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Abstract. Intelligent Tutoring Systems are capable of becoming an alternative to 
expert human tutors, able to provide direct customized instruction and feedback to 
students. Although Intelligent Tutoring Systems could differ widely in their attached 
knowledge bases and user interfaces (including interaction mechanisms), their 
behaviors are quite similar; thus, it must be possible to establish a common software 
model for them. A common software model is a step forward to move these systems 
from proof-of-concepts and academic research tools to widely available tools in 
schools and homes.  The work reported here addresses: (1) the use of Design 
Patterns to create an object-oriented software model for Intelligent Tutoring 
Systems; (2) the application of the model into a two-year development project; (3) 
the qualities achieved and trade-offs made. Besides that, this paper describes our 
experience using patterns, and the impact in facts such as creating a common 
language among stakeholders, supporting an incremental development and 
adjustment to a highly shifting developing team. 
Keywords: Design Patterns, Intelligent Tutoring Systems, Behavioral Description, 
Object Oriented, Model. 

1 Introduction 

The use of Intelligent Tutoring Systems (ITS) is becoming more common and there is a 
lot of work about their pedagogical and instructional design [4][16][2][21] but not about 
their technological implementation. This paper describes our approach to address the 
technological implementation of ITS within a context driven by three key elements: 

 
a) Incremental requirements. This was a two-year project with incremental software 

requirements to implement the ITS in a components-oriented approach to support the 
integration of meta-tutoring and affective learning companions.  

 
b) Changing requirements. It was required to test several and diverse research 

approaches, as part of the project implementation, creating for each approach a solid 
system able to be delivered in students’ computers.  



c) Changing Team. The programming team composed of undergraduate students 
shifted constantly (every 4 to 6 months). 

 
In this context we made our choice to use Design Patterns to standardize a model for 

ITS functionality that drives the way in which software was developed. Design Patterns 
provided us with a common vocabulary, and help us to reduce system complexity by 
naming and defining abstractions for building reusable components from which more 
complex components were built [9].  

 
We took as specification for ITS functionality the behavioral description given in [17], 

that claims that few pedagogical features have been invented, and that the different 
Intelligent Tutoring Systems, developed before now, offer different combinations of those 
features. The behavior of ITS described in [17] was produced from the analysis of 
different Intelligent Tutoring Systems currently available.  

 
We mapped the functional description of ITS behavior described in [17] into a software 

model using the “Gang of Four” (GoF) Design Patterns [8], and we proposed this model 
as a software model for new Intelligent Tutoring Systems implementation. Using GoF 
Design Patterns we addressed the creation of the model and look forward to incorporate 
non-functional elements (i.e. software quality factors) particularly reusability, 
extensibility, and flexibility [11]. These qualities help us to address the contextual 
elements mentioned above: incremental requirements, changing requirements and 
changing team.  

 
With this approach we are attempting to make our contribution to move ITS 

construction from software development as a one-of-a-kind endeavor to software 
development as a system of components that are widely used and highly adaptable [12]. 
The work described here is part of the development of an ITS, named Affective Meta 
Tutor (AMT) [1]. AMT project, funded by the National Science Foundation, is about 
including in an ITS, meta-tutoring strategies and affective learning companions 
technology. AMT project looks to improve ITS not only by adding new elements, but by 
taking advantage of previous experiences of Intelligent Tutoring Systems implementations 
from the ITS community. Most of our knowledge of those previous experiences is taken 
from the analysis and comparison made of existing Intelligent Tutoring Systems described 
in [17].  

 
This paper is organized as follows: section 2 provides some terminology and 

background about ITS and patterns; section 3 explores ITS functional specification and 
the design process using patterns to model ITS software components; section 4 describes 
our experience using our pattern-based model into the AMT project and evaluates pros 
and cons; finally, section 5 concludes the paper and describes ongoing work. 



2 Background 

This section provides background about ITS structure and clarifies some related 
terminology used within this paper. It also provides background information about Design 
Patterns and the definition of the software qualities expected for the proposed model. 

