
From Behavioral Description to
A Pattern-Based Model for Intelligent Tutoring Systems

Javier Gonzalez-Sanchez, Maria Elena Chavez-Echeagaray,
Kurt VanLehn, Winslow Burleson

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University Tempe, Arizona, US

University Drive and Mill Avenue, Tempe, AZ 85287
+1 (480) 965-9253

{javiergs, helenchavez, kurt.vanlehn, winslow.burleson}@asu.edu

Abstract. Intelligent Tutoring Systems are capable of becoming an alternative to
expert human tutors, able to provide direct customized instruction and feedback to
students. Although Intelligent Tutoring Systems could differ widely in their attached
knowledge bases and user interfaces (including interaction mechanisms), their
behaviors are quite similar; thus, it must be possible to establish a common software
model for them. A common software model is a step forward to move these systems
from proof-of-concepts and academic research tools to widely available tools in
schools and homes. The work reported here addresses: (1) the use of Design
Patterns to create an object-oriented software model for Intelligent Tutoring
Systems; (2) the application of the model into a two-year development project; (3)
the qualities achieved and trade-offs made. Besides that, this paper describes our
experience using patterns, and the impact in facts such as creating a common
language among stakeholders, supporting an incremental development and
adjustment to a highly shifting developing team.
Keywords: Design Patterns, Intelligent Tutoring Systems, Behavioral Description,
Object Oriented, Model.

1 Introduction

The use of Intelligent Tutoring Systems (ITS) is becoming more common and there is a
lot of work about their pedagogical and instructional design [4][16][2][21] but not about
their technological implementation. This paper describes our approach to address the
technological implementation of ITS within a context driven by three key elements:

a) Incremental requirements. This was a two-year project with incremental software

requirements to implement the ITS in a components-oriented approach to support the
integration of meta-tutoring and affective learning companions.

b) Changing requirements. It was required to test several and diverse research

approaches, as part of the project implementation, creating for each approach a solid
system able to be delivered in students’ computers.

c) Changing Team. The programming team composed of undergraduate students
shifted constantly (every 4 to 6 months).

In this context we made our choice to use Design Patterns to standardize a model for

ITS functionality that drives the way in which software was developed. Design Patterns
provided us with a common vocabulary, and help us to reduce system complexity by
naming and defining abstractions for building reusable components from which more
complex components were built [9].

We took as specification for ITS functionality the behavioral description given in [17],

that claims that few pedagogical features have been invented, and that the different
Intelligent Tutoring Systems, developed before now, offer different combinations of those
features. The behavior of ITS described in [17] was produced from the analysis of
different Intelligent Tutoring Systems currently available.

We mapped the functional description of ITS behavior described in [17] into a software

model using the “Gang of Four” (GoF) Design Patterns [8], and we proposed this model
as a software model for new Intelligent Tutoring Systems implementation. Using GoF
Design Patterns we addressed the creation of the model and look forward to incorporate
non-functional elements (i.e. software quality factors) particularly reusability,
extensibility, and flexibility [11]. These qualities help us to address the contextual
elements mentioned above: incremental requirements, changing requirements and
changing team.

With this approach we are attempting to make our contribution to move ITS

construction from software development as a one-of-a-kind endeavor to software
development as a system of components that are widely used and highly adaptable [12].
The work described here is part of the development of an ITS, named Affective Meta
Tutor (AMT) [1]. AMT project, funded by the National Science Foundation, is about
including in an ITS, meta-tutoring strategies and affective learning companions
technology. AMT project looks to improve ITS not only by adding new elements, but by
taking advantage of previous experiences of Intelligent Tutoring Systems implementations
from the ITS community. Most of our knowledge of those previous experiences is taken
from the analysis and comparison made of existing Intelligent Tutoring Systems described
in [17].

This paper is organized as follows: section 2 provides some terminology and

background about ITS and patterns; section 3 explores ITS functional specification and
the design process using patterns to model ITS software components; section 4 describes
our experience using our pattern-based model into the AMT project and evaluates pros
and cons; finally, section 5 concludes the paper and describes ongoing work.

