Reusable Roles, a test with Patterns

Fernando Sérgio Barbosa
Escola Superior de Tecnologia de Castelo
Branco
Avenida do Empresario
600-035 Castelo Branco, Portugal

fsergio@ipcb.pt

ABSTRACT

Although roles have been around for a long time they have
not yet reached mainstream programming languages. The
variety of existing role models may be a limiting factor. We
believe that for roles to be widely accepted they must en-
hance code reuse. An outcome would be a library of roles.
We present and discuss what we feel are the characteristics
that a role model must have to enable reusable and player-
independent roles. In this paper we present our role model
and JavaStage, a role language that extends Java, with ex-
amples of reusable roles. Finally, we present our steps to-
wards the building of a role library, by presenting the roles
developed from the analysis of the GoF Design Patterns.
The results obtained, we developed roles for 10 of the 23
GoF patterns, are promising.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.2 [Software Engineering]: Design Tools
and Techniques; D.2.13 [Software Engineering]: Reusable
Software

General Terms

Design, Languages

Keywords
Roles, Modularity, Libraries, Design patterns

1. INTRODUCTION

Ever since the role concept has been introduced in soft-
ware by Bachman and Daya [3, 2], the research has flour-
ished and several role models have been proposed. But the
definitions, modeling ways, examples and targets are often
different [29, 9]. Many languages that support roles have
emerged. These can be divided into extensions to already
existing languages or completely new ones. Regardless of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writ-
ers’ workshop at the 18th Conference on Pattern Languages of Programs
(PLoP). PLoP’11, October 21-23, Portland, Oregon, USA.

Copyright 2011 is held by the author(s). ACM 978-1-4503-1283-7.

Ademar Aguiar
Faculdade de Engenharia da Universidade do
Porto
Rua Dr. Roberto Frias
4200-465 Porto, Portugal

ademar.aguiar@fe.up.pt

these efforts, roles have not reached mainstream languages
and are not used by many programmers.

We believe that the several existing models may come as a
factor in role non acceptance, but the main obstacle may be
that programmers do not see role benefits in practice. The
research on roles has focused largely on the dynamic nature
of roles [11, 31, 4], modeling with roles [24, 25], and on mod-
eling relationships [23, 17]. Dynamic role approaches focus
on expanding an existing class to be used in a new context,
so they develop roles for the classes that need to be ex-
panded. This may explain why roles use a playedBy clause
that states which class can play them. Because of this focus
on the classes the reusability of roles has been neglected. We
argue that this playedBy clause is limiting role reusability,
because a role could be used by another, unrelated, class.
But roles must know something of its intrinsic (object that
it is attached to), like the set of methods it offers. We pro-
pose a different way of stating these restrictions on the role
without linking it to a specific class. We will move the focus
from the class to the role as we try to maximize its reuse.
We believe that if developers can use roles to write less code
then they will more easily adopt them.

A role provides a view of the object in a collaboration, so
methods names must make sense in that context. In similar
collaborations, however, where we could reuse the same role
those names would probably be inadequate. A name of a
method must clearly state its purpose but for a full purpose
role those names are difficult to achieve. To overcome this
we developed a renaming mechanism that allows an easy
configuration so that the methods’ names for a role may be
tuned for a particular collaboration. The proposed renaming
mechanism does not apply only to the role methods but also
to the participants’ methods needed by the role.

To achieve code reuse we’ll use the principles of modu-
larity as guidelines. Out intention is to develop roles that
can be seen as modules, meaning they are truly generic
and reusable. We argue that developing roles independently
from their intrinsics is a key factor that will allow a role
to be fully reusable. In order to express our approach we
propose an extension to the Java language - JavaStage. We
will present JavaStage with a few examples of generic, fully
reusable roles, such as a Subject role from the Observer de-
sign pattern or a Singleton role from the Singleton design
pattern [8].

If roles are reusable then it should be possible to build a
library of roles. We started our role library with the anal-
ysis of the Gang of Four (GoF) design patterns [8]. Design
Patterns are a good starting point because they are used

in many frameworks and so represent a lot of real code. If
we can create roles for these patterns then our approach is
likely to have impact on many of today frameworks and ap-
plications. Results are promising as we developed roles for
10 of the 23 patterns. Even if some are limited in features
others cover nearly all aspects of the pattern.

We can summarize our contributions with this paper as:

e a new role model, where the class states the role it
plays instead of the role stating which classes play it

e a role language - JavaStage - that supports a powerful
renaming mechanism

e development of a role library based on the GoF pat-
terns

This paper is organized as follows. The next section is
reserved for a brief description of roles. Section 3 is dedi-
cated to the problem of building reusable roles. In section
4, we present some role characteristics and problems asso-
ciated to roles and relate them to our approach. In section
5, we present our approach by presenting the JavaStage role
model with a few examples. Design patterns were the start-
ing point of our role library and we discuss our roles derived
from them in Section 6. Related work is presented in section
7, and section 8 concludes the paper.

2. ROLES

To deal with the complexities of any problem we normally
use abstractions. In software, abstractions try to model con-
cepts present in the problem domain. In Object-Oriented
(OO) languages classes are the usual abstraction mechanism.
A concept can be specialized to a more specific concept.
An animal can be specialized to a mammal or a reptile, or
even to a quadruped or a biped, depending on the focus of
analysis. This specialization is, in OO systems, modeled by
inheritance.

But, as a simplification of the problem, OO modeling
cannot capture all the dynamic present. OO systems are
founded in the Aristotelian view of the world with ideas
(classes) and phenomena (objects). Each phenomenon is a
manifestation of an idea: a particular chair is a manifesta-
tion of the idea of a chair. Ideas and phenomena do not
exist with one to one correspondence, though. A phenom-
ena can be classified in several different ideas: a river may
be viewed as a food resource by a fisherman, a living place
by a fish, a transport route for boats, etc. In programming
terms it is not possible to accommodate all possible views
of a phenomenon with a single idea as we cannot foresee all
its uses. Thus objects need to evolve overtime.

Steimann [29] states that Lodwick was the first to break
with the Aristotelian vision according to which the nouns of
a language govern its structure and meaning. As an example
the act of murder has the roles "murderer” and "murdered”.
These names define the individuals involved in the murder
context. Outside this context the individuals have their own
proper names. This calls for other modeling construct than
classes. One that can model the roles some phenomena plays
when inside a given context. One such construct are roles.

The role concept for software use is considered to have
been first introduced in the work of Bachman and Daya
in [3] and [2]. Sowa [28] introduced a distinction between
natural types and role types. Natural types are related to

the essence of an entity (a class in OO languages) and roles
types are the characteristics that depend on an accidental
relationship to other entities. This is a distinction that is
still used today by many role models.

Roles represent the behavior of an object with respect to a
specific object collaboration task. As we have seen, objects
behave in different ways when acting in different contexts.
Therefore, in each context the object plays a different role.
This introduces the notion of multiple perspectives [14]. The
role is determined by the perspective the client holds on
the object that plays the role. The perspective is a set of
the properties of the object, modeled by a set of methods.
Other objects in the collaboration can access the selected set
of methods. Furthermore perspectives can change dynami-
cally. This means that an object’s set of methods may have
additive and subtractive properties [14]. Thus, roles allow
objects to evolve over time.

If roles allow such evolution of objects a question may
occur: are classes a superfluous concept or do roles need
classes? An argument for classes and roles is that classes
represent what is static and roles describe what is dynamic.
A class defines an entity, while a role only refines an en-
tity in a certain context. Another argument is that with
both concepts separated we can have separated inheritance
hierarchies of classes and roles [14].

3. REUSING ROLES

This section is dedicated to what we believe are the key
factors that will enhance role reuse. Every role must have
an intrinsic, or a player, that assumes the role. Independent
evolution of roles and intrinsics must be ensured if we want
roles to be reusable. Another factor is role configuration, so
that a role can be tuned for a particular player class.

Independent evolution of roles and players calls for the
use of modularity principles. If we treat a role as a module
and the player as another module then we can strive for a
greater independence between them.

It is our purpose to build reusable roles. Does this mean
that previous role languages do not allow reusable roles to
be built? No, but we believe that our approach takes role
reusability a step forward. With previous proposals roles are
bounded to a player and several restrictions apply because of
their dynamic nature. By using roles as a static construct we
can use them as a building block for classes and don’t have
to deal with dynamic constraints (see section 4.3 for more
details). By letting classes declare which roles they play we
can have some configuration of the role to be made by the
class, most notoriously method names and data types, and
not force roles to adapt to their players.