2.1 ITS Structure 

ITS refers to a computer system that acts as a tutor showing an intelligent way to provide 
feedback and hints to support student achievement. ITS structure can be represented as a 
three-tier model, as shown in Figure 1, that decouples from the ITS Core, the Knowledge 
Base and User Interface. 
 
a) Knowledge Base (KB) includes data structures and databases responsible for putting 

into the computer system the information instructed by the ITS. The process of 
putting data in KB is called “authoring”. Authoring involves a human expert 
interacting with an authoring tool to provide this knowledge. Occasionally machine-
learning algorithms has been used to create this expertise. Authoring and Knowledge 
representation are topics outside of this paper. 

 
b) User Interfaces (UI) includes graphical interfaces (windows, buttons, text and so on) 

and interaction mechanisms (from simple keyboard events to more complex 
interfaces, such as motion capture, voice recognition, brain-computer interface and so 
on). 

 
c) Core implements ITS behavior. While Knowledge Bases and User Interfaces are 

highly different from one ITS to others, the behavior of all of them is quite similar 
and the next components can be identified: (1) Task Selector provides a Task 
(problem or activity) the student must solve; (2) a Tool or Environment presents the 
information that the student must know to complete the activity; (3) Step Analyzer 
methodically examines and measures the performance of the student and provides 
that information to the Assessor and the Pedagogical module; (4) Pedagogical 
Module provides support (hints and feedback) to make the student successfully 
complete the task; (5) Assessor learns from the student (how many hints he needed, 
how skilled was in the topic, how much time he used to go from one step to another 
in order to solve the task, etc.) and then stores this information in what is called a 
Learner Model. 

 
As examples of Intelligent Tutoring Systems we have Algebra Cognitive Tutor (an ITS 

for Algebra in High School) [2], Andes (a tutor for Physics in College) [18], AutoTutor 
(also an ITS for physics in College) [10], Sherlock (a simulator of avionic electronic 
equipment) [13], and SQL-Tutor (an ITS to teach SQL language) [15]. They were 
analyzed and compared in [17] where it is stated that their behaviors (and in consequence 
their Cores) are similar but they differ widely in their software implementation.  

 



From a software engineering perspective, this shows a lack of the use of software 
engineering techniques and methodologies in the development of this kind of systems, 
because the same specifications are creating different products. Subsequently, it will be 
valuable to establish a model to go from the ITS behavior description to the system 
implementation. An optimal model should be capable of satisfying the requirements of 
these Intelligent Tutoring Systems and providing desired software qualities.  The rest of 
this paper is related to modeling the ITS Core, the layer that implements the behavioral 
response of the ITS. Modeling Knowledge Bases and User Interfaces is out of the scope 
of this paper. 
 

 
Fig. 1. ITS structure: User interface (and interaction mechanisms), Functionality (Core) and Data 

(Knowledge base) are decoupled. 

2.2 ITS Terminology 

For terms related with the ITS structure, mentioned before and used in the rest of this 
paper, the following list states their meaning: 
 
a) Task refers to a multi-minute activity assigned to the student by the ITS. Tasks can 

be skipped or interchanged with other tasks. 
 



b) Step is each of the actions taken to achieve a Task. Each Task consists of multiple 
Steps and each Step involves events with the user interface (either through a tool or 
an environment). 

 
c) Knowledge Components are fragment of persistent, domain-specific information 

that should be used to accomplish a Task. Knowledge Components are contained in 
the Knowledge Base. 

 
d) Outer Loop is the generic name given in [17] to the ITS process made by the Task 

Selector. Task Selector creates and chooses Tasks to be accomplished by the Student 
to become skilled in a particular Knowledge Component. 

 
e) Inner Loop refers to the name given in [17] to the ITS process made by the Step 

Analyzer (which deals with the Steps of the chosen Task). This involves the 
Pedagogical Model, which provides Help (hints and feedback), and the Assessor that 
assesses the student performance and creates the Learner Model. 

 
This terminology refers to a behavioral description, so the word “loop” must not be 

interpreted as a programming loop. Outer Loop and Inner Loop are names for two 
important processes accomplished by the ITS. 

