
Persistent State Pattern

André V. Saúde
∗

Dept. Computer Science
Federal University of Lavras

Lavras, Brazil
saude@dcc.ufla.br

Ricardo A. S. S. Victório
Mitah Technologies

Lavras, Brazil
ricardo.victorio@mitahtech.com

Gabriel C. A. Coutinho
Mitah Technologies

Lavras, Brazil
gabriel@mitahtech.com

ABSTRACT
Finite State Machines (FSM) provide a powerful way to de-
scribe dynamic behavior of systems and components. Imple-
mentations of FSM in Object-Oriented (OO) languages have
been widely studied since the classical State design pattern
has been introduced. Various design patterns were derived
from the State pattern, however, the focus was always on
object’s behavior. This paper proposes the Persistent State
Pattern, an extension to the State pattern where persistent
data is taken on account. The Persistent State Pattern in-
tegrates classical and enterprise design patterns, and it is
conceived for enterprise applications. It can be used with
OO databases and relational databases, and it can also be
incorporated by an object-relation mapping framework. We
present the close relationship between the Persistent State
Pattern and the concepts of model and event driven design.

1. INTRODUCTION
Finite State Machines (FSM) provide a powerful way to de-
scribe dynamic behavior of systems and components. There
are several available implementations of FSM in Object-
Oriented (OO) languages. The OO implementations of FSM
have been widely studied, and several design patterns have
been proposed in the literature to deal with states in OO.
The basic design pattern for states is the State design pat-
tern, popularized by the most cited design pattern refer-
ence [10].

The State Pattern is a solution to the problem that an ob-
ject’s behavior is a function of its state, and it must change
its behavior at runtime depending on that state. In short,
it is a behavioral design pattern. The various design pat-
terns derived from the State pattern also have the focus on
object’s behaviour [1, 2, 20, 21]. None of them deals with
states in a persistence framework.

Persistent states exist when a database entity (of an Entity-

∗Corresponding author.

Relationship Model (ERM) [6]), takes part of a business
process or a workflow. Processes and workflows may be
executed by various actors and must be able to be persis-
tent. A database entity which is part of the process may be
persisted in different states. Let us take as example a pur-
chase process, in a company, which could be summarized
by the following steps: i) a professional in the company’s
operation creates a purchase request, which is modeled by
an entity called PurchaseRequest; ii) the purchase request
is evaluated by the company’s financial office before, and it
can be approved or rejected; iii) the purchase office contacts
suppliers and negociates prices; iv) the financial office pays;
v) the product is delivered. During this process, the Pur-
chaseRequest entity changes it’s state several times. The
PurchaseRequest entity could have, for instance, the states
elaborating, approved, rejected, and others. Since there are
different actors interacting with the entity, the entity’s state
must be persistent.

In an Object-Relational Mapping (ORM) framework [4],
the PurchaseRequest entity would be mapped to a Pur-
chaseRequest object, and the PurchaseRequest object does
not need to change its behavior when changing its state.
This means that persistent states are not necessarily asso-
ciated with specific behavior. This is the main difference
between this problem and the problem solved by the be-
havioral State Pattern and its extensions. Such patterns
are not applicable to persistent states. Since we are deal-
ing with persistent data, we must deal with issues related to
persistence, such as transaction management policies.

This paper proposes the Persistent State Pattern, an exten-
sion to the State pattern where persistent data is taken on
account.

The Persistent State Pattern integrates classical and enter-
prise design patterns, for enterprise applications. Enterprise
applications are strongly based on OO design patterns, and
the basic reference patterns have been proposed as solu-
tions to problems posed by the Enterprise JavaTM Beans
(EJB) [3, 17] and the MicrosoftTM .NET Framework [7]
specifications. The proposed pattern is adherent to exist-
ing transaction management frameworks [19, 17] and to any
type of persistence framework, including ORM frameworks.
We present the close relationship between the Persistent
State Pattern and the concepts of model and event driven
design. We show that the pattern can be used with both
design approaches.



Figure 1: The Abstract Factory design pattern UML
class diagram

2. CLASSICAL AND ENTERPRISE DE-
SIGN PATTERNS

In this section we recall the background on classical and
enterprise design patterns needed for the comprehension of
the text.