3.1 Modularity

Modularization [20] is one of the most important concepts
in software development. Breaking a system into modules
allows the independent development of each module. This
shortens the development time as each team may develop
their assigned modules simultaneously. Independent devel-
opment also enables the modification of a module, even a
drastic one, without any change to other modules. The
scaling property of modules allows building one module us-
ing other modules. Another advantage of modularization
is comprehensibility because one can study the system one
module at a time. There are numerous advantages of mod-
ularization like enhanced error tracing and fixing, reduced

system compiling time, etc, but the one that we, as develop-
ers, treasure most is the high reusability of modules. This
allows the development of libraries which in turn reduces the
amount of code one must write in order to build a system
and with extreme benefits in system reliability (assuming
libraries have been thoroughly tested).

A module has an interface and an implementation. The
implementation is the way the module is built. A key con-
cept in modularization is encapsulation. When a module
is well encapsulated changes in that module do not affect
any other module. The interface defines how clients interact
with the module. Since this is what clients see and use it
shouldn’t change much along the module life-cycle as clients
must be aware of the changes and in turn change their im-
plementation accordingly.

Modules interact with each other but some modules are
more tightly connected than others. The intra-modules in-
teractions are more intense than inter-modules interactions.
Intra-modules interactions may require a specialized inter-
face that other modules don’t need, and shouldn’t know of.
To cope with this, most languages declare different levels of
access to the modules members. In typed OO programming
languages, where the smallest module is the class, there are,
at least, 3 levels of access: private, protected and public.

3.1.1 Problems with modularization

Modularity is a very important concept but how do we
decompose a system into modules? A definitive answer to
this question is still missing. There are numerous decompo-
sition techniques, each focusing on a particular view. The
most successful one today is Object Oriented Decomposition
where the system is decomposed into classes and objects. It
is argued that a single decomposition strategy is not enough
to adequately capture all the systems’ details [32], and the
quest for another, more universal, decomposition strategy is
still going on.

A consequence of using a single decomposition strategy is
the crosscutting concerns that appear when several modules
must deal with the same problem, even if it is outside their
main concern, because one cannot find a single module re-
sponsible for it in the light of that decomposition strategy.
This leads to scattered, replicated code. The consequences
of this are the exact opposite of the benefits of modulariza-
tions. Because a module must deal with a part of a problem
that is spread by several others, changes to that code may
affect other modules, and most times do. This affects inde-
pendent development. Development and maintenance are a
nuisance too because changes in the code needs to be done
in all modules transversely.

There are several attempts to eliminate crosscutting con-
cerns from OO programs, most notably Aspect Oriented
Programming [12]. We will contribute with another view
of the problem by using roles as a smaller module than the
class. This way we can put the crosscutting concern in a
role, or a set of roles, and the classes would play those roles.
Any changes to the concern are limited to the roles thus
greatly improving maintenance and reducing change propa-
gation, or in other words, the crosscutting concerns become
more modular.

3.1.2 Roles as modules

In order to develop roles independently from its players we
must follow modularity rules and treat a role as one mod-

ule and the player as another. Thus roles must provide an
interface, ensure encapsulation and have to be developed
independently from other modules. It can be argued that
modularization is a matter of design and not a language fea-
ture [14] and that we can have modularization in languages
that do not provide encapsulation. While this is true, lan-
guage design can enhance the use of modularization and
favor good programming practices. So in a language that
strives for modularization these are desirable features and
we followed them in our approach.

Providing an interface is straightforward if we allow roles
to be first class entities in a language that supports them.
Ensuring encapsulation and independent development raises
a few issues. We must consider the fact that a role only
makes sense when ”played” by a class. Does this mean that
the class playing the role has access to the role members
and vice-versa? If this was so then the role could not be
developed independently from the classes that play it, be-
cause any change in the role implementation could cause
changes in the class. The same holds if we grant the role
with access to the class members. Then changes in the class
may force changes in the role. From this discussion we can
see that roles and classes have to be independent and rely
solely on interfaces. Because roles and classes have a special
relationship, different from a super subclass relationship, it
may be the case that we need a special role-class interface.
For that we could use yet another access level, or redefine
the meaning of the protected level to include the role-class
relationship. We will discuss our option when we present
our role model.

3.2 Configuration of a role

A role only makes sense in a collaboration so it must be
tuned for that particular use. If we want to reuse roles
them each role must be adaptable to different collaborations
and contexts. We must therefore allow players classes to
configure the role to their suit their specific needs.

3.2.1 The need for a renaming mechanism

Traditionally roles declare which classes can play them,
whether by name or by interface, using a “played by” clause
or similar. We believe that declaring predefined players is
a great limitation in the reusability of roles. The same role
used for a class could be reused for another class where not
for the fact that the role developer did not foresee all its
possible uses. One can argue that a role only makes sense in
an interaction between classes and thus restrict the player
classes to the ones involved in that interaction. However the
same role could be reused in another, similar, interaction but
with different players.

If the "played by” clause specifies an interface instead of
a class it is possible for the role can be played by different
classes, but even this is not enough. A hindrance to this
reuse is the name of the methods that are specific to an in-
teraction. As an example, the Observer pattern [8] describes
an interaction between subjects and observers that is present
in many different systems with only minor changes, most no-
tably the names of the methods to register an observer with a
subject and the methods used by the subject to notify its ob-
servers. A Subject role for a MouseMotionListener instance
of the pattern would define methods like addMouseMotion-
Listener, or removeMouseMotionListener. That role could
not be reused for an instance of the same pattern but for a

KeyListener which uses methods like addKeyListener or re-
moveKeyListener. Because a method name must somehow
indicate its functionality, using a generic name like addLis-
tener would not be correct as it would reduce the comprehen-
sibility of the code. Another major drawback is that it would
limit the class to play only one subject role. Considering
this, a renaming mechanism would expand the reusability
of the role to several situations. Of course some restrictions
must apply, because a class that plays a role must ensure a
specific interface, but that interface should be configurable,
at least in what respects to methods names.

Some languages [31] use a "rename” clause that allow player
classes to rename methods. If the role interface is big then
this task is tedious and error prone. We need a more expe-
dite way of doing this.

There is also the problem of the role calling the player
methods. Again method names are important. In the Sub-
ject role each subject has a method that calls the observer’s
update method. In the Java-like implementation of the pat-
tern such method is not called update but, instead, are
used several methods like mousePressed, mouseReleased,
etc. The "rename” clause is not usable here because the
number of methods that get called varies between instances
of the subject role.

We need a mechanism that allows fast renaming for both
role methods and methods that are called by the role.

3.2.2 Configuring data types

Sometimes the role may perform the same actions in dif-
ferent contexts but differ on the data types used in each par-
ticular context. For example the Subject role uses MouseLis-
tener or KeyListener objects. To cope with this, roles must
provide a way to configure data types, if the language does
not handle it. For example, C++ supports type configura-
tion using templates and Java by using generics.

3.3 Summary

To summarize, for roles to be fully reusable then they
must:

e provide an interface
e ensure encapsulation
e have to be developed independently from its players

e provide a method renaming mechanism that enables
the role to be played by any class that fulfills some
requisites

e Configure data types

4. SUPPORTING ROLES

There are several languages that support roles, and many
role models. Each one chooses a set of role characteristics
that suits its needs. A complete description of roles charac-
teristics is therefore lacking if we take a language only. This
section tries to present some properties of roles and practi-
cal considerations and was based on [9]. We will discuss our
role model using the guidelines of this section.

4.1 Classes playing roles

A class may have restricted role-playing capabilities rang-
ing from the number of roles and the type of roles it can

play. In some languages a class must have at least one role
attached, such as Fibonnaci [1] where a class is a null-object.
A class may also play a fixed number of roles but it is not
common. More normally a class may play an undetermined
number of roles. Pernicci [22] defines a class as consisting in
one to many role descriptions, where the first role descrip-
tion is equivalent to a "normal” class.

Even if a class may play several roles it may impose re-
strictions on the roles it can play. Playing the same role
more than once is prohibited in languages that rely on role
type for method dispatching. Other languages like Object-
Teams [11] allow a class to play the same role several times
but in different contexts.

A class can have conjunctive or disjunctive attachment
of roles. In conjunctive attachment roles are like wrappers
that cover the intrinsic (attached object). Attaching another
role means wrapping the previous role with the new role. In
disjunctive attachment, a role may be attached directly to
the object even if it already plays other roles. Figure 1 shows
the two kinds of attachment.

Classes conceptually cannot inherit from roles [15]. Roles
are usually written for a class, or its subclasses. Abstract
roles are not written for a particular class, but designed to
be the superrole of a more specific, class-targeted role.

Typically, roles can be attached to only one object, but
some use multiroles: roles that can be attached to several
objects.

Visibility of roles is also important. Normally roles are
public because roles usually model object interactions but
there can also be private, and protected, roles. Here the
notion of private can vary: a role can be private to the
object it is attached to or private to the class that defines
it, if it is defined inside a class.

Limits on the number of role instances can also apply.
An instance of a role can also be attached only to a single
object but several instances of the same role can be attached
to the same object (if a class can play multiple times the
same role). Then there is the possibility of a role having
a single instance that when attached to a new object it is
automatically detached from the previous object.