2.3 Why Patterns? 

Software Design Patterns are used as a general reusable solution to a commonly occurring 
problem in software design, to show relationships and interactions between components 
and provide a skeleton for the implementation [8]. Even though, the concept of patterns 
has received little attention so far from researchers in the field of ITS, in [7] they mention 
that many Intelligent Tutoring Systems designers and developers use their own solutions 
when faced with design problems that are common to different systems, models, and 
paradigms; even when a closer look into that solutions and their comparison often shows 
that different solutions and the contexts in which they are applied have much in common. 
In that context, our choice about using Design Patterns into this project was driven by our 
interest in: 

a) Communication. Patterns provide us with the description of the topology of the 
system and the structural hierarchy of the subsystems and their interfaces and 
connections.  Patterns are more abstract than just a technical model, but more 
technical than a conceptual model.  

 
b) Collaboration. Patterns support the sharing of constructions between developers or 

either use other’s constructions to enhance our own. No matter what is been built or 
what others built, it is always known which are going to be the relations 
(connections) among different constructions.  

 
c) Creativity. Patterns help to create components, and components support the creation 

of families of products and/or several versions of the same product to prototype and 
test new options of functionality. 



 
d) Abstraction. Using patterns it is possible to provide a “controlled” freedom to the 

programmers. They can develop functionality in their own creative way, but they 
follow and preserve the guidelines of a defined design.  

 
These benefits of using patterns (communication, collaboration, creativity and abstraction) 
help us to overcome the challenging contextual elements of the project (incremental 
requirements, changing requirements and a changing team). 

2.4 ITS Qualities 

One additional reason to use Design Patterns is related to Quality. Software quality 
criteria are specified as non-functional requirements. Patterns let us take advantage of 
previous experiences to implement non-functional requirements and to avoid accidental 
complexity. Modeling ITS behavior is also about accomplish important non-functional 
considerations that drive its design. Non-functional requirements addressed in this paper 
are: 
 
a) Reusability refers to the degree to which a software module or other work product 

can be used in more than one computer program or software system [11]. ITS 
components must be able to be used again with slight or no modification, for the 
implementation of other products or versions of the same project.  

 
b) Extensibility is the degree to which a system or component can be easily modified to 

increase its storage or functional capacity [11]. ITS components in the model must be 
able to incorporate new functionalities or modify existing functionalities. By example 
assessment strategies, task-creation strategies, learning algorithms to mining learner 
model, etc. 

 
c) Flexibility or adaptability. The ease with which a system or component can be 

modified for use in applications or environments other than those for which it was 
specifically designed [11].  

 
d) Robustness is the degree to which a system or component can function correctly in the 

presence of invalid inputs or stressful environmental conditions [11]. Students expect 
to get effective and efficient support from the ITS, as if it was a human tutor; 
interruptions in the teaching-learning process due to software failures are highly 
undesirable.  

 
e) Performance refers to the degree to which a system or component accomplishes its 

designated functions within given constraints, such as speed, accuracy, or memory 
usage [11]. The ITS must emulate real-time responses from a human tutor; delays 
must be avoided and latency reduced. 

 
The use of patterns becomes the keystone to satisfy the first three qualities enumerated 

above. Satisfaction of both performance and robustness requirements are related to the 
implementation of the model and not with the model per se. However, in our experience 



communication, collaboration, creativity and abstraction impact performance and 
robustness. 

3 Modeling the ITS Behavior 

This section uses the ITS behavior described in [17] to create a conceptual model for ITS 
Core layer. The ITS behavior stated in [17] is summarized with a list of statements which 
identifies the involved components, responsibilities for each component, and relationships 
between components. In the list, components’ names were marked in bold and 
relationships between components were explained. Complex components were split into 
simple ones, identifying specific responsibilities and assigning them to new components. 
The list of statements is as follows: 
 

a) Tool is the component that recreates an environment for the Student to work. Tool 
handles the events fired by User Interfaces. 

 
b) The ITS behaviors start in the Outer Loop.  
 
c) During the Outer Loop Task Selector place a Task into the Tool in order to be 

solved by the Student. 
 
d) Task Selector main responsibility is selecting the next Task that the student must 

solve. The selection is done in an “intelligent way”; four basic methods to do 
“selection” are described in [17]. 

 
e) Task Selector needs to have access to a source of Tasks. We defined Task Factory 

as that source of Tasks. 
 
f) Task Factory creates Tasks. Creating a Task means reading Tasks stored in a 

repository (read previously human-authored Tasks) or creating Tasks in real-time. 
 
g) Task Selector relies on Learner Model to choose a Task.  
 
h) Learner Model is maintained by the Assessor component. 
 
i) Inner Loop is nested inside the Outer Loop. The Inner Loop works with the Steps 

that conforms the Task. In the Inner Loop participate the Step Analyzer, the 
Assessor and/or the Pedagogical Model.  

 
j) Step Analyzer assesses the Student performance while collecting and processing 

data about the student's learning process. 
 
k) Assessor looks at the information generated by Step Analyzer and store it in the 

Learner Model. The accuracy of the diagnostic algorithms of this component is a 
key factor for the adaptation process. 