The book by Gamma et al. [10] (known as the Gang of Four
or simply GoF) compiles various classical design patterns.
In this paper we deal with information systems for the web,
with large databases, and with business processes and work-
flows largely present. Such systems are known as enterprise
systems or enterprise applications. GoF patterns are not
sufficient for enterprise applications. There are several en-
terprise design patterns. This paper is based on the Core
J2EE enterprise patterns [3]. In the following we present
the GoF and Core J2EE needed for this paper. One GoF
pattern will be presented separately in Section 3, due to its
strongest relationship with the subject of this paper.

2.1 Factory Method and Abstract Factory
The Factory Method and the Abstract Factory are used as
the standard way to create objects. The implementation
of Factory Method overlaps with that of Abstract Factory
in [10]. In Figure 1 we present the most popular implemen-
tation.

The goal is to avoid a client to directly instantiate a class.
This is especially interesting when the object created must
have its lifecycle monitored.

2.2 Command
A Command encapsulates a request as an object. The Com-
mand pattern is largely used for events, errors and excep-
tions. The idea is to have the same interface for several
different actions, so the same client can launch different ex-
ecutions by calling the same signature method in different
Command objects.

2.3 Data Transfer Object
In enterprise applications, it is usual to implement a
database entity as a Data Transfer Object (DTO), an ar-
bitrary serializable Java object. The DTO is usually imple-
mented as a class with only attributes and getter or setter
methods. The idea is to avoid network overhead when trans-
fering data in a remote call. So the DTO does not provide
fine-grained setter methods for the attributes. The logic for
the attributes is implemented by the Business Object. The
DTO is sometimes called Value Object [9, 3].

Figure 2: The Data Access Object design pattern
UML class diagram.

Figure 3: The basic State Pattern UML class dia-
gram

2.4 Business Object
The Business Object is defined by the Core J2EE Patterns
as the object that requires access to data. In this paper, the
Business Object will always implements the business logic
about that data, so the business logic and the persistent
data are decoupled in two objects.

2.5 Data Access Object (DAO)
The Data Access Object (DAO) is a Core J2EE pattern.
The DAO is an abstraction to the access of a data source.
We show its structure in Figure 2.

In Figure 2 the Entity class represents a database entity, and
it is implemented as a DTO. The BusinessObject interacts
with this DTO by modifying it, based on its business logic.

The DAO abstracts and encapsulates all access to the data
source, it manages the connection with the data source to
obtain and store data. The data source may be of any
kind, a Relation Database Management System (DBMS),
an Object-Oriented DBMS, a XML repository, a flat file
system, and so forth.

3. STATE PATTERN AND VARIATIONS
The State Pattern is a behavioral software design pat-
tern [10] used to represent the state of an object, a clean
way for an object to partially change its type at runtime.
It is the basic reference for many other state related pat-
terns. The UML class diagram representing the basic State
Pattern is presented in Figure 3.

As Figure 3 shows, the State Pattern is a solution to the
problem of creating a state dependent behavior. The Con-
text class is the interface with the client. The context is asso-
ciated with the State abstract class, whose method handle()
represents the state behavior. Concrete classes that extend
State must give different implementations of the method



Figure 4: A representation of FSM Pattern

handle(), and each of these classes (e.g. ConcreteStateA
and ConcreteStateB) is a different state.

The State pattern does not specify where the state transition
logic is defined. It can be defined in the Context object or in
individual ConcreteState classes. However, by defining the
transition logic in concrete states introduces dependencies
between subclasses, which is an undesired coupling.

The unclear information about where to define transition
logic is only a very simple limitation of the State Pattern.
The authors in [1, 2, 20] shows many extensions of the basic
State Pattern, all able to solve a specific problem. Some
problems solved are related to flexibility of design [12, 16],
loose coupling between elements [15, 8], performance [5] abil-
ity of reverting states [16].