In our approach a class imposes no limit on the number of
roles it plays nor on the number of times it plays the same
role. However, due to its static characteristics, it does not
support multiroles and the attachment is done on a class by
class basis rather than on object by object basis.

4.2 Roles playing roles

A role may also play other roles. The same thought for
classes apply: roles can play no roles, play a fixed or an
unlimited number of roles. Like classes the type of roles a
role can play may vary. We do support roles to play other

B2 v
r ia - 1 -
[. 1 . v
. Bl W i R3O
Ly H \ '
L .~‘ O ,"‘ P ———
NN A { B2 | E ow. | R

Figure 1: Examples of Conjunctive role attachment
(left) and Disjunctive role attachment (right)

roles and the same restrictions for classes apply.

4.3 Role dynamics

Roles can be taken on by the object or imposed by the out-
side. When a role is imposed it is automatically attached
when the object enters a specific context. Role movements
reflect the dynamicity of the real world, but it poses many
practical problems. The major problems with role move-
ment are the dynamic situations that may arise.

The example in Kristensen and Osterbye [16] refers to the
role Mayor. When a person is elected Mayor it assumes
the role and when another person is elected the role gets
transferred. But if we move the role then the person that
played the role of mayor does not recall being a mayor. It is
possible that other clients knew the person as a mayor and
after the move they now know the new mayor and don’t
remember the other person. There are cases in which only
the functionality of the role is important and not who plays
it. In these cases the role may be moved freely without the
previous problems (it may have others, though).

Moving a role must also take into account if a role is cur-
rently executing or not. If the role is not executing then it
may be safe to move it. If roles have identity then clients
may have the knowledge that a role is attached to a specific
object and moving the role may invalidate that knowledge.
The same can be true if a client does not know the specific
object but depends on a particular state of that object, when
moving a role to other object the state may be changed with-
out the client knowing it. Kniesel [13] presents other reasons
to invalidate roles from moving. If a role is executing, mov-
ing it it raises a all new kind of problems. When the role
resumes its execution the environment has changed! Some
solutions involve letting the role finish its execution and then
perform the movement, but that may not always be possible
(it may even lead to deadlocks).

Moving roles must consider the fact that roles may play
other roles. Thus when moving a role it makes sense to move
along all the roles it plays. But that may be untrue if the
target intrinsic have restrictions on the roles it may play.
It may play role rl, but may not play role r2. If role r2 is
attached to role rl then the move fails. What to do? Not
move role rl or detach role r2 from rl and then perform the
move? The correct way depends on the concrete case, even
though a default behaviour can be enforced. Either way new
problems arise. Detaching role r2 may not be possible or if
it is detached should it be replaced by another role?

When we move a role all the references to that role must
be updated. A notification method should also be called to
prevent the problems mentioned when a client depends on
a specific object or specific object state.

Because of the many problems involved many languages
forbid the movement of roles. Once a role has been attached
it cannot move. This increases code predictability [7].

A similar problem with moving roles is removing roles.
The main problem is the past being removed with the role.
When a student ceases to be a student it has nevertheless a
record of grades, etc. When the role is detached it is as if
the object never has been a student. There is also the fact
that clients have the references to the role. The school still
has references to the student’s role. It may depend on the
role to know the name of the student. If the role is detached
then the school loses this information.

A solution for role removing is role replacement. We could

relal:

foo() role2: AnotherRols

Figure 2: An object playing two roles with overlap-
ping members

replace the student role with a graduate role that stores the
record information. But that is done on a case by case sce-
nario. There are also all the problems with role movement
to be dealt with, like removing a role when it is executing
and so forth. Another solution is not to allow removal of
roles. When attached it remains attached and only termi-
nates when the object terminates: it is a life role.

Solutions for dynamic situations are very difficult to ob-
tain because there are infinite possibilities. Since we are
focusing on code reuse and class composition in a static con-
text we dismissed all role dynamics. This means that when
an object is created all its role instances are created and at-
tached to it and are destroyed when the object is destroyed.

4.4 Subtypes or supertypes

Controversy exists whether roles are considered as sub-
types or supertypes of its intrinsic. We can see why in the
following paradox: at compile time a role may be consid-
ered a supertype because its concept is wider than that of
its intrinsic (a costumer may be played by a person or a com-
pany) but at run-time the opposite holds (not every person
plays the role of costumer). The subtype view is the more
consensual view, though.

Another view states that roles are an unrelated type of
their intrinsic. This is the view adopted by many role models
that are implemented as design patterns. This is the view
we adopted: a role only adds to the class interface and a role
instance does not replace the class instance in any situation
or vice-versa.

A role could extend a class, even though they are concep-
tually different (due to our role configuration techniques we
do not allow that). Roles can extend other roles but some
restrictions apply. If a role is an abstract role there are no
restrictions. If a role has an intended intrinsic this restricts
the subrole as the subrole intrinsic specification cannot be
of a reduced type compared to the superrole intrinsic. Here
reduced is used in the sense that the type cannot have fewer
properties. A subrole may, on the other hand, extend the
intrinsic specification.

4.5 Defining properties in roles

If we allow roles to have fields and methods this will even-
tually lead to name collisions. This happens if an object
has two attached roles with the same methods (or fields)
like that shown on Figure 2. This is bound to happen if the
same role is attached more than once to the same object. If
this is an intended procedure than bookkeeping of the fields
must be ensured. If it is not intended then accidental attach-
ment of the same role has to be prevented. The solution to
these problems is language specific and even role specific.

With methods there is another question: the role meth-
ods override the object methods or vice-versa? The answer
may depend on whether the relation between the role and

intrinsic is of a super or sub type nature. It may also de-
pend on the language: C++ allows only the overriding of
virtual methods, in Java all methods may be overridden,
except those declared final.

4.6 Method call

When entity A sends a message to some entity B what
happens? The answer depends on the role model being used.
First it must be known to which entity A is referring to. If
A is referencing a role (as in most role languages) then A is
calling a method in the role. If A is referencing the object
then the method must be dispatched to the role by some
mean. This can take a very complicated route because a
role may be playing another role.

What happens when several roles define the same method?
Take for instance, the example shown in Figure 2: when we
call foo() on object obj which methods gets called as there
are 3 possibilities? Some languages call all the methods,
others have some mechanism to select one of them. The
problem with calling all the methods is the return value.
ObjectTeams [11] for example leaves the result undefined.
Some mechanisms select the last attached role, we, for in-
stance, select the first declared role. Others techniques force
the caller to disambiguate the call using casts. This, of
course, forces the obj client to know in advance the roles
that object plays which can be considered a break in the
class encapsulation. In the given example we would use one
of the following lines, depending on which version to call:

((SomeClass)obj) .foo();
((SomeRole)obj) .foo();
((AnotherRole)obj) .foo();

There are other considerations such as: may a role call its
intrinsic methods or vice versa? Can a role place calls on
other roles? What if a role and an intrinsic have the same
methods? Note that this situation is different from a method
called from an external entity. Some languages define a ref-
erence self to contrast with the this reference. The this ref-
erence indicates the intrinsic while self references the role,
thus disambiguating the call (we use a performer reference
with the same meaning but for other purposes). Some im-
pose a restriction on the intrinsic calling its role’s methods.
It does assume that the intrinsic knows its roles and may de-
pend on them. In dynamic situations this cannot be allowed
as the role may not be there. An alternative way is for the
intrinsic to query its roles for the presence of a particular
one and then call its methods. In a static context the role
may be assumed to be there so this does not really pose a
question in our role model.

A recurrent question, still unanswered, is role identity.
Some argue that roles have no identity [15, 16]. Consider-
ing that roles are not independent entities then roles should
not have an identity. The object and its roles are referenced
as one. If roles can evolve objects they cannot modify its
identity otherwise it ceases to be the same object. To iden-
tify the role to be addressed casts are used. One example
of such an approach is the previous code. This, however,
forbids multiple roles of the same type.

Others argue that roles do have an identity that is differ-
ent from its intrinsic [18, 33]. When a role has identity the
class can have multiple instances of the same role and dis-
tinguish each one. If the role identity is independent of the
intrinsic it may lead to an equivalent of object schizophre-

nia when a class plays several roles or is engaged in several
collaborations. To solve the problem of the foo() method
we would use one of the following lines, depending on which
version to call:

obj.foo();
obj.rolel.foo();
obj.role2.foo();

There are also those, like we, to whom roles share the same
identity with its intrinsic and also have one that distin-
guishes it from other roles present in its extent [27]. This
usually calls for the use of methods to compare identities in
dynamic contexts.

4.7 Mixin roles and class members

A role models a particular view of an object so it must
have either state or behavior or both, otherwise they would
be comparable to interfaces [30]. But if roles have state and
behavior then how do they relate to the state and methods
of the intrinsic? If roles add their properties to the intrin-
sic properties other questions like name collisions, method
calling, etc, arises.