 



l) Pedagogical Module provides Help using different strategies such as providing 
immediate or delayed help, or providing requested or unsolicited help. 

 
m) Steps include Assessment and Help. 
 
n) Help could be Hints before completing the Step, or Feedback after completing the 

Step.  
 
o) Task is a set of Steps. 
 
p) Task is related to a set of Knowledge Components. 
 
q) Learner Model is a set composed of Tasks, measures of the time spent to complete 

the Task and the status of the Task. For each Step in the Task a counter of the Hints 
requested and Feedback (errors made) is kept, and for each Knowledge Component 
a mastering measure is also kept for each Student. 

 
r) Knowledge Components are the information and skills being taught. 
 
s) Knowledge Base is the set of Knowledge Components in the ITS. 

 
Figure 2 extends ITS structure showed in Figure 1 in order to identify components 

(functional and data objects) and their relationships. UML notation is used, inside ITS 
Core block, to create a first attempt of the object-oriented model. Figure 2 shows: 
 
a) Each component is represented as a box: white boxes are functional components and 

gray boxes represent data components.  
 
b) Association relationships are shown using arrows; the arrows go from the component 

that requests a functionality to the component that provides that functionality. Some 
examples are: Tool sends information about events in the User Interface to Step 
Analyzer; Task Selector uses Tool to present a new Task; Task selector uses Task 
Factory to obtain Tasks. 

 
c) Dependency relationships are represented using arrows with dashed lines; in the 

model we are showing the dependency between functional components and the data 
component they require to access them. 

 
d) In data components (gray boxes) inheritance relationships (arrows with a triangular 

shape in the arrow point) show a specialization hierarchy; in our case this relationship 
shows that Help could be either a Hint or Feedback.   

 
e) Finally, composition relationships are shown with arrows starting with a diamond 

shape. Specifically, they are used to represent Task as a composition of Steps, and 
Knowledge Base as a composition of Knowledge Components.    

 



The next section explains how this conceptual model became an object-oriented model, 
using a pattern-based approach.  

 
Fig. 2. ITS Conceptual model. White boxes show functional components and gray boxes show data 

components. Relationships of association, dependency, composition and inheritance are showed 
using UML notation. 

3.1 Pattern-Based Modeling 

The previous model showed in Figure 2 and extracted from the behavior described in 
section 3 represents a conceptual description of who is doing what, and corresponds to an 
abstraction of the expected functionality of each internal component in ITS Core. Even 
though the conceptual model can be a starting point to implement ITS functionality, it is 
still too abstract to be a software design and therefore there are a lot of diverse options to 
implement it. The next step in our process was to evolve this model by defining more 
specific relationships between components, using Design Patterns; that provided us with a 
template for the software design and thus for the implementation. 
 



Finding the appropriate pattern to be applied for each component and relationship was 
a process based on experience and literature research [6][8].  There is not a rule about how 
to choose a pattern, it is required to know the existent patterns (the problems they solve) 
and then use them to describe in an effective way what is happening in the system. Our 
approach consists of using the pattern that most closely matches the semantic description 
of the requirement or group of requirements. From the “GoF” Design Patterns 
documented in [6] and [8] we took the keywords: observer, abstract factory, builder, 
singleton, chain of responsibilities, strategy, communicator, facade, composite and 
singleton; each pattern are fairly close to implement what their name means and what our 
components are supposed to do. For example, Task Factory naturally means to be an 
ABSTRACT FACTORY of Tasks. Table 1 shows the relationship between components 
previously defined matched to a pattern name with a description of the meaning of the 
relationship 

Table 1. Relationships between ITS components and Design Patterns 

Components Pattern Description 
Tool FACADE Tool is a high-level interface for a set of 

subsystems.  
 

TaskSelector STRATEGY TaskSelector component is implemented 
using STRATEGY pattern to lead with the fact 
that selecting the next Task for the Student is 
done with different algorithms 
(methodologies), described in [11]. 
 

TaskSelector 
and  
Assessor 

OBSERVER The relationship between TaskSelector and 
Assessor can be described by OBSERVER 
pattern. TaskSelector needs information 
about changes in the Learner Model 
(performance of the student) maintained by 
Assessor component, in order to adjust the 
level of the next Task. 
 