3.1 The FSM Pattern
In this paper we are especially interested in aspects of loose
coupling between elements and the ability to revert states.
Loose coupling between elements has been largely studied.
The State Pattern is extended by a Finite State Machine
(FSM) Pattern [18]. Relationship between statecharts and
state machines are treated by the Basic Statechart Pattern
and by the Hierarchical Statechart Pattern [20, 21]. Nowa-
days we have advanced free software that implements FSM
and generates code from statecharts [11, 14]. Considering
the evolution of statechart tools, we give a representation of
a FSM Pattern in Figure 4.

In this representation, the transition logic is described in an
XML file, and it is interpreted by a generic and reusable
class named FSM Manager. The FSM Manager decouples
transition logic from the State Pattern. This representa-
tion could be seen as a new pattern, while in fact it is an
interpretation of the patterns cited above.

An example of XML file describing the FSM is presented in
Figure 5.

In this XML the FSM has two states (0 and 1). The state
“1” is assotiated to an entry action, which must be executed
when the FSM enters this state. There is only one transi-
tion declared, from state “0” to state “1”, and this transition
is executed if the attribute value, of the entity Example is
greater than 1000.

An outline of the generic FSM manager is presented in Fig-
ure 6.

<fsm startState="0">
<state id="0"/>
<state id="1">
<entryAction service="AnotherService"/>

</state>
<transition from="0" to="1" id="0">
<guardCondition type="greaterThan">
<attribute>value</attribute>
<constant>1000</constant>

</guardCondition>
</transition>

</fsm>

Figure 5: ExampleFSM.xml, an XML description of
the FSM statechart for an entity called Example

public class FSMManager {
public FSMManager(String entityName) {
// load <entityName>FSM.xml file

}
public static FSMManager getFSMManager(

String entityName) {
// optionally consult cache
return new FSMManager(entityName);

}
public void tryStateChange(

Object e) throws Exception {
/*
* state <- e.state, by reflection
* get transitions from state e.state
* for each Transition tr
* test its guard conditions
* if condition is true, call changeState(tr,e)
*/

}
private void changeState(

Transition tr, Object e)
throws Exception {

/* e.state <- tr.toState
* for each entry action of new state
* call action.execute(t)
*/

}
}

Figure 6: FSMManager.java, a Java outline for the
generic FSM manager



public class Action {
String serviceName;
public void execute(int param) {
// call <serviceName>Service.execute(param),
// by reflection

}
}

Figure 7: Action.java, a Java outline for an Action

The FSMManager class has at least the two methods pre-
sented in Figure 6. The method tryStateChange analyses
the entity attributes and interprets if there is a state change
to be performed. If there is a state change, the method
changeState is called. The changeState method may need
to execute actions. If the only transition described in the
XML of Figure 5 is performed, the FSM will enter the state
“1”, and the entry action must be executed. The FSMMan-
ager class may instantiate Actions in its constructor, based
on the information of the XML file. An action can be the
simple class presented in Figure 7.

The problem of reverting object states has been much less
studied, since the solution proposed in [16] is usually enough.
We could not find in the literature a pattern that solves the
problem of reverting a state of a persistent object during
a database transaction. When dealing with databases, the
ability to revert the state of an object requires the ability
to revert the state of the database. We need a pattern that
links the FSM Manager to a database transaction manager,
so to be able to perform rollbacks in the transaction when
a state transition cannot not be accomplished. In the next
section we describe such pattern.

4. PERSISTENT STATE PATTERN DE-
SCRIPTION

The State Pattern is a behavioral pattern. All its derived
patterns are also clearly focused on the object’s behaviour.
In many applications, FSMs may be applied to objects that
simply do not change their behaviour. With regard to run-
time objects, it sounds odd, but it is true for persistent
objects.

A persistent object is an OO representation of a database
entity. An entity may be related to a process or a workflow.
As an example, let us consider the purchase process of a
company. Many actors are involved with this process, and
the complexity of the process varies depending on the com-
pany. In our example, we consider that somebody in the
company’s operation starts the process by creating a pur-
chase request, modeled by the PurchaseRequest entity. A
purchase request may be approved or rejected by the com-
pany financial office. The PurchaseRequest entity changes
its state along the execution of the purchase process. Fig-
ure 8 shows the UML statechart for the PurchaseRequest
entity.

The statechart for the PurchaseRequest entity is simple, but
it is possible to observe that it cannot be executed without
persistence, since there are different actors interacting with
the entity to cause state transitions.