4.7.1 Name collisions

Name collision between role fields and player fields may
occur. If an intrinsic is allowed to play the same role multiple
times then name collision is inevitable.

Member name collision is resolved if roles are allowed to
have identity (whether or not independent). Inside an in-
trinsic, to access a role member we must precede it by the
role identity, otherwise a class member is used. Inside the
role, the member is assumed to be the role member (as in
the section 4.6). If the role needs to disambiguate between
an intrinsic member or a role member it must use a this or
self/performer reference in those cases that support it.

Playing the same role multiple times is also resolved when
roles have identity, because it suffices to use the correct iden-
tity to select which version of the role to use.

4.7.2 Method calling

Method calls are different from field access. Method calls
are made by the intrinsic clients that, in most cases, are un-
aware of the roles the object is playing. Are role methods
added to the intrinsic interface or accessed via a role refer-
ence? If accessed by a role reference then clients must know
about the roles that the object plays. If they are added
to the intrinsic interface then clients may be unaware of
the roles. Forcing clients to use the role identity should be
kept to a minimum because the less the client knows about
the class and the roles it plays the better it will respond to
changes in that class. An exception can be made when an
object plays the same role multiple times, then the clients
need to specify which role to use.

4.7.3 Method Overriding

If a class and roles methods are identical then do roles
methods override or are overridden by class methods? Al-
lowing role methods to override class methods means that
a role can alter the normal behavior of an object, which is
what dynamic roles are about. But a class may want to play
a role and yet retain some aspects of its own behavior. We
must also distinguish between a mandatory implementation
for a role method of a default implementation, very much

like in inheritance hierarchies (final methods in java, no vir-
tual functions in C++). In our role model role methods
are added to the class interface but are overridden by class
methods.

S. JAVASTAGE ROLE MODEL

When we started developing our role model for JavaStage
the main goal was to enhance code reuse while maintaining
the model as close as possible to OO decomposition. We be-
lieve that this approach is more likely to get the acceptance
from the OO community than a model that would introduce
many new concepts.

Our view of roles is somewhat different from others as we
focus more on the static nature of roles, as used by [25],
rather than on its dynamic nature as seen in PowerJava
[4] and ObjectTeams [11]. We also tried to stick as close
to the OO model as possible and the syntax additions at
the minimum. We, therefore, dismissed the ObjectTeams’
Context concept and the PowerJava’s Institution concept as
they introduce greater complexity to the model.

An advantage of the Context concept is the contextual-
ization of the interactions. We can argue that, for example,
the observer’s subject role is useful only inside a subject-
observer relationship and in the Context both roles are ob-
jectively identified and without the Context the role of the
observer is somewhat abstract. It also states that an object
only plays a role inside that context, and whenever it enters
the context it gets the role attached and when leaving the
context the roles is detached.

Without a Context we are forced to check which objects
play the role of the observer and when that interaction takes
place. But contextualization comes with a complex design
that strays from the OO path, making it harder to under-
stand. Also the Context concept is useful in dynamics envi-
ronments that we do not address. In our static environment
its advantages are diminished, it only has contextualization,
but still retains its complexity. We believe that the small
changes we introduced in the OO decomposition will be bet-
ter accepted by the developer community than a completely
new concept. The small learning curve aims also to be an
advantage towards that acceptation.

Our goal is to make roles reusable thus contributing to di-
minish code replication. To validate our approach we show,
in Section 6, that the development of a role library is possible
using our role model.

If we want to bring roles into mainstream languages the
easiest way is to extend an already existing programming
language so we opted to introduce extensions to the Java
language. Java was adopted because it is a widely used lan-
guage and because Sun’s Java compiler code is open source
thus facilitating changes to the language. We named our
extension JavaStage.

We will present our role model based on the discussion
from the two previous sections and with the presentation of
some examples. Some points of the discussion in section 4
do not apply to our model because they deal with problems
of role dynamics and we deal only with the static nature of
roles as seen in [25]. To support role dynamics we would
need to complicate the model and introduce new concepts
like contexts (as in [4] and [11]) which was not our goal.

5.1 Roles as Modules

JavaStage supports roles as a first class identity. The syn-

public role Singleton {
requires Performer implements Performer();

private Performer single = null;

public Performer getInstance(){
if(single == null)
single = new Performer();
return single;

}

class ASingleton {
plays Singleton rSingle;

roleprotected ASingleton() { ... }
}

Figure 3: Code of the singleton role (adapted) and
a player class.

tax to declare a role is similar to that of a class. Roles can
declare fields and methods like a class. When we want a
class to play a specific role we use the plays directive. This
is contrary to the general rule where it is the role that states
which classes plays it. As discussed in section 3, this is re-
stricting the reuse of the role, so in JavaStage it is the class
that states the roles it plays.

In JavaStage all access levels of Java are supported and an
additional one was added: roleprotected. The roleprotected
level gives access to the role members by the player and
to the player’s members by the role. The protected level
could be used but we chose to introduce a new access level
to clearly state the player-role interface.

Figure 3 shows a Singleton role (adapted from our library)
and a class playing that role. The Singleton role is reusable.
Because the singleton role must call the player’s construc-
tor we need to declare the constructor as roleprotected. If
we used the protected level then subclasses could call the
superclass constructor and thus break the Singleton pat-
tern. The roleprotected level, however, allows other roles
to create instances of the class also breaking the Singleton
pattern. The difference between the two approaches is that
a class knows nothing about subclasses and cannot control
subclassing (apart from final classes) whereas in JavaStage
it is the class that states which roles it plays. Therefore, a
class may choose not to play a role if it breaks its singleton
nature.

In JavaStage roles provide an interface, have an implemen-
tation and provide encapsulation. Roles and classes are thus
completely independent modules and may be independently
developed.

5.2 Role identity

In our approach a role has an identity. The identity is
given by the player in the plays clause. That identity is
associated with the player identity. As can be seen in Figure
3 the identity of the role inside the ASingleton player is
rSingle. Whenever the player wants to access role fields, or
methods, it must use the syntax

rSingle.someRoleMember

If the role is public then that role identity is accessed just

like any class member as shown below:

ASingleton s = ASingleton.getInstance();
s.rSingle.someRoleMember;

This allows clients, which have knowledge of the roles the
class plays, to select the role they want. This is useful when
the class plays several roles that have overlapping methods.

5.3 Mixin roles and class members

When a class plays a role the role methods are added
to the class interface. If there is a name collision between
role and class methods then the class methods are used if
defined in that class. Inherited methods are overridden by
role methods.

A new rule must be added because a class may play two,
or more, roles that have overlapping methods. In such a
case, the methods added to the class interface are those of
the first role, following the sequence of the play clauses. This
is, of course, the default action, but developers may change
it simply by redefining the method and explicitly call the
intended role method.

Our approach allows roles to have state and behavior.
Name collisions between different role members and between
role members and player members are resolved by using role
identity.

To access its player members the role uses the performer
keyword. Each instance of a role has a performer refer-
ence that points to the player instance. To represent the
type of the performer, inside the role, JavaStage declares a
Performer type. Because we don’t know that type in ad-
vance this is used as a placeholder. It is used for storing
references to objects or objects used as a parameter in some
method. We could use a generic for this purpose but then
the class would have to configure the role with its own type
and that feels unnecessary. It is also used in the method
renaming strategy discussed below when we state that the
performer must implement some method.

5.4 Method renaming strategy

A name of a method must clearly state the purpose of the
method but when creating a full purpose role those names
are difficult to achieve. See the discussion in section 3 for
details. To overcome this restricting factor we developed a
renaming method that allows an easy configuration of the
names. Each name may have two parts: a configurable one
and a fixed one. The configurable part is bounded by a #
as shown next.

fixed#configurable#fixed

The fixed part is optional thus leaving the name of a method
to be fully configurable by the class. The configuration of
the name is done by the class that plays the role in the plays
clause as shown in Figure 4.

Figure 4 shows excerpts of the Container role that de-
fines the role of a container and two classes that play that
role: Company and PolyLine. Companies must keep track
of workers, and allow the addition and removal of workers.
Polylines are composed of points so a PolyLine needs to al-
low adding and removing points.

An advantage of this renaming strategy is the possibility
to rename several methods with one single clause, as seen
in the Container example and illustrated in Figure 5 which
represents the interface that a client of the Company class

public role Container<T> {
private List<T> content;

public Container(){...}
public Container(List<T> store){...}
public void add#Thing#(T t){ ... }
public void remove#Thing#(T t){ ... }
public void remove#Thing#(int idx){...}
public boolean contains#Thing#(T t) {...}
public void clear#Thing#s(){ ... }
public T get#Thing#(int idx){ ... }
public Collection<T> getContent(O){ ... }

}

class Company {
plays Container<Worker>(
Thing = Worker
) workers;

}

class PolyLine {
plays Container<Point>(
Thing = Point
) points;

}

Figure 4: Excerpt of the Container role and two
classes playing that role.

sees. With a rename clause we would need several lines of
code to achieve the same effect.