2 Background

This section provides background about ITS structure and clarifies some related
terminology used within this paper. It also provides background information about Design
Patterns and the definition of the software qualities expected for the proposed model.

2.1 ITS Structure

ITS refers to a computer system that acts as a tutor showing an intelligent way to provide
feedback and hints to support student achievement. ITS structure can be represented as a
three-tier model, as shown in Figure 1, that decouples from the ITS Core, the Knowledge
Base and User Interface.

a) Knowledge Base (KB) includes data structures and databases responsible for putting

into the computer system the information instructed by the ITS. The process of
putting data in KB is called “authoring”. Authoring involves a human expert
interacting with an authoring tool to provide this knowledge. Occasionally machine-
learning algorithms has been used to create this expertise. Authoring and Knowledge
representation are topics outside of this paper.

b) User Interfaces (UI) includes graphical interfaces (windows, buttons, text and so on)

and interaction mechanisms (from simple keyboard events to more complex
interfaces, such as motion capture, voice recognition, brain-computer interface and so
on).

c) Core implements ITS behavior. While Knowledge Bases and User Interfaces are

highly different from one ITS to others, the behavior of all of them is quite similar
and the next components can be identified: (1) Task Selector provides a Task
(problem or activity) the student must solve; (2) a Tool or Environment presents the
information that the student must know to complete the activity; (3) Step Analyzer
methodically examines and measures the performance of the student and provides
that information to the Assessor and the Pedagogical module; (4) Pedagogical
Module provides support (hints and feedback) to make the student successfully
complete the task; (5) Assessor learns from the student (how many hints he needed,
how skilled was in the topic, how much time he used to go from one step to another
in order to solve the task, etc.) and then stores this information in what is called a
Learner Model.

As examples of Intelligent Tutoring Systems we have Algebra Cognitive Tutor (an ITS

for Algebra in High School) [2], Andes (a tutor for Physics in College) [18], AutoTutor
(also an ITS for physics in College) [10], Sherlock (a simulator of avionic electronic
equipment) [13], and SQL-Tutor (an ITS to teach SQL language) [15]. They were
analyzed and compared in [17] where it is stated that their behaviors (and in consequence
their Cores) are similar but they differ widely in their software implementation.

From a software engineering perspective, this shows a lack of the use of software
engineering techniques and methodologies in the development of this kind of systems,
because the same specifications are creating different products. Subsequently, it will be
valuable to establish a model to go from the ITS behavior description to the system
implementation. An optimal model should be capable of satisfying the requirements of
these Intelligent Tutoring Systems and providing desired software qualities. The rest of
this paper is related to modeling the ITS Core, the layer that implements the behavioral
response of the ITS. Modeling Knowledge Bases and User Interfaces is out of the scope
of this paper.

Fig. 1. ITS structure: User interface (and interaction mechanisms), Functionality (Core) and Data

(Knowledge base) are decoupled.

2.2 ITS Terminology

For terms related with the ITS structure, mentioned before and used in the rest of this
paper, the following list states their meaning:

a) Task refers to a multi-minute activity assigned to the student by the ITS. Tasks can

be skipped or interchanged with other tasks.

b) Step is each of the actions taken to achieve a Task. Each Task consists of multiple
Steps and each Step involves events with the user interface (either through a tool or
an environment).

c) Knowledge Components are fragment of persistent, domain-specific information

that should be used to accomplish a Task. Knowledge Components are contained in
the Knowledge Base.

d) Outer Loop is the generic name given in [17] to the ITS process made by the Task

Selector. Task Selector creates and chooses Tasks to be accomplished by the Student
to become skilled in a particular Knowledge Component.

e) Inner Loop refers to the name given in [17] to the ITS process made by the Step

Analyzer (which deals with the Steps of the chosen Task). This involves the
Pedagogical Model, which provides Help (hints and feedback), and the Assessor that
assesses the student performance and creates the Learner Model.

This terminology refers to a behavioral description, so the word “loop” must not be

interpreted as a programming loop. Outer Loop and Inner Loop are names for two
important processes accomplished by the ITS.