TaskFactory ABSTRACT FACTORY TaskFactory creates Task objects. The 
relationship between TaskFactory and Task 
corresponds to the relationship between a 
factory and a product in ABSTRACT 
FACTORY pattern.  
 

TaskFactory STRATEGY TaskFactory implements STRATEGY to 
create Tasks, due to the fact that ITS could 
implement either particular algorithms to 
create Tasks in real-time, or create Tasks 
recovering them from a data repository. 



StepAnalyzer CHAIN OF 
RESPONSIBILITIES 

CHAIN OF RESPONSIBILITIES is a design 
pattern that avoids coupling the sender of a 
request to its receiver, by giving more than 
one object a chance to handle the request. 
StepAnalyzer chains the receiving objects 
and passes the request along the chain until 
one handles it. Since Step Analyzer works 
with Steps, and Steps are close related with 
user events, modeling Step Analyzer as a 
chain gives us the opportunity to add and 
remove behavior associated with specific 
events quickly. 
 

Assessor STRATEGY Assessor implements STRATEGY to maintain 
the Learner Model. Diverse strategies could 
be tried to store and recover the Learner 
Model information. 
 

Pedagogical 
Module 

STRATEGY Pedagogical Module implements STRATEGY 
to provide support to the student in solving 
the current Step. Options to provide Help go 
from pressing a button asking for a Hint, to 
the implementation of intelligent algorithms 
that provide support to maintain the student 
in the "zone of proximal development" [20] 
where tasks are neither boringly easy nor 
frustratingly difficult, but instead afford 
maximal learning and motivating challenges. 
 

Step COMPOSITE Step uses COMPOSITE pattern to compose 
Steps into tree structures to represent part-
whole hierarchies. COMPOSITE lets us treat 
individual Steps and hierarchies of Steps 
(and sub-Steps) uniformly. 
 

Knowledge 
Base 

SINGLETON Making KnowledgeBase a SINGLETON 
ensures only one instance of it and provides 
a global access point to it. 
 

Assessor 
and 
StepAnalyzer 

OBSERVER The relationship between Assessor and 
StepAnalyzer can be described by 
OBSERVER pattern. Assessor needs 
information about student performance in 
each Step. That information is obtained from 
StepAnalyzer. 
 



Pedagogical 
Module  
and  
StepAnalyzer 

OBSERVER The relationship between Pedagogical 
Module and Step Analyzer can be described 
by OBSERVER pattern. Pedagogical Module 
needs information about student 
performance in each Step. That information 
is obtained from StepAnalyzer. 
 

3.2 Putting All Patterns Together 

With the relationships expressed as pattern equivalences, as listed in the previous 
section, creating a software design is fairly straightforward. Each pattern has a unique 
equivalence in UML (as a class diagram). Converting the UML class diagram into code 
files could even be an automatic process done by a development tool. Then, our 
programming team would be able to focus on the detailed implementation of the desired 
functionality, filling in specific places inside specific files, methods and attributes [5]. 

  
The UML class diagram for the ITS Core layer is shown in Figure 3. It is important to 

note the following relationships in the diagram: 
 

1. TaskSelector, TaskFactory, Assessor, and PedagogicalModule are implementing the 
STRATEGY pattern that permit us to define algorithms, encapsulate them, and make 
them interchangeable.  STRATEGY pattern lets the algorithm vary independent of the 
classes that use it. Implementing a new way to select a Task, create a Task, manage 
the Learner Model or provide Help to the student can be done for one developer who 
needs no knowledge about the project at all; the developer just needs to follow the 
pattern to: (1) create a new class that implements the corresponding interface; (2) 
implement at least the algorithmInterface() method; and (3) create as many additional 
methods and/or attributes as needed. 

 
At AMT project: for TaskSelector only a SequencialTaskSelection strategy was 
defined; for TaskFactory,  a TaskFromRepository strategy was implemented.  No 
strategy was implemented for Assessor (this module is still an ongoing part of the 
project); for PedagogicalModule a ConditionalPedagogicalStrategy strategy was 
implemented in which conditionally the presence of certain events or actions from the 
Student launches pre-established responses of PedagogicalModule.  
 