In the following, we define a new OO design pattern, con-
ceived for persistent states, the Persistent State Design Pat-
tern.

4.1 Context
Several entities in an entity-relationship model may be re-
lated to processes or workflows. Such entities may assume
various states during a process or workflow execution. An
entity in this situation is a FSM. The FSM may launch ac-
tions in cascade, and make many changes in the database.
The FSM must be managed in a way to allow rollbacks in
database transaction if any problem occurs in any level of
the cascade.

4.2 Intent
The intent of this pattern is to allow a persistent object to
have its behavior and lifecycle managed by a FSM Manager
while maintaining the integrity of the database.

4.3 Problem
The State Pattern and its extensions do not present many
solutions to the case when reverting object states is impor-
tant. The available solutions are still focused on runtime
behavioral change.

The State Pattern and its extensions also do not present any
solution to the case when the objects are persistent. In such
case, reverting object states is important, and this may lead
to the need of reverting a database state, by controlling the
database transactions and executing rollbacks.

4.4 Solution
Use the Persistent State Pattern to integrate an FSM Pat-
tern in a framework with managed transactions.

4.5 Structure
In Figure 9, we show the class diagram representing the
relationships for the Persistent State Pattern.

In Figure 10, we show a sequence diagram to illustrate the
interaction between the various participants in the Persis-
tent State Pattern.

The participants and the responsibilities of this pattern are
described below.

• Service
The Service represents the data client. It is the object
that requires access to the data source to obtain and
store data. A Service may call other services directly
after the sequence of Figure 10. A Service may also call
other services indirectly, if the transition logic of the
FSM launches actions that call other services. The Ser-
vice in this pattern represents a primary Service, i.e.,
a Service which has not been called by another Ser-
vice. The Service called by another Service has been
represented by participant Other Service, in Figure 10.

• TransactionFactory
The TransactionFactory implements the Abstract Fac-
tory pattern [GoF]. It is used to create and control a



Figure 8: UML statechart for the PurchaseRequest entity

Figure 9: Class diagram representing the relationships for the Persistent State Pattern.



Figure 10: Sequence diagram to illustrate the interaction between the various participants in the Persistent
State Pattern.



Transaction lifecycle, so it is possible to perform trans-
action control in the service level. The idea is to not al-
low the Service to create an instance of Transaction, so
the TransactionFactory can monitor its lifecycle safely.
We discuss deeper about the Transaction Factory in
Section 6.

• Transaction
The Transaction represents a database open transac-
tion. The Transaction is requested by the Service to
the Transaction Factory. The Transaction Factory cre-
ates a data transaction and starts monitoring its lifecy-
cle. The Service will pass the Transaction as parameter
to every method call that may result in a database ac-
cess. Every other participant in the sequence does the
same. Notice the Transaction being passed as param-
eter from left to right in Figure 10. When the Service
execution finishes, the Transaction is closed. If any
error occurs and the Service execution is not finished,
the Transaction Factory will perform the rollback of
all operations executed by the Transaction.

• Business Object
The Business Object implements the business logic for
the persistent entity.

• Data Access Object (DAO)
The DAO is an abstraction layer for the communica-
tion with the database.

• Entity
The Entity is the persistent object. An Entity repre-
sents an entity of an entity-relationship model. The
DAO is responsible for translating this object to the
format of the database in use.

• DataSource
This represents a data source implementation. A
data source could be a database such as a Relation
Database, OO Database, XML repository, flat file sys-
tem, and so forth.

• FSM Manager
The FSM Manager is responsible to control transition
logic of the Finite State Machine (FSM) description.
It has the same role as the FSM Manager of the FSM
Pattern presented in Figure 4.

• Other Service
The Other Service represents a Service that is called
by a primary Service or by another Service in a cascade
Service call.

4.6 Integrating Behavior
The diagrams presented above are the core of the Persistent
State Pattern. There is no runtime behavioral variation
when state changes. Indeed, the Persistent State Pattern
itself does not cover the solution given by the basic State
Pattern. However, they can be combined.

The participant that implements any behavior is the Busi-
nessObject, since it is responsible for the implementation of
the business logic. In the context of enterprise applications,
if there is an object that may change its behavior in runtime,
this object is the BusinessObject.