2.3 Why Patterns?

Software Design Patterns are used as a general reusable solution to a commonly occurring
problem in software design, to show relationships and interactions between components
and provide a skeleton for the implementation [8]. Even though, the concept of patterns
has received little attention so far from researchers in the field of ITS, in [7] they mention
that many Intelligent Tutoring Systems designers and developers use their own solutions
when faced with design problems that are common to different systems, models, and
paradigms; even when a closer look into that solutions and their comparison often shows
that different solutions and the contexts in which they are applied have much in common.
In that context, our choice about using Design Patterns into this project was driven by our
interest in:

a) Communication. Patterns provide us with the description of the topology of the
system and the structural hierarchy of the subsystems and their interfaces and
connections. Patterns are more abstract than just a technical model, but more
technical than a conceptual model.

b) Collaboration. Patterns support the sharing of constructions between developers or

either use other’s constructions to enhance our own. No matter what is been built or
what others built, it is always known which are going to be the relations
(connections) among different constructions.

c) Creativity. Patterns help to create components, and components support the creation

of families of products and/or several versions of the same product to prototype and
test new options of functionality.

d) Abstraction. Using patterns it is possible to provide a “controlled” freedom to the

programmers. They can develop functionality in their own creative way, but they
follow and preserve the guidelines of a defined design.

These benefits of using patterns (communication, collaboration, creativity and abstraction)
help us to overcome the challenging contextual elements of the project (incremental
requirements, changing requirements and a changing team).

2.4 ITS Qualities

One additional reason to use Design Patterns is related to Quality. Software quality
criteria are specified as non-functional requirements. Patterns let us take advantage of
previous experiences to implement non-functional requirements and to avoid accidental
complexity. Modeling ITS behavior is also about accomplish important non-functional
considerations that drive its design. Non-functional requirements addressed in this paper
are:

a) Reusability refers to the degree to which a software module or other work product

can be used in more than one computer program or software system [11]. ITS
components must be able to be used again with slight or no modification, for the
implementation of other products or versions of the same project.

b) Extensibility is the degree to which a system or component can be easily modified to

increase its storage or functional capacity [11]. ITS components in the model must be
able to incorporate new functionalities or modify existing functionalities. By example
assessment strategies, task-creation strategies, learning algorithms to mining learner
model, etc.

c) Flexibility or adaptability. The ease with which a system or component can be

modified for use in applications or environments other than those for which it was
specifically designed [11].

d) Robustness is the degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental conditions [11]. Students expect
to get effective and efficient support from the ITS, as if it was a human tutor;
interruptions in the teaching-learning process due to software failures are highly
undesirable.

e) Performance refers to the degree to which a system or component accomplishes its

designated functions within given constraints, such as speed, accuracy, or memory
usage [11]. The ITS must emulate real-time responses from a human tutor; delays
must be avoided and latency reduced.

The use of patterns becomes the keystone to satisfy the first three qualities enumerated

above. Satisfaction of both performance and robustness requirements are related to the
implementation of the model and not with the model per se. However, in our experience

communication, collaboration, creativity and abstraction impact performance and
robustness.

3 Modeling the ITS Behavior

This section uses the ITS behavior described in [17] to create a conceptual model for ITS
Core layer. The ITS behavior stated in [17] is summarized with a list of statements which
identifies the involved components, responsibilities for each component, and relationships
between components. In the list, components’ names were marked in bold and
relationships between components were explained. Complex components were split into
simple ones, identifying specific responsibilities and assigning them to new components.
The list of statements is as follows:

a) Tool is the component that recreates an environment for the Student to work. Tool
handles the events fired by User Interfaces.

b) The ITS behaviors start in the Outer Loop.

c) During the Outer Loop Task Selector place a Task into the Tool in order to be

solved by the Student.

d) Task Selector main responsibility is selecting the next Task that the student must

solve. The selection is done in an “intelligent way”; four basic methods to do
“selection” are described in [17].

e) Task Selector needs to have access to a source of Tasks. We defined Task Factory

as that source of Tasks.

f) Task Factory creates Tasks. Creating a Task means reading Tasks stored in a

repository (read previously human-authored Tasks) or creating Tasks in real-time.