In addition to this, a first version of a MetaTutor System was implemented and linked 
with a MetaTutorPedagogicalStrategy class. The MetaTutorPedagogicalStrategy class 
acts as an ADVOCATE sending and receiving information from and to the external 
system (MetaTutor System). Those implementations are not shown in the diagram 
because of space limitations. 
 

2. TaskSelector obtains information from Assessor, which as well as 
PedagogicalModule obtains information from StepAnalyzer. The concept of 
“observing” describes the relationship and clearly identifies how the structure of 



communication must be implemented (methods and attributes).  It is easy to notice 
which component needs information from which other component. 

 
3. The implementation of Step as a COMPOSITION  is highly useful, it provides the 

capability of managing Steps as one or as a hierarchy of several hierarchized Steps. 
 

 

 
 

Fig. 3. UML class diagram showing the pattern-based model for the ITS Core layer. 



For AMT project Tool component is an environment in which Student is able to learn 
about systems dynamic modeling, using graphical representation. Each model is a directed 
graph formed by nodes and edges. The edges indicate flow of numeric information 
between nodes and the nodes represent variables. A node encapsulates a variable’s value 
as an algebraic combination of the numbers coming into or going out of it via edges. 
Students read text describing the system, and then define nodes and edges, enter value or 
equations in each node, run the model and compare its predictions to given facts. If any of 
the model’s predictions are false (represented with red colors as feedback), students must 
debug the model. Students also can ask for feedback by checking their model at each step 
before running the model. [19]. 
 

Figure 4 shows the current implementation of AMT Tool component. Tool component 
consists on a Canvas in which a Graph is drawn. A Graph is composed by Nodes (Vertex) 
and Links (Edges) that connect the Nodes. Each Vertex maintains a register of all vertexes 
going out and in. Each Edge maintains data of the Vertex in which it starts and ends.  
 

 
Fig. 4. UML class diagram showing the Tool implemented in AMT project, encapsulated in the 

model as a Tool by FACADE pattern. 
 
 

Vertex, Edges and Graph can be selected from the Canvas and manipulated (drag and 
drop, deleted, and so on). The Tool in execution is showed in Figure 5. The figure shows 
the solution for a problem about Merchant marine that states: 

After World War II, the United States had the largest merchant marine of any nation.  The merchant marine 
are the ships that transport goods and people over the oceans, not counting navy vessels.  Unfortunately, the US 
merchant marine has been getting smaller and smaller each year, while the merchant marine of other countries 



has grown.  Just for illustration, suppose that in 1950 the US merchant marine was 5,000 ships of 10,000 tons or 
larger, where Panama's merchant marine was only 1,000 ships of 10,000 tons or larger.   Suppose that the US 
Merchant marine shrank by 5% each year, mostly because ships were sold to other countries.  Suppose the 
Panama's merchant marine grew by 100 ships a year, mostly because it was cheap to own a ship 
registered in Panama.  Graph the difference in size between the two fleets over 50 years.  That is, the difference 
starts out with the US having 4000 more ships than the Panama in 1950.  What happens on the way to 2000? 

The complete model built by a student that shows the difference in size between the 
two fleets (Panama's and US's) described in the text above. This difference is calculated as 
a function of the number of ships on each fleet, which also depend on the number or ships 
added or removed annually. It is possible to observe that the student obtained all the 
names (labels) for the nodes from the tool (observe the yellow color), however he 
correctly defined the type for each node, almost all their inputs (i), as well as almost all 
the equations or values (c) for each node (see green indicators). Observe that the student 
did not check if the equation defined for the node that represents the difference between 
the fleets was correct or not, this can be told due to the fact the (c) indicator is white. 
When the student checked (run) his model, he obtained the feedback for the graphics for 
each node (g), as it is shown the student have a problem in the node that represents the 
difference on the fleets (red indicator). 

 

 
(b) 

Fig. 5. Look and feel of the AMT Tool. GraphCanvas is a UI component where the model is 
displayed and could be manipulated. Model is composed by Vertex (geometrical shapes) and Edges 

(arrows). The colors represent the Feedback from the student about the status of each Step. 

4 Experience Report and Evaluation 

Including structure and functionality, the current system, developed in Java, is formed by: 
10 packages; 62 classes; 746 methods; 738 attributes; 22,434 lines of code; 1,150 
revisions maintained in a revision control system (SVN) created between July 2009 and 
July 2011 for a shifting team of nine programmers (maintaining a team of two 



programmers at a time, with an average of six months of permanency) and two resident 
software engineers; 8 versions released to clients; and 140 users working with the system, 
who have been high school students and undergraduate students participating in four 
summer camp courses and two university courses at Arizona State University. 