The Persistent State Pattern can be combined with the FSM
Pattern (Figure 4) to cover this problem. The BusinessOb-
ject is made abstract, and it must be extended by concrete
BusinessObjects, each one representing the behavior of one
state of the FSM. The transition logic of the FSM is main-
tained in the FSM Manager.

In Figure 11, we show the class diagram representing the
relationships for the Persistent State Pattern combined with
the FSM Pattern, to include behavioral changes.

The participants and the responsibilities that change in this
combination are described below.

• BusinessObject, BusinessObjectA, and Busi-
nessObjectB
The BusinessObject becomes an abstract class, just
like the State class of the basic State Pattern pre-
sented in Figure 3. The participants BusinessObjectA,
and BusinessObjectB are concrete versions of the Busi-
nessObject, implementing specific behavior for each
state. BusinessObjectA, and BusinessObjectB have
the same role as ConcreteStateA and ConcreteStateB
in Figure 3. The abstract BusinessObject has now
access to the FSM XML-description. The FSM XML-
description must map each state to a concrete Busines-
sObject implementation. That way, the abstract Busi-
nessObject is able to instantiate each concrete Busi-
nessObject. The updateState() : BusinessObject will
return the correct concrete instance based on the cur-
rent state.

• FSM Manager
In the behavioral version of the Persistent State
Pattern the FSM Manager shares the FSM XML-
description file with the abstract BusinessObject.

All the other participants have the same responsibilities as
they had in the simpler version of the pattern.

4.7 Related patterns
All the following patterns are related with this pattern:

• Abstract Factory [GoF]
The Abstract Factory pattern is used to create and
control a Transaction lifecycle, so it is possible to per-
form transaction control in the service level.

• Business Object [Core J2EE]
The Business Object implements the business logic for
the persistent entity.

• Data Access Object (DAO) [Core J2EE]
The DAO is an abstraction layer for the communica-
tion with the database.

• Finite State Machine Patterns (FSM)
The FSM pattern is used to control transition logic
in the simplified version of the Persistent State Pat-
tern. In the behavioral version, it is also responsible
to instantiate the concrete Business Objects.



Figure 11: Class diagram representing the relationships for the Persistent State Pattern and the FSM Pattern
to include behavioural changes.

4.8 Example
Let us give an example of the use of the Persistent State Pat-
tern. First of all, we update some lines of the FSMManager
and the Action classes, such as they handle Transactions. It
is shown in Figure 12.

A Transaction is a class that represents a database open
transaction. The rollback method is responsible for the roll-
back of the entire transaction.

For our example, we show in Figure 13 the ExampleEntity,
the ExampleDAO and the ExampleBO classes, represent-
ing an entity, a Data Access Object and a Business Object,
respectively.

Note that the ExampleEntity has only two attributes:
“state” and “value”. The attribute “value” is important to
the Example FSM, described by the ExampleXML.xml file
in Figure 5. It is part of a guard condition.

The ExampleDAO has only two methods. The getEntityIn-
stance method queries the database (represented by a class
named MyDataSource) and creates an ExampleEntity in-
stance from relational data. The persist method does the
opposite, it populates a relational database from data found
in an ExampleEntity object. However, the persist method
is updating an entity, and it may cause a state transition.
Thus, the FSMManager generic class is instantiated, and it
loads the ExampleFSM.xml file. The ExampleDAO dele-
gates the state transition to the tryStateChange method of
the FSMManager. If no Exception is thrown by the tryStat-
eChange, it means that the ExampleEntity has successfully
changed its state, and it can finally be persisted. Other-
wise, the Exception is throw to whom has called the persist
method.

In Figure 14 we show the code for the Business Object.

public class Transaction {
public void rollback() {
// stub

}
}

public class FSMManager {
//...
public void tryStateChange(Transaction t,

Object e) throws Exception {
//...