g) Task Selector relies on Learner Model to choose a Task.

h) Learner Model is maintained by the Assessor component.

i) Inner Loop is nested inside the Outer Loop. The Inner Loop works with the Steps

that conforms the Task. In the Inner Loop participate the Step Analyzer, the
Assessor and/or the Pedagogical Model.

j) Step Analyzer assesses the Student performance while collecting and processing

data about the student's learning process.

k) Assessor looks at the information generated by Step Analyzer and store it in the

Learner Model. The accuracy of the diagnostic algorithms of this component is a
key factor for the adaptation process.

l) Pedagogical Module provides Help using different strategies such as providing
immediate or delayed help, or providing requested or unsolicited help.

m) Steps include Assessment and Help.

n) Help could be Hints before completing the Step, or Feedback after completing the

Step.

o) Task is a set of Steps.

p) Task is related to a set of Knowledge Components.

q) Learner Model is a set composed of Tasks, measures of the time spent to complete

the Task and the status of the Task. For each Step in the Task a counter of the Hints
requested and Feedback (errors made) is kept, and for each Knowledge Component
a mastering measure is also kept for each Student.

r) Knowledge Components are the information and skills being taught.

s) Knowledge Base is the set of Knowledge Components in the ITS.

Figure 2 extends ITS structure showed in Figure 1 in order to identify components

(functional and data objects) and their relationships. UML notation is used, inside ITS
Core block, to create a first attempt of the object-oriented model. Figure 2 shows:

a) Each component is represented as a box: white boxes are functional components and

gray boxes represent data components.

b) Association relationships are shown using arrows; the arrows go from the component

that requests a functionality to the component that provides that functionality. Some
examples are: Tool sends information about events in the User Interface to Step
Analyzer; Task Selector uses Tool to present a new Task; Task selector uses Task
Factory to obtain Tasks.

c) Dependency relationships are represented using arrows with dashed lines; in the

model we are showing the dependency between functional components and the data
component they require to access them.

d) In data components (gray boxes) inheritance relationships (arrows with a triangular

shape in the arrow point) show a specialization hierarchy; in our case this relationship
shows that Help could be either a Hint or Feedback.

e) Finally, composition relationships are shown with arrows starting with a diamond

shape. Specifically, they are used to represent Task as a composition of Steps, and
Knowledge Base as a composition of Knowledge Components.

The next section explains how this conceptual model became an object-oriented model,
using a pattern-based approach.

Fig. 2. ITS Conceptual model. White boxes show functional components and gray boxes show data

components. Relationships of association, dependency, composition and inheritance are showed
using UML notation.

3.1 Pattern-Based Modeling

The previous model showed in Figure 2 and extracted from the behavior described in
section 3 represents a conceptual description of who is doing what, and corresponds to an
abstraction of the expected functionality of each internal component in ITS Core. Even
though the conceptual model can be a starting point to implement ITS functionality, it is
still too abstract to be a software design and therefore there are a lot of diverse options to
implement it. The next step in our process was to evolve this model by defining more
specific relationships between components, using Design Patterns; that provided us with a
template for the software design and thus for the implementation.

Finding the appropriate pattern to be applied for each component and relationship was
a process based on experience and literature research [6][8]. There is not a rule about how
to choose a pattern, it is required to know the existent patterns (the problems they solve)
and then use them to describe in an effective way what is happening in the system. Our
approach consists of using the pattern that most closely matches the semantic description
of the requirement or group of requirements. From the “GoF” Design Patterns
documented in [6] and [8] we took the keywords: observer, abstract factory, builder,
singleton, chain of responsibilities, strategy, communicator, facade, composite and
singleton; each pattern are fairly close to implement what their name means and what our
components are supposed to do. For example, Task Factory naturally means to be an
ABSTRACT FACTORY of Tasks. Table 1 shows the relationship between components
previously defined matched to a pattern name with a description of the meaning of the
relationship

Table 1. Relationships between ITS components and Design Patterns

Components Pattern Description
Tool FACADE Tool is a high-level interface for a set of

subsystems.