A role may also call player methods or any other entity
methods. In order to maximize role reuse we cannot force
players to name the methods as stated by the role. Tak-
ing the example in section 3.2.1, a MouseListener subject
may call mousePressed or mouseReleased methods on the
listeners. Such names are useful only in the MouseListener
context. A Subject role that is to be reused cannot make
assumptions on the methods called. Callback methods are
also to avoid because they are awkward to use and need
some amount of configuration.

The proposed solution to the called method names is to ex-
tend the configurable method renaming strategy to include
these methods. Thus we can write a role method like

public void doSomething() {
performer.do#action#();

}

The method name is the only thing that can be made con-
figurable, method parameters and return type cannot, be-
cause the method’s signature must be previously known to

Company
addWorker(t : Worker)
removeWorker(t : Worker)
removeWorker(idx : int)
containsWorker(t : Worker)
clearWorkers()
getWorker(idx : int)
getContent()

Figure 5: The interface of the Company class as seen
from its clients

public role Subject<ObserverType,EventType> extends Container<QObserverType> {
requires ObserverType implements void #Event.notify#(EventType event);

public void fire#Event#(EventType e){

for(Iterator<ObserverType> i = getContent().iterator(); i.hasNext();)

i.next() .#Event.notify#(e);
}
}

public class SomeClass {
plays Subject<MouselListener, MouseEvent>(
Thing = MouseListener,
Event = MousePressed,
Event = MouseReleased,
) mouseListenerRole;

plays Subject<MouseMotionListener, MouseEvent>(

Thing = MouseMotionListener,
Event = MouseDragged,
Event = MouseMoved,

) mouseMotionListenerRole;

Event.notify
Event.notify

Event.notify
Event.notify

mousePressed,
mouseReleased

= mouseDragged,

mouseMoved

Figure 6: The Observer pattern Subject role and an excerpt of a class playing that role twice.

statically compile the role. In some situations the method
signature, apart from the name, could be inferred, but we
cannot guarantee that for all cases (most notably for return
types). We need, therefore, some way to state the required
method signature. We propose to use a requires statement
in which is stated who must supply the method, its return
type, configurable name and parameters. The supplier must
be the player (using the Performer type) or a generic type.
Other types are not allowed: if we know the type we know
its methods and do not need to configure them. Method
renaming is valid only for those types that we do not know
in advance.
The requires statement has the following form:

requires implementer implements
returnType config#name#(params);

We added yet another feature to method renaming: the pos-
sibility to declare multiple versions of a method. For this we
just have to define multiple times the configurable name in
the class. For example if the Company class declared the
Container role with

plays Container<Worker>(
Thing = Worker,
Thing = Employee) workers;

Then it would have addWorker and addEmployee methods.
The same applies to the other methods as well.

This feature is even more powerful if used together with
the feature of calling methods. Then with just a name defini-
tion we can have several method versions. For this to work
we must use a configurable called method inside a config-
urable role method. We must name the called method after
the method it is called from. This is done using a dot name.
The syntax is as follows:

void role#Method#(){
performer.called#Method.inner#();

}

In a player if we used the configurations

Method = Foo, Method.inner = Foo,
Method = Bar, Method.inner = Bar

then the player would have the roleFoo and roleBar methods,
and each would call calledFoo and calledBar respectively.

With these features we can write the Subject role shown
in Figure 6. The figure also shows a class playing the roles of
MouseMotionListener and MouseListener. Configuring both
roles is a simple case of renaming strategies. The code in
Figure 6 would be smaller had we written a MouseListener-
Subject role and a MouseMotionListenerSubject role based
on the Subject role. Those roles would play the Subject role
using the same configurations used in SomeClass. These
roles could then be reused by all classes that wanted to play
them instead of redefining the Subject role again and again.
We left them like this for demonstration purposes.

There is one more feature in our renaming strategy: the
use of the class directive. When class is used as a config-
urable part of a role method name it will be automatically
replaced by the name of the player class when mixed in the
class code. This is useful in inheritance hierarchies because
we simply need to place the plays clause in the superclass
and each subclass gets automatically a renamed method. It
does imply that calls will rely on name conventions.

One such case is the Visitor pattern. This pattern de-
fines two roles: the Element and the Visitor. The Element
must provide an accept method that takes a Visitor as an
argument. The Visitor must declare a visit method for each
Element type. Each Element then calls a specific method
on the Visitor. The Visitor’s methods usually follow a name
convention in the form of visitElementType. We used that
property in our VisitorElement role, as shown in Figure 7.
This example shows how it could be used in a Figure hier-
archy where figures are the Elements. It also shows that the
Figure subclasses don’t have any pattern code, because they
will get automatically an acceptVisitor method that will call
the correct visit method.

public role VisitorElement<VisitorType> {
requires VisitorType implements
void visit#visitor.class#(Performer t);

public void accept#visitor#(VisitorType v){
v.visit#visitor.class#(performer);
}
}

public class Figure {
plays VisitorElement<FigureVisitor>
(visitor = Visitor) visit;
// ... rest of class code

}

public class LineFigure extends Figure {
// no Visitor pattern code

}

public interface FigureVisitor {
void visitFigure(Figure f);
void visitLineFigure(LineFigure
void visitTextFigure(TextFigure

H Hh
~

}

Figure 7: The VisitorElement role, a class Figure
that plays the role, a subclass from the Figure hier-
archy and a Visitor.

5.5 Roles and multiple inheritance

Static roles can be used as a way to overcome multiple
inheritance problems or a way of supporting multiple in-
heritance in languages that do not support it. Problems
with multiple inheritance come mostly by name collisions
when a class inherits from two or more superclasses that
have equally named methods or fields and duplicated code
when a class inherits twice from the same superclass - the
classic diamond problem. Different languages provide differ-
ent solutions to this problem as others simply forbid it like
Java. In Java, when we need a class to be part of two or
more hierarchies we must use Interfaces. Interfaces can only
declare constants and methods signatures and cannot have
state or default method implementations. This may result
in the duplication of a default implementation in classes that
implements the same interface while inheriting from differ-
ent superclasses.

We can use roles to provide a default implementation for
any class hierarchy. Therefore to emulate multiple inher-
itance a class would implement the various interfaces and
play the role with the default implementation for each in-
terface. There are no ambiguities between which methods
to call as JavaStage uses the sequence of the plays clause to
generate the class methods. If some method other than the
provided by JavaStage is intended the role identity can be
used to call the appropriate method. This can be done by
the class itself or by the client if it knows about the roles.

In Java it is common to start a inheritance hierarchy with
an interface and then a superclass that provides the default
behavior for that hierarchy. We argue that the default imple-
mentation should be provided by a role and then the default
class would play that role. This way we can reuse the basic
behavior whenever there is a need to, thus preventing a pos-
sible use of multiple inheritance as seen from the previous

«interface» «role» Image
Figure BasicFigure

-lineColor : Integer
-fillColor : Integer
+setLineColor()
+setFilColor()

AN

- N
N ~A N
N -

+complexMethod()

+draw()
+setBoundingBox()
+setLineColor()
+setFilColor()

s ~~ ~
N
N / ~ ~

DefaultFigure S~ ~ ImageFigure

+draw()
4 +setBoundingBox()

[|

LineFigure TextFigure

+draw() +draw()
+setBoudingBox() +setBoudingBox()

Figure 8: Example of a Figure hierarchy with both
an interface and a role as top elements

discussion. This proposal is depicted in Figure 8. In the ex-
ample there is a Figure hierarchy that has an interface and
a role as top elements. The DefaultFigure class implements
the interface and plays the role. All its subclasses inherit
this default behavior. The ImageFigure, a subclass from
another hierarchy, also becomes part of the Figure hierar-
chy by implementing the Figure interface. It also plays the
BasicFigure role so it has the same default behavior every
DefaultFigure subclass has.

5.6 Other issues

Shouldn’t the plays clause be considered equivalent to the
extends or implements clauses and be placed accordingly?
After all it does have impact in the class interface since roles
methods are added to it. There are in fact several reasons
for not doing so. One is the role identity which, purposely,
resembles an object declaration. Yet another reason is the
naming configuration, which would clutter that declaration.
A final reason is that roles may have non default constructors
and we need a way to pass parameters to them. It would ap-
pear awkward to do that in an implements-like declaration.
Role initialization is sometimes required. For example, the
Container role from Figure 5 uses an ArrayList by default,
but with a constructor we can let the player choose which
container to use. The use of constructors is supported by
our approach. The syntax is:

plays role(nameConfiguration)
roleID(roleConstructorParams) ;

Roles and interfaces are somewhat related [30] so we could
let roles define a type and hence have the polymorphic be-
havior interfaces have. We could write code that would work
with any class that plays that role. Our method renaming
strategy, however, forbids this because the actual interface
a role provides is configured by the class and not by the
role itself. Roles with no configuration could in fact define a
type but its implications have not been studied yet and are
relegated to future work.