* if condition is true, call changeState(t,tr,e)
//...
private void changeState(Transaction t,

Transition tr, Object e)
throws Exception {

//...
* call action.execute(t)

//...
}

public class Action {
String serviceName;
public void execute(Transaction t, int param) {
// call <serviceName>Service.execute(t, param),
// by reflection

}
}

Figure 12: FSMManager, Action, and the introduc-
tion of the Transaction



public class ExampleEntity {
public int state = 0;
public int value = 0;

}

public class ExampleDAO {
ExampleEntity getEntityInstance(Transaction t,

int param) {
ExampleEntity e = null;
// get relational data
MyDataSource ds = new MyDataSource();
Object o = ds.getEntityRelationalData(t, param);
//... populate ’e’ by reading ’o’
return e;

}
public void persist(Transaction t, ExampleEntity e)

throws Exception {
Object o = null;
// change state if needed
FSMManager fsm = FSMManager.

getFSMManager("Example");
fsm.tryStateChange(t, e);
//... populate ’o’ by reading ’e’
// persist
MyDataSource ds = new MyDataSource();
ds.persist(t, o);

}
}

Figure 13: The ExampleEntity and ExampleDAO
classes.

public class ExampleBO {
public ExampleEntity getEntityInstance(

Transaction t,int param) {
ExampleDAO dao = new ExampleDAO();
return dao.getEntityInstance(t, param);

}
public void persist(Transaction t, ExampleEntity e)

throws Exception {
ExampleDAO dao = new ExampleDAO();
dao.persist(t,e);

}
public void setValue(ExampleEntity e, int value) {

e.value = value;
}

}

Figure 14: The ExampleBO class

public class ExampleService {
public void execute(int param) {
// get a transaction
Transaction t = TransactionFactory.getTransaction();
try {
execute(t, param);

} catch (Exception ex) {
t.rollback();

}
}
public void execute(Transaction t, int param)

throws Exception {
// get entity
ExampleBO bo = new ExampleBO();
ExampleEntity e = bo.getEntityInstance(t, param);
// modify entity
bo.setValue(e, 3000);
// persist
bo.persist(t, e);

}
}

Figure 15: The ExampleService (see text)

Regarding persistence, the BusinessObject always delegates
the work to the DAO. The only specific method in the Ex-
ampleBO class is setValue, which is the setter method for
the ExampleEntity.value attribute. In this example, there
is no logic implemented, but it could have.

Finally, we present the code for the ExampleService in Fig-
ure 15.

Note that the implementation of the service has two
methods. The method execute(int) and the method exe-
cute(Transaction,int). When the service is called from a
remote request, a new transaction must be created, and
the execute(int) must be used. The execute(int) creates a
Transaction by calling the TransactionFactory (the Trans-
actionFactory is specific to the database or the persistence
API), and then calls execute(Transaction,int) inside a try
scope. The execute(int) method is the method that starts
the sequence presented in Figure 10. From that point on, no
other try statement need to be added, because all the sub-
sequent operations are performed in the same Transaction.
Note that the transaction aware Action class presented in
Figure 12 will always call another service by forwarding the
Transactions.

With the Persistent State Pattern, the implementation of
the service becomes simpler, since the transaction manage-
ment is performed by the other participants of the pattern,
which have standardized code.

5. PERSISTENT STATE PATTERN FOR
MODEL AND EVENT DRIVEN DESIGN

The Persistent State Pattern is directly applicable in con-
texts of Model Driven Design (MDD) and Event Driven De-
sign (EDD).

The participants presented in Figure 11 are organized. Each
participant has its role, and some of them are fix or can be
generated from models. The Transaction Factory is a generic
component, it is not dependent of the application. The same



is true for Transaction, DataSource, and the FSM Manager.
The others are discussed below.

• Entity
The Entity is just a representation of an entity of the
database. It has no logic implemented. It is a Data
Transfer Object (DTO). All the information neces-
sary to implement such DTO is available in an entity-
relationship model (ERM). An ERM may be modeled
in a UML class diagram. In this case, a class represents
an entity, but no operation is added to the class. There
are several tools for automated processing of UML di-
agrams, since the UML model can be exported to a
XML Metadata Interchange (XMI) file. We are able
to automatically generate the entities from UML mod-
els.

• Data Access Object (DAO)
For each DataSource type, there are rules to map the
entity data to the DataSource. It means that, once
the DataSource has been defined, it is possible to au-
tomatically generate DAOs from the entities definition
in UML.