TaskSelector STRATEGY TaskSelector component is implemented
using STRATEGY pattern to lead with the fact
that selecting the next Task for the Student is
done with different algorithms
(methodologies), described in [11].

TaskSelector
and
Assessor

OBSERVER The relationship between TaskSelector and
Assessor can be described by OBSERVER
pattern. TaskSelector needs information
about changes in the Learner Model
(performance of the student) maintained by
Assessor component, in order to adjust the
level of the next Task.

TaskFactory ABSTRACT FACTORY TaskFactory creates Task objects. The
relationship between TaskFactory and Task
corresponds to the relationship between a
factory and a product in ABSTRACT
FACTORY pattern.

TaskFactory STRATEGY TaskFactory implements STRATEGY to
create Tasks, due to the fact that ITS could
implement either particular algorithms to
create Tasks in real-time, or create Tasks
recovering them from a data repository.

StepAnalyzer CHAIN OF
RESPONSIBILITIES

CHAIN OF RESPONSIBILITIES is a design
pattern that avoids coupling the sender of a
request to its receiver, by giving more than
one object a chance to handle the request.
StepAnalyzer chains the receiving objects
and passes the request along the chain until
one handles it. Since Step Analyzer works
with Steps, and Steps are close related with
user events, modeling Step Analyzer as a
chain gives us the opportunity to add and
remove behavior associated with specific
events quickly.

Assessor STRATEGY Assessor implements STRATEGY to maintain
the Learner Model. Diverse strategies could
be tried to store and recover the Learner
Model information.

Pedagogical
Module

STRATEGY Pedagogical Module implements STRATEGY
to provide support to the student in solving
the current Step. Options to provide Help go
from pressing a button asking for a Hint, to
the implementation of intelligent algorithms
that provide support to maintain the student
in the "zone of proximal development" [20]
where tasks are neither boringly easy nor
frustratingly difficult, but instead afford
maximal learning and motivating challenges.

Step COMPOSITE Step uses COMPOSITE pattern to compose
Steps into tree structures to represent part-
whole hierarchies. COMPOSITE lets us treat
individual Steps and hierarchies of Steps
(and sub-Steps) uniformly.

Knowledge
Base

SINGLETON Making KnowledgeBase a SINGLETON
ensures only one instance of it and provides
a global access point to it.

Assessor
and
StepAnalyzer

OBSERVER The relationship between Assessor and
StepAnalyzer can be described by
OBSERVER pattern. Assessor needs
information about student performance in
each Step. That information is obtained from
StepAnalyzer.

Pedagogical
Module
and
StepAnalyzer

OBSERVER The relationship between Pedagogical
Module and Step Analyzer can be described
by OBSERVER pattern. Pedagogical Module
needs information about student
performance in each Step. That information
is obtained from StepAnalyzer.

3.2 Putting All Patterns Together

With the relationships expressed as pattern equivalences, as listed in the previous
section, creating a software design is fairly straightforward. Each pattern has a unique
equivalence in UML (as a class diagram). Converting the UML class diagram into code
files could even be an automatic process done by a development tool. Then, our
programming team would be able to focus on the detailed implementation of the desired
functionality, filling in specific places inside specific files, methods and attributes [5].

The UML class diagram for the ITS Core layer is shown in Figure 3. It is important to

note the following relationships in the diagram:

1. TaskSelector, TaskFactory, Assessor, and PedagogicalModule are implementing the
STRATEGY pattern that permit us to define algorithms, encapsulate them, and make
them interchangeable. STRATEGY pattern lets the algorithm vary independent of the
classes that use it. Implementing a new way to select a Task, create a Task, manage
the Learner Model or provide Help to the student can be done for one developer who
needs no knowledge about the project at all; the developer just needs to follow the
pattern to: (1) create a new class that implements the corresponding interface; (2)
implement at least the algorithmInterface() method; and (3) create as many additional
methods and/or attributes as needed.