5.7 The inversion of the play declaration

Like previously stated, in traditional approaches the role
declares its players. We did it the other way around: the
class declares which roles it plays.

One reason to use the "played by” clause in the role is to
impose a constraint on the classes that may play that role, to

ensure that the player has a certain interface (or structure)
that the role uses. If the "played by” clause specified an
interface instead of a class it would be possible for the role
to be played by many different classes but as explained in
3.2.1, when we account for methods names this is a limiting
factor. The inversion of declaration from the role to the class
allowed us to provide a renaming mechanism that configures
the role as it should be used by the class. The role must,
nevertheless, impose some restrictions on the player interface
when it needs to communicate with it. In our case those
restrictions are imposed via the "requires” statement. This
statement also allows us to impose restrictions not only in
the player itself but also on other objects that are part of the
interaction. For example, in our subject role for the observer
pattern, we can configure which interface the observer must
implement.

Another reason for the "played by” clause to be used in-
side the role is the dynamic nature of many role languages.
In a dynamic context the class cannot declare which roles it
plays because that is known only at run-time in an object by
object basis. Since we are in a static context we know which
roles the class has to play throughout the system and this
is not a problem. We do not intend to support a dynamic
context, as our goal is code reuse, but our approach is not a
limiting factor in this situation either. With a Context-like
concept we could easily make the role configuration in the
context. This way classes have no knowledge of roles and
vice-versa, leaving the coupling to be made by the Context.
As mentioned in the begging of section 5 the Context con-
cept has many advantages in dynamic situations and this is
another one.

In static contexts it is also complex for the "playedBy”
clause to be used in a role instead of a class. It means
that all the classes that fulfill the "playedBy” clause get that
role attached, even if they do not want to play it? That
would need the class to do some configuration. To deal with
the problem of playing the same role more than once we
would need to let the class do some configuration too. So
why not let the class configure everything? This way the
configuration is done in a specific place. We believe that
inverting the play clause is a much simpler and expedite
way of configuring a role.

6. TOWARDS A LIBRARY OF ROLES

In order to prove the validity of our approach we developed
a compiler for the JavaStage specifications, based on the
javac compiler. The ultimate goal is to develop a library of
roles with this tool.

Our library starting point was the analysis of the 23 GoF
patterns [8]. Design Patterns are a good starting point be-
cause they are used in many frameworks and so represent a
lot of real world code. If we can create roles for these pat-
terns this means our approach is likely to have impact on
many of today frameworks and applications.

6.1 Roles in Design Patterns

Each pattern defines a number of participants that col-
laborate with each other to carry out their responsibilities.
Some participants in these patterns can be seen as roles
while others cannot. This distinction is made in [10] by
considering the roles superimposed or defining, even though
their concept of roles differs somewhat from ours.

A defining role is a role that completely defines the class,

that is, the class has no other concern besides its participa-
tion in the pattern. Such an example is the State hierarchy
in the State pattern. In this pattern there is an object -
the Context - that alters its behavior when its internal state
changes. The pattern proposes the State, that is a class
(or an interface) that defines the behavior associated with a
particular Context. Each possible state is then implemented
by a subclass (or a class implementing the interface). The
Context object has a state object into which it delegates
state-specific requests. When the Context object changes
state it actually changes the state object. Each state sub-
class has no other concern than performing the actions the
object forwards to it when in that state.

A superimposed role is a role that is assigned to classes
that have other concerns outside their participation in the
pattern. In the Chain of Responsibility pattern, for example,
the Handler role is superimposed in every participant that
is a link in the chain. It has to either handle a request or
forward it to its successor. This behavior is not the main
concern of the class but is has to perform these actions just
because it is part of a Chain of Responsibility.

For each pattern we took the roles played by each partic-
ipant and focused on similar code between instances of the
pattern to find reusable code. A goal we expected to reach
with our approach is a better modularization in some of the
patterns.

We present our results by groups of patterns. The pat-
terns were grouped by the similarities between implementa-
tion or between similar problems presented. We also grouped
the ones already described in the latter sections.

For those patterns for which we develop a role we also
implemented a sample scenario that illustrated its use, but
those samples will not be discussed here, except the sample
for the Observer pattern that will be used as an indicator of
role player independency. The results presented here show
that it is possible to build reusable roles that are indepen-
dent from their players.

6.1.1 Builder, Facade, Interpreter, Iterator, Media-
tor, Template Method

These patterns showed no common code between instances.
That is because they are highly dependent on the nature of
the problem. For example, the way a language is to be in-
terpreted depends only on the language itself, so we need a
purposely built interpreter for each language. An iterator is
developed for a concrete aggregate and every aggregate has
a unique way to traverse.

A special case is Mediator: even if it is developed for a
particular problem it usually uses the Observer pattern as a
way to connect Colleagues to the Mediator, so the Subject
role would be reused here. Nevertheless no similar code
between instances was found.

6.1.2 Abstract Factory, Adapter, Bridge, Decorator,
Command, Strategy

The code for each of these patterns is very similar be-
tween instances but, nevertheless, we could not write a role
for any of them. For example, many abstract factories sim-
ply have methods that are basically a return statement and
the creation of an object. However the way the object is
created and its type are specific to that method alone. The
Adapter pattern instances are also similar in the way that
the Adapter forwards calls to the Adaptee, but when to

make such calls and, even more limiting to our role approach,
the call parameters and return types vary with each instance,
and even with each adapted method. Roles could be used
in this pattern as a way to emulate multiple inheritance as
shown in Figure 8. A common feature between instances
of the Adapter, Decorator and some Strategy instances is
that a reference to the Adaptee (or ConcreteComponent or
selected Strategy) is held by the Decorator (or Decorator or
Context) and sometimes that reference needs to change. We
could write a role that provides such reference management
but its practical usefulness is very low: with current IDE
development we just need to declare the reference and au-
tomatically generate the corresponding setters and getters.

6.1.3 Flyweight, Proxy, State

The roles developed for these patterns are limited in their
actions and are basically management methods. Even so
we find these roles useful because they provide the basic
behavior for the pattern and the developers need to focus
only in the specifics of their instance.

Flyweight depends on small sharable objects that the client
manipulates and on a factory of flyweights that creates,
manages and assures the sharing of the flyweights. The con-
crete flyweights and their interface are instance dependent
and are not open to reusability between instances. Many
flyweight factories share a common behavior: verify if the
required flyweight already exists and, if so, return it or, oth-
erwise, create it, store, and then return it. We developed a
role for the flyweight factory that relies on a map to manage
the flyweights and also supplies the management method.
The flyweight creation method is the only instance specific
method the factory needs so we require the player to sup-
ply such a method. The types of the flyweights are defined
using generics and the methods names are configured using
the rename strategy.

Proxy provides a surrogate or placeholder for another ob-
ject to control access to it. The real subject is placed inside
one object, the Proxy, which controls access to it. Some
operations are dealt by the proxy itself, while others are
forwarded to the subject. Which methods are forwarded
or handled by the proxy are instance dependent as is the
creation of the subject, but the forwarding mechanism and
checking if the subject is created or accessible is somewhat
similar between instances. We developed a proxy role that
provides this similar behavior. It stores the reference to the
subject and provides the method to check the existence of
the subject and triggers its creation otherwise.

The State pattern allows an object to alter its behavior
when its internal state changes. There are almost no sim-
ilarities in this pattern because each instance is specially
made for the task at hand. The only similarity between sev-
eral instances is the state change mechanism, which can be
made in one method. We therefore developed a role that
is responsible for the state transitions and keeping the cur-
rent state. The state change method terminates the actual
state before updating to, and starting, the new state. The
name of the state change method and the state terminating
and starting methods are configured by the rename feature,
while the state class is configured by generics.

6.1.4 Factory Method, Prototype

With these patterns we developed roles that provide a
greater modularity of the participants and dynamicity not

present in the traditional Java implementations. The use of
the class directive in the renaming mechanism is common to
all these roles.

The Factory Method defines an interface for creating an
object, but let subclasses decide which class to instantiate.
The normal implementation of this pattern is clearly in-
stance dependent and provides no common code between
instances. There is, however, a variation whose purpose is
to connect parallel class hierarchies. In this variation each
class belonging to a hierarchy delegates some responsibilities
to a corresponding class belonging to another hierarchy. For
this variation there is one similarity between instances that
we can explore: each class has a method that creates the
corresponding object. What we did was to put the creation
of the product in a creator class. The creator class provides
methods that create the required product, one method for
each product. Then the classes just have to call the cor-
responding method in the creator. An advantage of this
solution is the modularization of the pattern in which the
correspondence between classes is made in a separate class
rather than on a class by class basis. Future additions and
changes are made in this class only. Because the creation
process is now delegated to a single class this means that as
an extra advantage we can change the creator dynamically.