• Service
A Service may implement basic operations or complex
ones. Of course, automatic code generation for com-
plex Services from models would certainly depend on
other model types, such as Business Process or Busi-
ness Rules models. However, there are plenty of sim-
ple Services that can be automatically generetad from
UML class diagram: the Data Services. Data Ser-
vices are services for data access. A single data Service
serves only to create, read, update or delete (CRUD) a
single entity of the database. These Services can also
be automatically generated.

• Business Object
The Business Object is the most complex participant
in the pattern. It implements logic about the entity.
One Business Object exists for one Entity. For the
version of the Persistent State Pattern that includes
behavioural changes, it is difficult to generate fully
functional concrete state classes. Only stubs can be
generated. However, it is rare the need for behavioural
changes in a Business Object. Most of the logic present
in a Business Object is related to state transtitions or
field validation rules. Both can be described in the
UML model, and such definitions can be used for au-
tomatic code generation.

In Figures 9 and 11, there is also the FSM XML model,
which is essential to the FSM Manager. The FSM XML
model is a direct mapping of the UML State Diagram ex-
ported to XML. There are available tools that automatically
generates such code too [11, 14].

It is clear how the Persistent State Pattern is useful in an
MDD context. The EDD concept is also useful, specially for
the implementation of the FSM Manager.

In statecharts, transitions and states may have actions as-
sociated. An action may be launch when entering (entry

action) or exiting (exit action) a state. Transitions may also
launch actions. In the MDD approach, such actions will be
modeled in the UML State Diagram, and so they will be
available in the FSM XML model. The idea is to associate
to each action, a Command class that implements it.

The EDD approach is a little different. All the actions of
a state chart are handled by a single class, and such class
implements also an Event Listener. In that approach, the
FSM Manager implementation is much simpler, since it will
only throw out events without carrying on executing and
managing the actions.

6. PERSISTENT STATE PATTERN AND
TRANSACTION MANAGEMENT

The most important difference between the Persistent State
Pattern and other patterns derived from State is the pres-
ence of the TransactionFactory and Transaction partici-
pants.

Managed transactions are available for the two most im-
portant enterprise development platforms. JavaTM Enter-
prise Edition defines container and bean-managed trans-
actions, based on the JavaTM Transactions API [13,
17], the MicrosoftTM .NET Framework defines transaction
scopes [7]. For the JavaTM platform, there is also the Spring
Framework transaction management [19].

It is not the scope of this paper to compare these frame-
works. Transaction propagation is supported by all of them.
As an example, with the Spring Framework, the transaction
propagation needed for the Persistent State Pattern can be
achieved by setting the propagation to required.

When the propagation is set to required, a logical transaction
scope is created for each method to which the setting is
applied. Each such logical transaction scope can determine
rollback-only status individually, with an outer transaction
scope being logically independent from the inner transaction
scope. This means that the Persistent State Pattern can be
implemented without loss o generality. By using the pattern,
software designers remain flexible for the implementation.

7. DISCUSSION
In this paper we have presented the Persistent State Pat-
tern, a new design pattern for OO programing with persis-
tent states. We have recalled the classical State design pat-
tern definition and we have discussed several extensions of
such pattern. We concluded in the research that the State
pattern and its extensions are focused on the objects’ be-
haviour, while the problem of persistent state is related to
the transaction management. There was not a design pat-
tern available for persistent states.

The Persistent State Pattern has been presented in two
forms. In the simple form, where the pattern is sufficient
for managing the state transition logic of a persistent ob-
ject in a managed transaction framework. The simple form
is sufficient for the most part of the information systems,
where states are related to business processes or workflows.
The state of an entity that is part of a process or workflows
usually reflects simply the state of the process or workflow



themselves. If the persistent object needs to behave differ-
ently for each different state, the behavioral form of the Per-
sistent State Pattern must be used. In this case, the basic
of the State pattern is added to the simple Persistent State
Pattern, and the result is a pattern that is able to manage
different behaviors for persistent objects in an environment
with managed database transactions.