At AMT project: for TaskSelector only a SequencialTaskSelection strategy was
defined; for TaskFactory, a TaskFromRepository strategy was implemented. No
strategy was implemented for Assessor (this module is still an ongoing part of the
project); for PedagogicalModule a ConditionalPedagogicalStrategy strategy was
implemented in which conditionally the presence of certain events or actions from the
Student launches pre-established responses of PedagogicalModule.

In addition to this, a first version of a MetaTutor System was implemented and linked
with a MetaTutorPedagogicalStrategy class. The MetaTutorPedagogicalStrategy class
acts as an ADVOCATE sending and receiving information from and to the external
system (MetaTutor System). Those implementations are not shown in the diagram
because of space limitations.

2. TaskSelector obtains information from Assessor, which as well as
PedagogicalModule obtains information from StepAnalyzer. The concept of
“observing” describes the relationship and clearly identifies how the structure of

communication must be implemented (methods and attributes). It is easy to notice
which component needs information from which other component.

3. The implementation of Step as a COMPOSITION is highly useful, it provides the

capability of managing Steps as one or as a hierarchy of several hierarchized Steps.

Fig. 3. UML class diagram showing the pattern-based model for the ITS Core layer.

For AMT project Tool component is an environment in which Student is able to learn
about systems dynamic modeling, using graphical representation. Each model is a directed
graph formed by nodes and edges. The edges indicate flow of numeric information
between nodes and the nodes represent variables. A node encapsulates a variable’s value
as an algebraic combination of the numbers coming into or going out of it via edges.
Students read text describing the system, and then define nodes and edges, enter value or
equations in each node, run the model and compare its predictions to given facts. If any of
the model’s predictions are false (represented with red colors as feedback), students must
debug the model. Students also can ask for feedback by checking their model at each step
before running the model. [19].

Figure 4 shows the current implementation of AMT Tool component. Tool component
consists on a Canvas in which a Graph is drawn. A Graph is composed by Nodes (Vertex)
and Links (Edges) that connect the Nodes. Each Vertex maintains a register of all vertexes
going out and in. Each Edge maintains data of the Vertex in which it starts and ends.

Fig. 4. UML class diagram showing the Tool implemented in AMT project, encapsulated in the

model as a Tool by FACADE pattern.

Vertex, Edges and Graph can be selected from the Canvas and manipulated (drag and
drop, deleted, and so on). The Tool in execution is showed in Figure 5. The figure shows
the solution for a problem about Merchant marine that states:

After World War II, the United States had the largest merchant marine of any nation. The merchant marine
are the ships that transport goods and people over the oceans, not counting navy vessels. Unfortunately, the US
merchant marine has been getting smaller and smaller each year, while the merchant marine of other countries

has grown. Just for illustration, suppose that in 1950 the US merchant marine was 5,000 ships of 10,000 tons or
larger, where Panama's merchant marine was only 1,000 ships of 10,000 tons or larger. Suppose that the US
Merchant marine shrank by 5% each year, mostly because ships were sold to other countries. Suppose the
Panama's merchant marine grew by 100 ships a year, mostly because it was cheap to own a ship
registered in Panama. Graph the difference in size between the two fleets over 50 years. That is, the difference
starts out with the US having 4000 more ships than the Panama in 1950. What happens on the way to 2000?

The complete model built by a student that shows the difference in size between the
two fleets (Panama's and US's) described in the text above. This difference is calculated as
a function of the number of ships on each fleet, which also depend on the number or ships
added or removed annually. It is possible to observe that the student obtained all the
names (labels) for the nodes from the tool (observe the yellow color), however he
correctly defined the type for each node, almost all their inputs (i), as well as almost all
the equations or values (c) for each node (see green indicators). Observe that the student
did not check if the equation defined for the node that represents the difference between
the fleets was correct or not, this can be told due to the fact the (c) indicator is white.
When the student checked (run) his model, he obtained the feedback for the graphics for
each node (g), as it is shown the student have a problem in the node that represents the
difference on the fleets (red indicator).

(b)

Fig. 5. Look and feel of the AMT Tool. GraphCanvas is a UI component where the model is
displayed and could be manipulated. Model is composed by Vertex (geometrical shapes) and Edges

(arrows). The colors represent the Feedback from the student about the status of each Step.