We developed a role that allows the specification of the
factory method that creates the object of the corresponding
class. The method uses the class directive in the renaming
feature which allows the plays reference to be made only in
the top class of the hierarchy. On the other hand the use
of the class directive implies that the creator must rely on
method naming conventions. This is, however, a small price
to pay for the extra modularity gained.

In a sample implementation we simulated a Figure hier-
archy where each figure has a specific manipulator. The
Figure class plays the FactoryMethod role where it defines
that the product created is of the type FigureManipulator
and the creator is a ManipulatorCreator object. Only the
Figure class has the plays declaration, as stated above, but
each subclass has it own createManipulator method that
redirects the call to the ManipulatorCreator. This is the
class responsible for the creation of the correct Manipula-
tor for each subclass. As said above, if we wish to change
the way manipulators are created or even which manipula-
tor is created for each subclass we do it in this class alone
and we need not to change the Figure subclasses. Figure 9
illustrates this example.

For FactoryMethod we also developed a role that has a
fixed Creator instead of a dynamic one for those cases where
this extra functionality isn’t required.

The Prototype pattern specifies the kind of objects to cre-
ate using a prototypical instance, and creates new objects
by copying this prototype. This pattern relies on the proto-
type class to have a clone method that produces an identical
copy of the object. While every class has its own mechanism
for cloning its objects it may not be sufficient because of the
deep copy vs shallow copy problem. The clone method may
do just a shallow copy where a deep copy is needed, or vice-
versa. If the client, when it really matters, could choose
how the copy is made it would be more pertinent. For this
we developed a role that moves the creation of the copy to
another class. This mechanism is similar to the one used in
our solution to the FactoryMethod pattern role. This means
that the new class is responsible for creating the copies of all

Il CreatorType, ProductType |

«role»
FactoryMethod

-creator :

+createManipulator() +createManipulator()

+create#tproduct#() : ProductType
+set#product#Creator() : void 1 ManipulatorCreator
} +createFigureManipulator() : FigureManipulator [~~~ "~ "7 777 :
product = Manipulator 1 1 +createLineFigureManipulator() : LineFigureManipulator 1
} +createTextFigureManipulator() : TextFigureManipulator :
|
: 1
Figure FigureManipulator :
1
= mmmm e y |
| |
+createManipulator() | I
+setManipulatorCreator() I Tx :
1
1
1
1
1
|
\ | !
LineFigure TextFigure LineFig i TextFig i '
|
|
|
|
I
I

Figure 9: The use of the FactoryMethod role to relate a Figure subclass to the corresponding FigureManip-

ulator

classes that may be used as prototypes and thus may choose
how to make the copy. Because it uses the class directive
the subclasses of Prototype don’t need to declare the clone
method.

6.1.5 Singleton, Composite, Observer, Visitor

These patterns were discussed along the presentation of
the role model, except for Composite, which reuses the Con-
tainer role already presented.

The Composite pattern composes objects into tree struc-
tures to represent part-whole hierarchies. Each composite
must maintain a collection of child components and im-
plement the operations defined by the component hierar-
chy. There are common operations for all Composite in-
stances: the management of the children (like addChild, re-
moveChild, ...). The operations defined by the component
hierarchy are instance dependent and are not suitable for
generalization, even thought most of their implementations
is the traversal of the children collection and performing
the corresponding operation on each child. A map func-
tion, popular within functional programming, would be use-
ful here. For this pattern we didn’t develop a particular role,
but we reused the Container role (Figure 5), which takes care
of children management in the Composite role

6.1.6 Chain of Responsibility

The purpose of the Chain of Responsibility pattern is to
avoid coupling the sender of a request to its receiver by giv-
ing more than one object a chance to handle the request.
Each object is chained to another and the request is passed
along the chain until an object handles it. The implemen-
tation of this pattern, in Java, often involves the use of a
reference to the successor and the code to handle or pass
the request. The specific code to each instance relates to
how the request is handled and how each handler deter-
mines if it can or cannot handle the request. There are
some implementations that require no request information
to be passed, that is, the request method has no parame-
ter. There are also implementations in which the request
method returns a value. To accommodate these variations

we developed a role for each.

In our roles the names of the methods are configured using
the renaming feature. The types of the handlers, the request
(in those roles that use it) and return type (where in use)
are defined by generics. The roles also define the get and set
methods for the successor, which are also configurable via
renaming.

6.1.7 Testing role player independency

In order to asses if our roles are indeed independent of
their players we took the sample scenarios that illustrated
its use and built a dependency structure matrix (DSM) for
each. We use our sample of the Observer role and the cor-
responding DSM as an example of that work.

For the Observer role we developed a Flower subject that
must notify its observers when it opens. For that we devel-
oped a FlowerObserver that has the flowerOpened(Flow-
erEvent e) method. As an observer we developed a Bee
class that, when notified, will print a message that the bee
is seeing an open flower. The Flower class plays the Flow-
erSubject role, which is the Subject role configured to this
particular scenario. Figure 10 shows the code for both role
and class. The code for the bee, observer interface and the
flower event are not shown for simplicity. The FlowerSubject
role is not really necessary as the Flower could configure the
Subject role directly but it is a good programming practice
to do so.

From that sample we obtained the DSM of Figure 11.
Here we can find that there is no dependency between the
Subject role and the Flower class and that the FlowerSubject
depends only on the Subject role and not vice-versa. That
would hold even if we didn’t declare the FlowerSubject role
and used the direct configuration as discussed before. If
we group the classes into modules as shown in the figure
we can see that the module where the role is included does
not depend on any other module. It shows that the flower
module is dependent from the role module via the role. It
also shows that the Flower module does not depend on its
concrete observers, as expected from the observer pattern.
The Subject role is therefore independent of its players as

public role FlowerSubject {
plays Subject<FlowerQObserver,FlowerEvent>(
Thing=FlowerObserver,
Event=0pen, Event.notify=flowerOpened) sbj;
}

public class Flower {
plays FlowerSubject flwrSubject;
private boolean opened = false;

public void open(){
opened = true;
fireOpen(new FlowerEvent(this));
}
}

Figure 10: The FlowerSubject role and the Flower
class from our subject role sample.

could be inferred from the use of the subject role in a total
of 3 examples in this paper alone. We may also add that we
also used that same role in a role version of the JHotDraw
Framework®.

6.1.8 Conclusion

From our study there are a few patterns that do not gain
from the use of roles, namely: Builder, Fagade, Iterator,
Mediator, Memento, Strategy and Template Method. These
roles are quite instance specific and the classes built for their
implementation are dedicated and are not reusable outside
that pattern. There are a few patterns that could benefit
from the use of roles like a way to emulate multiple inheri-
tance and to provide a default code implementation to some
operations done in a class inheritance hierarchy. These are
the Abstract Factory and specially Decorator. This is also
valid for the State if states share some common code.

We also found some similar code between instances that
we could not isolate and put into a generic role. This was the
case of patterns that forwarded method calls, like Adapter,
Decorator and Proxy. However the variations were not sup-
ported by roles because they were in the methods return
type and parameters types and number. Arranging support
for such variations would make the role heavily configurable
and the configuration alone would be more complex than to
write the code in the first place.

We developed roles for a total of 10 patterns out of 23,
which is a good outcome, especially because every role has a

lwww.jhotdraw.org

Name
EventType
ObserverType
Subject
FlowerEvent
FlowerObserver
FlowerSubject
Flower
Bee

| N|oO|O|B]|WIN|—

Figure 11: Dependency Structure Matrix for the
Observer role sample.

high reusability factor. We believe that our Subject role, for
example, shall be useful for a large number of Observer in-
stances. There are also additional advantages in some roles,
like a better modularity, in the Factory Method and Proto-
type. Other roles are limited in their actions, like Factory
Method, which addresses a particular variation, but is highly
reusable for that purpose.

6.2 Roles in Frameworks

The next step is to analyze several frameworks in order to
access whether our roles are really reusable and at the same
time find more generic roles to complete our library. Even
though we are in an initial stage of this study some of our
roles have proved to be quite useful, namely Observer and
State, which we already successfully used in the JHotDraw
Framework.

7. RELATED WORK

There are various proposed extensions to the Java lan-
guage, and others, to support roles but none has our re-
naming feature or aims at building a library of roles. Most
are concerned with the dynamic nature of roles. Other ap-
proaches include support for relationships rather than roles.

A well-known approach is the role object pattern [5, 7].
This pattern is very flexible because it allows the addition
and removal of role objects to a so called core object. Encap-
sulation and role hierarchy are supported. This approach,
however, does not account for the static part of roles which
is our main concern.

Object Teams [11] is an extension to Java that uses roles
as first class entities. They also introduce the notion of
team. A team represents a context in which several classes
collaborate to achieve a common goal. Even though roles
are first class entities they are implemented as inner classes
of a team and are not reusable outside that team. Roles are
also limited to be played by a specific class.