We showed that the Persistent State Pattern can be used
by software designers without loss of flexibility or general-
ity in programming. The pattern is perfectly adherent to
model and event driven design (MDD and EDD). The par-
ticipants of the pattern can be automatically generated from
UML models, which is useful for MDD tools. The state ma-
chine management can be implemented in a synchronous ap-
proach, where actions are mapped to methods directly, and
the execution of an action means calling a method. But it
can also be implemented in an event driven approach, where
event listeners implement actions, the listeners are registered
in the finite state machine (FSM) Manager, and the FSM
Manager simply rises an event to inform the listener that an
action must be executed.

Finally, we conclude that the Persistent State Pattern fills
a lack in the literature on State design patterns and exten-
sions, by providing an extension to the State Pattern to be
used in a persistence viewpoint.

Acknowledgements
This work is a result of the brazilian public support to the
research in Mitah Technologies private company as well as
regular public research funding. The authors would like
to thank the brazilian government public funding agencies
Fapemig, CNPq and Finep for the financial support.

8. REFERENCES
[1] Adamczyk, P.: The anthology of the finite state

machine design patterns. In: Proceedings of the
Pattern Languages of Programs Conference (PLoP)
(2003)

[2] Adamczyk, P.: Selected patterns for implementing
finite state machines. In: Proceedings of the Pattern
Languages of Programs Conference (PLoP) (2004)

[3] Alur, D., Malks, D., Crupi, J.: Core J2EE Patterns:
Best Practices and Design Strategies. Prentice Hall /
Sun Microsystems Press, 2nd edn. (May 2003)

[4] Ambler, S.W.: Agile Database Techniques: Effective
Strategies for the Agile Software Developer. John
Wiley & Sons (2003)

[5] Douglas, B.P.: Doing Hard Time: Developing
Real-Time Systems with UML, Objects, Frameworks
and Patterns. Addison Wesley (1998)

[6] Elmasri, R., Navathe, S.: Fundamentals of Database
Systems. Addison Wesley, 6th edn. (2010)

[7] Esposito, D., Saltarello, A.: Microsoft .NET:
Architecting Applications for the Enterprise
(PRO-Developer). Microsoft Press, 1st edn. (Oct 2008)

[8] Ferreira, L., Rubira, C.M.F.: The reflective state
pattern. In: Proceedings of Pattern Languages of
Programs Conference (PLoP) (1998)

[9] Fowler, M.: Patterns of Enterprise Application
Architecture. Addison-Wesley Professional, 1st edn.

(Nov 2002)

[10] Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.:
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional (Nov 1994)

[11] Gurov, V., Mazin, M.: UniMod project website,
http://unimod.sourceforge.net

[12] van Gurp, J., Bosch, J.: On the implementation of
finite state machines. In: Proceedings of the IASTED
International Conference (1999)

[13] Jendrock, E., Ball, J., Carson, D., Evans, I., Fordin,
S., Haase, K.: Java(TM) EE 5 Tutorial. Prentice Hall,
3rd edn. (Nov 2006)

[14] Korotkov, M.: Automatic layout of state diagrams.
White Paper - UniMod website,
http://unimod.sourceforge.net/articles.html

[15] Martin, R.: Three Level FSM. In: Proceedings of
Pattern Languages of Program Design (PLoPD)
(1995)

[16] Odrowski, J., Sogaard, P.: Pattern integration -
variations of state. In: Proceedings of Pattern
Languages of Programs (PLoP) (1996)

[17] Panda, D., Rahman, R., Lane, D.: EJB 3 in Action.
Manning Publications, 1st edn. (Apr 2007)

[18] Shalyto, A., Shamgunov, N., Korneev, G.: State
machine design pattern. In: 4th Intl. Conf. on .NET
Thechnologies. pp. 51–57 (Jun 2006)

[19] Walls, C., Breidenbach, R.: Spring in Action.
Manning Publications, 2nd edn. (Aug 2007)

[20] Yacoub, S., Ammar, H.: Finite state machine
patterns. In: Proceedings of the European Conference
on Pattern Languages of Programs (EuroPLoP) (1998)

[21] Yacoub, S., Ammar, H.: A pattern language of
statecharts. In: Proceedings of Pattern Languages of
Programming Conference (PLoP) (1998)