4 Experience Report and Evaluation

Including structure and functionality, the current system, developed in Java, is formed by:
10 packages; 62 classes; 746 methods; 738 attributes; 22,434 lines of code; 1,150
revisions maintained in a revision control system (SVN) created between July 2009 and
July 2011 for a shifting team of nine programmers (maintaining a team of two

programmers at a time, with an average of six months of permanency) and two resident
software engineers; 8 versions released to clients; and 140 users working with the system,
who have been high school students and undergraduate students participating in four
summer camp courses and two university courses at Arizona State University.

Our experience using Design Patterns to create an ITS model and implement it to

create AMT software project can be summarized as follows. Stakeholders in general
mentioned as points in favor:

a) Incremental development fully supported. Our goal to build the AMT project in an

incremental way, during two years has allowed us to: (1) provide in a window time of
two or three weeks a new product or a new version of the product; (2) achieve time
reduction to deployment with more programmers, in specific moments of the project,
when time is related with the implementation of new functionality.

b) Changing programming team almost twice a year. (1) Programmers, even without

knowledge of patterns, are able to focus their attention in the requirements assigned
to them; we used Subversion [3] to maintain a common repository of the project, each
programmer works in completing a specific module or set of components (defined as
a pattern section); (2) relationships between components are almost fully defined by
patterns connections, so the work done by each programmer is delimited and merging
the work from different programmers is a straightforward process.

c) Vocabulary. The use of pattern names such as FACTORY and STRATEGY has been

adopted as an abstract way to refer functionalities between stakeholders. The names
hide complexity from non-developers. Non-developers assume an easy thing must be
done, and programmers have a better idea about the boundaries of changes, bugs and
new requirements.

However some dispute did emerge regarding:

a) Size. It is arguable, but some people point to the increment of the size of the code
while using patterns. Yes! It could be true, using patterns generates more code, but it
is not only due to patterns (interfaces and abstract classes declarations), but also
because we decide to maintain the cyclomatic complexity (McCabe number) [14] for
every method under 10, which means an applied “divide and conquer” strategy, and
that generates more methods in the system.

b) Time delays. Unlikely others approaches our first step, even before showing a

prototype to the research group, was focused on the architecture definition (patterns).
Thus, software prototypes delayed its appearance into the scene; but once the first
prototype was presented, new prototypes emerged quicker that in previous projects.

4.1 Impacts of Design Patterns

It is important to specifically highlight how the use of Design Patterns impacted the
project:

a) Communication. Since diverse stakeholders such as researchers in education

technology, computer scientist, developers and instructional designers were involved,
Design Patterns helped us to agree in the structure of the system and communicate it
to the programmers for each individual component in the project.

b) Collaboration. Sharing constructions between developers was a key element to

counterbalance the effect of a constant developers shifting.

c) Creativity. Creativity was encouraged, enhanced and achieved by allowing the

creation of several versions of the project to prototype and test new options of
functionality and in consequence, in our project, new pedagogical approaches.

d) Abstraction. Providing a “controlled” freedom to the programmers using patterns as

the guidelines of a defined design was highly relevant to handle changing and
incremental requirements.

5 Conclusions and Ongoing Work

Many authors claim that their ITS follow and accomplish a software architecture because
they can identify components and relationships among those components inside their
systems. However, this does not mean that standard and good practices, such as Design
Patterns, have been followed.

We take advantage of the growing experience in the field of software Design Patterns
to both design and implement an ITS model in a pattern-based approach. Applying Design
Patterns was useful to create a high-quality software solution that is easy to maintain and
extend.

Designing with quality attributes as drivers, has resulted in a design that has proven to

be more modifiable, reusable and reliable. Using Design Patterns impacts our
communication, collaboration, and creativity. Design Patterns facilitate the adjustment of
a highly shifting programming team and thus the development of the system, where the
creation of new versions or variants of the software was relatively easy in terms of time
and effort. Adding Design Pattern in the development of ITS allowed us to create a
common vocabulary among stakeholders making the process more accurate and effective
design-wise.

