent becomes public to broker system as messages can

be decrypted by an intelligent hacker if the key is known and the message can be read.

 The formats of messages need not be standardized between different service providers. One

provider might be using XML and another might be using a simple text message etc. Thus the

integration between various layers is a challenge. Added to this, the complication of encryp-

tion and decryption at each layer might differ if different algorithms are used since several

parties are involved.

 This pattern only uses a one way communication from the sender to the end point. The re-

verse communication is not handled online. The reverse communication could add more flex-

ibility and usage to the pattern.

4 Known Uses

Some of the applications of this pattern are:

1) Many websites send automatic updates automatically to its subscribers when any sub-

scribed services change (e.g.: Stock value changes in a range defined by the user).

These messages preferably should not be intercepted by other users as it is meant for a

particular user and hence this pattern is used for secure relay of messages.

2) Users of „FaceBook‟ can subscribe to messages from „Twitter‟ so that updates on „Twitter‟

can be sent via SMS to the „FaceBook‟ users. This uses the secure observer pattern

where messages are transmitted securely.

3) Information received at a particular headquarters of an office is dispatched to multiple

branches of the office via text messaging services. The sub-branches are informed about

any updates, important communication regarding business updates automatically using

the observer pattern. This kind of business related information is confidential and there-

fore encryption of messages provides required service. Some companies on mobile

space like secureVoicegsm.com use this kind of idea.

5 Related Patterns

Item Description

Front End Interceptor Used in routing requests in the broker component

Publish/Subscribe
Used in the service provider layer to send messages to various service
implementers

Façade Calling service implementer methods from service observers

MVC Used by the observer classes as they use the model-controller pattern

9

6 References

SNo References

1.
A. Braga, C. Rubira, and R. Dahab, “Tropyc: A pattern language for cryp-
tographic object-oriented software”, Chapter 16 in Pattern Languages of
Program Design 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.).

2.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.,
Pattern-oriented software architecture, Wiley 1996

3. www.javacamp.org

4.
Eric Gamma, Richard Helm, Ralph Johnson: Design Patterns: Elements
of Re-Usable Object Oriented Software

7 Appendix

LoginVO Class:

package util.test;

import java.util.Observable;

//this is the only observable interface in the pattern
public class LoginVO extends Observable {

 BrokerObserver brokerObs = new BrokerObserver();
 //the message to be sent
 private String serviceMessage;
 MessageHandler messageHandler = new MessageHandler();
 //the brokerobservers are added here, in our pattern only one observer is added
blic void addObserver(BrokerObserver obj){
 this.addObserver(obj);
}

//This method validates the user credentials
//Further it assigns the message read by the MessageHandler to the observer(s) added to the
system using notifyObserver() and executes the requested service

public boolean executeService(){
messageHandler.setServiceMessage(serviceMessage);
 System.out.println("called the message reader "+messageHandler.getMessageHandler());
//notify the Observer, in this case BrokerFilter
 System.out.println("called the validate method");
 notifyObserver();
 return true;
}

//calls the update of next observer i.e. the broker with the required message
public void notifyObserver(){
 brokerObs.update(messageHandler);
}

10

}

MessageHandler Class:

public MessageHandler();
 //some custom defined Reader to read messages
 public MessageHandler getMessageHandler() {
 return messageHandler;
 }

 public void setMessageHandler(MessageHandler someHandler) {
 this.messageHandler = someHandler;
 }

//returns encrypted signed message
 public String getServiceMessage() {

// encrypt the data
return message;

 }

 public void setServiceMessage(String serviceMessage) {
 this.serviceMessage = serviceMessage;
 }

BrokerObserver Class:

package util.test;

import java.util.*;

public class BrokerObserver extends Observable implements Observer {

//lookup for service providers based on the service description by the loginVO
private HashMap serviceProviders = new HashMap();
//holds list of observers for this subject(broker is now subject for serviceproviders)
private ArrayList observerList = new ArrayList();
 private MessageHandler messageHandler ;