 
Our experience using Design Patterns to create an ITS model and implement it to 

create AMT software project can be summarized as follows. Stakeholders in general 
mentioned as points in favor: 

 
a) Incremental development fully supported. Our goal to build the AMT project in an 

incremental way, during two years has allowed us to: (1) provide in a window time of 
two or three weeks a new product or a new version of the product; (2) achieve time 
reduction to deployment with more programmers, in specific moments of the project, 
when time is related with the implementation of new functionality.  

 
b) Changing programming team almost twice a year. (1) Programmers, even without 

knowledge of patterns, are able to focus their attention in the requirements assigned 
to them; we used Subversion [3] to maintain a common repository of the project, each 
programmer works in completing a specific module or set of components (defined as 
a pattern section); (2) relationships between components are almost fully defined by 
patterns connections, so the work done by each programmer is delimited and merging 
the work from different programmers is a straightforward process.  

 
c) Vocabulary. The use of pattern names such as FACTORY and STRATEGY has been 

adopted as an abstract way to refer functionalities between stakeholders. The names 
hide complexity from non-developers. Non-developers assume an easy thing must be 
done, and programmers have a better idea about the boundaries of changes, bugs and 
new requirements. 

 
However some dispute did emerge regarding: 
 

a) Size. It is arguable, but some people point to the increment of the size of the code 
while using patterns. Yes! It could be true, using patterns generates more code, but it 
is not only due to patterns (interfaces and abstract classes declarations), but also 
because we decide to maintain the cyclomatic complexity (McCabe number) [14] for 
every method under 10, which means an applied “divide and conquer” strategy, and 
that generates more methods in the system. 

 
b) Time delays. Unlikely others approaches our first step, even before showing a 

prototype to the research group, was focused on the architecture definition (patterns). 
Thus, software prototypes delayed its appearance into the scene; but once the first 
prototype was presented, new prototypes emerged quicker that in previous projects.  

4.1 Impacts of Design Patterns  

It is important to specifically highlight how the use of Design Patterns impacted the 
project: 



 
a) Communication. Since diverse stakeholders such as researchers in education 

technology, computer scientist, developers and instructional designers were involved, 
Design Patterns helped us to agree in the structure of the system and communicate it 
to the programmers for each individual component in the project. 

 
b) Collaboration. Sharing constructions between developers was a key element to 

counterbalance the effect of a constant developers shifting. 
 
c) Creativity. Creativity was encouraged, enhanced and achieved by allowing the 

creation of several versions of the project to prototype and test new options of 
functionality and in consequence, in our project, new pedagogical approaches.  

 
d) Abstraction. Providing a “controlled” freedom to the programmers using patterns as 

the guidelines of a defined design was highly relevant to handle changing and 
incremental requirements. 

5 Conclusions and Ongoing Work 

Many authors claim that their ITS follow and accomplish a software architecture because 
they can identify components and relationships among those components inside their 
systems. However, this does not mean that standard and good practices, such as Design 
Patterns, have been followed.  
 

We take advantage of the growing experience in the field of software Design Patterns 
to both design and implement an ITS model in a pattern-based approach. Applying Design 
Patterns was useful to create a high-quality software solution that is easy to maintain and 
extend. 

 
Designing with quality attributes as drivers, has resulted in a design that has proven to 

be more modifiable, reusable and reliable. Using Design Patterns impacts our 
communication, collaboration, and creativity. Design Patterns facilitate the adjustment of 
a highly shifting programming team and thus the development of the system, where the 
creation of new versions or variants of the software was relatively easy in terms of time 
and effort. Adding Design Pattern in the development of ITS allowed us to create a 
common vocabulary among stakeholders making the process more accurate and effective 
design-wise.  

 
We applied our model to build several variants of AMT system in two years of work, 

with a high rate of changes in requirements for the product and a changing programming 
team. In other words, we have been able to create a family of AMTs around the same 
design.  

 
Future research will focus on two additions: (1) the first one will be the inclusion of a 

model for companions to provide support for the student, these are learning companions, 



affective companions and teachable agents; (2) the second one will be the inclusion of 
Meta-Tutoring components. 
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