EpsilonJ [31] is another java extension that, like Object
Teams, uses aspect technology. In EpsilonJ roles are also
defined as inner classes of a context. Roles are assigned
to an object via a bind directive. EpsilonJ uses a requires
directive that is similar to ours. It also offers a replacing
directive to rename methods names but that is done on an
object by object basis when binding the role to the object.

PowerJava [4] is yet another java extension that supports
roles. In PowerJava roles always belong to a so called institu-
tion. When an object wants to interact with that institution
it must assume one of the roles the institution offers. To ac-
cess specific roles of an object castings are needed. Roles
are written for a particular institution, therefore we cannot
reuse roles between institutions.

Traits [26] offer a way of composing software that are
somewhat similar to Mixins [6]. A trait is the primitive
unit of code reuse, like roles in our approach, which means
that only traits can be used to compose classes. Traits can
also be used to compose other traits. Furthermore a class
composed with traits can be seen either as a flat collection
of methods or as a being composed by traits. The flat prop-
erty of classes in traits means that the code inside the trait
can be seen as the code inside the class, for example, a super
reference inside the trait code refers to the superclass of the
class that uses the trait. In our approach we can also see a
class as simply a set of methods, forgetting that it plays a
role, but we have not this flat property, as a super reference

in a role refers to the superrole.

Like our approach traits provide methods for the class and
may require the class to provide some methods. A significant
difference between our approach and traits is that we allow
roles to have state and traits aren’t allowed to have state.
The trait’s solution for the Container role would have to rely
on the class to provide the storage for the elements. In traits
we can provide aliases for methods, similar to our renaming
mechanism, but it is done on a method by method basis,
while our renaming strategy enables multiple renaming. We
can also rename methods called by the role, while in traits
we can only alias methods from the role itself.

The remainder of this section is dedicated to approaches
that deal directly with relationships rather than roles.

In [23] authors use Scala as a programming language to
develop a library to describe roles and relationships. Traits
are used to insert state and behavior in objects that partic-
ipate in a relationship.

Neslson et al. [17] builds a library to support roles and
relationships but using the Java language. They use tuples
has the main construct. Relationships are implemented as
a mutable set of tuples.

Pearce and Noble [21] use aspect technology to build a
library of aspects that support relationships. The approach
has the advantage to place the relationship code outside the
participants and offers the possibility to dynamically add
participants.

The C# language gets the NOIAI class library for repre-
senting relationships in [19]. Role access is similar to field
access, much like our approach. But to a given object we
access not the role it plays but the role of the other end of
the association. To access the employer of the worker john
we must use the john.employer syntax. In our approach it
would be john.getEmployer() which we believe is more nat-
ural.

8. CONCLUSION

For roles to reach mainstream languages developers must
have strong reasons to use them. We believe that a library
of reusable roles is a good starting point in capturing the
developers’ attention. This is achievable only if roles can be
manipulated like any other module in software. To reach
this goal we presented a set of guidelines that role support
must follow to allow the creation of such a library.

We presented a Java extension, JavaStage, which follows
these guidelines and discussed how it could be used to de-
velop a library or roles. Our work with the GoF Design
patterns showed that JavaStage has a great potential for
developing reusable roles and that it is possible to develop
useful and fully reusable roles.

9. ACKNOWLEDGEMENTS

We would like to thank our shepherd for the useful com-
ments and guidance. We also want to thank the reviewers
in the writers’ workshop for their valuable insights and sug-
gestions.

10. REFERENCES

[1] A. Albano, G. Ghelli, and R. Orsini. Fibonacci: a
programming language for object databases. The
VLDB Journal, 4:403-444, July 1995.

[2] C. W. Bachman. The role data model approach to
data structures. In ICOD’80, pages 1-18, 1980.

[3] C. W. Bachman and M. Daya. The role concept in
data models. In Proceedings of the third international
conference on Very large data bases - Volume 3, VLDB
1977, pages 464-476. VLDB Endowment, 1977.

[4] M. Baldoni, U. Studi, and T. Italy. Interaction
between objects in powerjava. Journal of Object
Technology, 6:7-12, 2007.

[5] D. Baumer, D. Riehle, W. Siberski, and M. Wulf. Role
object. Pattern Language of Program Design 4, pages
15-32, 2000.

[6] G. Bracha and W. Cook. Mixin-based inheritance. In
Proceedings of the FEuropean conference on
object-oriented programming on Object-oriented
programming systems, languages, and applications,
OOPSLA/ECOOP 90, pages 303-311, New York,
NY, USA, 1990. ACM.

[7] M. Biichi and W. Weck. Generic wrappers. In
Proceedings of the 14th European Conference on
Object-Oriented Programming, ECOOP ’00, pages
201-225, London, UK, 2000. Springer-Verlag.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[9] K. B. Graversen. The nature of roles—A tazonomic
analysis of roles as a language construct. PhD thesis,
IT University of Copenhagen, Denmark, 2006.

[10] J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. In Proceedings of
the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’02, pages 161-173, New York,
NY, USA, 2002. ACM.

[11] S. Herrmann. Programming with Roles in
ObjectTeams/Java. 2005.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of aspect;j.
pages 327-353. Springer-Verlag, 2001.

[13] G. Kniesel. Objects don’t migrate! — perspectives on
objects with roles. Technical report IAI-TR-96-11,
ISSN 0944-8535, CS Dept. III, University of Bonn,
Germany, nov 1996.

[14] B. B. Kristensen. Object-oriented modeling with roles.
In Proceedings of the 2nd International Conference on
Object-Oriented Information Systems, pages 57-71.
Springer-Verlag, 1995.

[15] B. B. Kristensen. Architectural abstractions and
language mechanisms. In Proceedings of the Third
Asia-Pacific Software Engineering Conference,
APSEC 96, pages 288—, Washington, DC, USA, 1996.
IEEE Computer Society.

[16] B. B. Kristensen and K. Osterbye. Roles: conceptual
abstraction theory and practical language issues.
Theor. Pract. Object Syst., 2:143-160, December 1996.

[17] S. Nelson, J. Noble, and D. J. Pearce. Implementing
first-class relationships in java. 2008.

[18] E. Odberg. Category classes: flexible classification and
evolution in object-oriented databases. In Proceedings
of the 6th international conference on Advanced
information systems engineering, CAiSE 94, pages

20]

(21]

406—420, Secaucus, NJ, USA, 1994. Springer-Verlag
New York, Inc.

K. Osterbye. Design of a class library for association
relationships. In Proceedings of the 2007 Symposium
on Library-Centric Software Design, LCSD 07, pages
67-75, New York, NY, USA, 2007. ACM.

D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15:1053-1058, 1972.

D. J. Pearce and J. Noble. Relationship aspects. In
Proceedings of the 5th international conference on
Aspect-oriented software development, AOSD ’06,
pages 75-86, New York, NY, USA, 2006. ACM.

B. Pernici. Objects with roles. In Proceedings of the
ACM SIGOIS and IEEE CS TC-OA conference on
Office information systems, COCS ’90, pages 205-215,
New York, NY, USA, 1990. ACM.

M. Pradel. Explicit relations with roles - a library
approach. Workshop on Relationships and
Associations in Object-Oriented Languages (RAOOL)
at OOPSLA °08, 2008.

T. Reenskaug, P. Wold, and O. A. Lehne. Working

with objects - the OOram software engineering method.

Manning, 1996.

D. Riehle. Framework Design: A Role Modeling
Approach. PhD thesis, ETH Ziirich, Ziirich,
Switzerland, 2000.

(26]

27]

(32]

33]

N. Schérli, S. Ducasse, O. Nierstrasz, and A. P. Black.
Traits: Composable units of behaviour. Lecture Notes
in Computer Science, 2743:248-274, 2003.

P. Sousa, A. R. Silva, A. R. Silva, and J. A. Marques.
Object identifiers and identity: a naming issue. In In
International Workshop on Object Orientation in.
IEEE Press, 1995.

J. Sowa. Conceptual Structures: Information
Processing in Mind and Machine. Addison-Wesley,
1984.

F. Steimann. On the representation of roles in
object-oriented and conceptual modelling. Data
Knowl. Eng., 35:83-106, October 2000.

F. Steimann. Role = interface: a merger of concepts.
Journal of ObjectOriented Programming, 14(4):23-32,
2001.

T. Tamai, N. Ubayashi, and R. Ichiyama. Software
engineering for multi-agent systems v. chapter Objects
as Actors Assuming Roles in the Environment, pages
185—-203. Springer-Verlag, Berlin, Heidelberg, 2007.

P. Tarr, H. Ossher, W. Harrison, S. M. Sutton, and Jr.
N degrees of separation: Multi-dimensional separation
of concerns. pages 107-119, 1999.

E. Truyen. Dynamic and context-sensitive composition
in distributed systems. PhD thesis, Department of
Computer Science, K.U.Leuven, Leuven, Belgium,
November 2004.