//get list of service providers for the service from lookup
ServiceLookup svfilter = new ServiceLookup();
HashMap serviceProviderList =svfilter.lookupSP(this);
ServiceObserver servObs;

 //get the signed message from the handler
 public void update(Observable obj,Object ob){
 if(obj instanceof MessageHandler)
 this.setMessageHandler((MessageHandler) obj);
 System.out.println("called the broker update method");
 String brokerMessage = decryptBrokerMessage(messageHandler.getServiceMessage());
 addObserver(brokerMessage);
 notifyObserver();

11

 }

private void setMessageHandler(MessageHandler messageHandler)
{this.messageHandler=messageHandler; }
 private MessageHandler getMessageHandler() {return messageHandler; }
}

//decrypt messages using the key obtained
 private String decryptMessage(String encryptedMessage){
 //decrypt message and route to service provider
 return KeyStore.getKey(this);

 }

public void addObserver(String message){
 //adding a test service observer object from message received
 serviceProviderList.put(new ServiceObserver(),new ServiceObserver());
 Iterator it = serviceProviderList.values().iterator();
 while(it.hasNext())
 observerList.add(it.next());
 }
 public void notifyObserver(){
 Iterator it=serviceProviderList.values().iterator();

 while(it.hasNext()) {
 servObs = (ServiceObserver)it.next();
 System.out.println("service observers added in loop");
 servObs.update(this, messageHandler);
 }
 }
}

ServiceLookup Class:

package util.test;
import java.util.HashMap;

public class ServiceLookup {
 public HashMap lookupSP(BrokerObserver brokObs){
 HashMap srvProvider = new HashMap();
 //look up code for service providers
 return srvProvider;
 }

 public HashMap lookupSP(ServiceObserver servObs){
 HashMap srvImpl = new HashMap();
 //look up code for service implementers
 return srvImpl;
 }
}

ServiceObserver Class:

12

package util.test;

import java.util.Observer;
import java.util.Observable;
import java.util.HashMap;
import java.util.Iterator;

public class ServiceObserver extends Observable implements Observer {
 MessageHandler messageHandler ;
 HashMap servImpl ;

private HashMap lookUPServImpl(){
 String message = decryptServMessage();
 //based on message lookup service Impl
 servImpl = new ServiceLookup().lookupSP(this);
 return servImpl;
 }

 private String decryptServMessage(String encryptedMessage){
 //decrypt message and route to service provider
 return KeyStore.getKey(this);
 }

//add test service implementers

 public void update(Observable obs,Object obj){
 lookUPServImpl();
 servImpl.put(new ServImpl_1(),new ServImpl_1());
 //get list of serviceimplementers
 Iterator it = servImpl.keySet().iterator();

 if(obs instanceof BrokerObserver){
 //get broker and client VO
 this.setClientInfo(((BrokerObserver)obs).getClientVO());
 //execute relevant service methods
 while(it.hasNext()){
 ServiceImplInterface sp =(ServiceImplInterface)it.next();
 System.out.println("called the update method in ServiceObserver");
 sp.execute(messageHandler.getMessage());
 }
 }
 }

private void setMessageHandler(MessageHandler messageHandler)
{this.messageHandler=messageHandler; }
 private MessageHandler getMessageHandler() {return messageHandler; }
}

ServImplInterface Interface:

package util.test;

public interface ServiceImplInterface {

13

 public void execute(MessageHandler messageHandler) ;
}

ServImpl Class:
package util.test;

public class ServImpl implements ServiceImplInterface {
 public void execute(MessageHandler msgHandler){
 System.out.println("called the service implementer method for client");
 //implementation of actual service here
}
}

KeyStore Utility Class:
package util.test;

public class KeyStore {
 private static String servObsKey;
 private static String brokerObsKey;
 private static String servImplKey;

 public static String getKey(ServiceObserver sobs){
 //some implementation
 return servObsKey;
 }
 public static String getKey(BrokerObserver bobs){
 //some implementation
 return brokerObsKey;
 }
}