We applied our model to build several variants of AMT system in two years of work,

with a high rate of changes in requirements for the product and a changing programming
team. In other words, we have been able to create a family of AMTs around the same
design.

Future research will focus on two additions: (1) the first one will be the inclusion of a

model for companions to provide support for the student, these are learning companions,

affective companions and teachable agents; (2) the second one will be the inclusion of
Meta-Tutoring components.

Acknowledgments

We are grateful to Hironori Washizaki for his support during the writing process of this
paper.
This research was funded by the National Science Foundation, including the following
grants: (1) IIS/HCC Affective Learning Companions: Modeling and supporting emotion
during learning (#0705883); (2) Deeper Modeling via Affective Meta-tutoring (DRL-
0910221) and (3) Pittsburgh Science of Learning Center (SBE-0836012).

References

[1] Affective Meta Tutor – Arizona State University. http://amt.asu.edu.
[2] Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. 1995. Cognitive

Tutors: Lessons Learned. Journal of the Learning Sciences, 4(2), 167-207.
[3] Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M. 2004 Version control with

subversion. O’Reilly Media, Inc.
[4] Baker, R. S. J. D., de Carvalho, A., Raspat, J., Aleven, V., Corbett, A. T., and

Koedinger, K. R. 2009. Educational software features that encourages and
discourage “gaming the system”. Proceedings of the International Conference on
Artificial Intelligence in Education. IOS Press.

[5] Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J., and Houston, K.
2007. Object-Oriented Analysis and Design with Applications, Third Edition.
Addison-Wesley Professional.

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996. A
system of patterns: Pattern-oriented software architecture. Wiley.

[7] Devedzic, V. and Harrer, A. 2005. Software Patterns in ITS Architectures.
International Journal of Artificial Intelligence in Education, 15, 2 (April 2005), 63-
94.

[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 2002. Design Patterns:
abstraction and reuse of object-oriented design. In Software pioneers. Manfred Broy
and Ernst Denert (Eds.). Springer-Verlag New York, Inc., New York, NY, USA 701-
717.

[10] Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A., et al.
2004. AutoTutor: A tutor with dialogue in natural language. Behavioral Research
Methods, Instruments and Computers, 36, 180-193.

[11] IEEE. 1999. Standard Glossary of Software Engineering Terminology. 610.12-1990,
Vol.1. IEEE Press.

[12] Jacobson, I.: 1997. Software Reuse: Architecture, Process and Organization for
Business Success. Addison-Wesley Professional

[13] Katz, S., Connelly, J., & Allbritton, D. (2003). Going beyond the problem given:
How human tutors use post- solution discussions to support transfer. International
Journal of Artificial Intelligence in Education, 13,79-116.

[14] McCabe, T. 1976. A complexity measure. IEEE Trans. Software Engineering, 5, 45–
50.

[15] Mitrovic, A. 2003. An intelligent SQL tutor on the web. International Journal of
Artificial Intelligence in Education, 13(2-4), 197-243.

[16] Nelson, B. C. 2007. Exploring the use of individualized, reflective guidance in an
educational multi-user virtual environment. In Journal of Science Education and
Technology, 16(1), 83-97.

[17] VanLehn, K. 2006. The Behavior of Tutoring Systems. International Journal of
Artificial Intelligence in Education. Volume 16, Issue 3, Pages 227-265. IOS Press.

[18] VanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A., Shelby, R. H., Taylor, L., et al.
2005. The Andes physics tutoring system: Lessons learned. International Journal of
Artificial Intelligence in Education, 15(3), 147-204.

[19] Van Lehn, K. et al. 2011. The Affective Meta-Tutoring Project: How to motivate
students to use effective meta-cognitive strategies. T. Hirashima et al. (Eds.)
Proceedings of the 19th International Conference on Computers in Education.
Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education.

[20] Vygotsky, L. S. 1978. Mind in Society: The Development of Higher Psychological
Processes. Cambridge, MA: Harvard University Press.

[21] Wilson, B. G. 1997. Reflections on constructivism and instructional design.
Instructional development paradigms. C. R. Dills and A. A. Romiszowski (Eds.),
Englewood Cliffs NJ: Educational Technology Publications. 63-80.

