
A Pattern System for Tracing Architectural Concerns

Mehdi Mirakhorli
DePaul University, School of Computing

Chicago, IL 60604, USA
mehdi@cs.depaul.edu

Jane Cleland-Huang
DePaul University, School of Computing

Chicago, IL 60604, USA
jhuang@cs.depaul.edu

ABSTRACT
A software architecture is carefully designed to satisfy the
quality concerns of its stakeholders, and as such, represents
a systematic and intricately balanced set of design decisions
which deliver required qualities such as performance, reli-
ability, and safety. In practice, architectural degradation
tends to occur over the lifetime of the software system,
as developers make ongoing and incremental maintenance
changes to the system without knowledge of its underlying
design decisions. Fortunately, this problem can be alleviated
by establishing traceability between concrete elements in the
architecture and their associated design decisions, and then
using these traceability links to keep developers informed
of relevant architectural tactics, styles, and design patterns
throughout the development process. This paper focuses on
the task of creating and using such traceability links. We
present six trace creation patterns describing techniques and
supporting structures for creating architecturally significant
traceability links, and two usage patterns describing tech-
niques for using the created links to help preserve quali-
ties in the architectural design. The patterns described in
this paper emerged from our experiences and observations
of tracing architectural concerns in safety critical systems.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns

General Terms
Documentation,Design.

Keywords
Architecture, traceability, tactics, patterns

1. INTRODUCTION
The architectures of complex software systems are de-

signed and implemented to satisfy a wide variety of compet-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writers’
workshop at the 18th Conference on Pattern Languages of Programs(PLoP).
PLoP ’11, October 21-23, Portland, Oregon, USA.
Copyright 2011 ACM 978-1-4503-1283-7 .

ing goals related to qualities such as reliability, dependabil-
ity, safety, security, performance, and usability [1]. These
quality goals are realized through a series of carefully evalu-
ated architectural decisions [24, 4, 13] which work together
to shape the structure, behavior, properties, processes, and
governance of the delivered solution [28].

Unfortunately, despite significant efforts that go into de-
livering a high quality architectural solution, its quality can
be slowly eroded by ongoing maintenance activities which
are inevitably undertaken to correct faults, improve perfor-
mance or other quality concerns, and to adapt the system in
response to changing requirements [38, 22]. Even seemingly
innocuous changes made to design or code, can often inad-
vertently lead to degradation of architectural qualities [13,
16]. Such degradation can be partially prevented by making
design decisions visible to software engineers so that as they
perform maintenance activities they are fully informed of the
relevant underlying design patterns, tactics, and constraints
[3]. This requires the use of traceability links to establish
relationships between design decisions and architectural el-
ements in visual models or implemented code. However,
individual architectural decisions are often cross-cutting in
nature and therefore impact numerous architectural compo-
nents, exhibit complex interdependencies, and contribute to
satisfying multiple quality goals [25, 34, 10]. This introduces
a dilemma. On one hand it can be difficult and costly to
trace quality concerns into the architectural design and the
end result may involve creating and maintaining an almost
impossible number of traceability links. On the other hand,
failing to trace architectural concerns, leaves the system vul-
nerable to problems such as architectural degradation.

To address these problems we present a set of traceabil-
ity patterns, each of which captures a reusable solution for
creating and using traceability links. In software engineer-
ing, patterns are a relatively popular concept for capturing
existing, proven practices and solutions in software develop-
ment. They support various software engineering tasks by
providing solutions for common occurring problems within a
clearly defined context. The notion of patterns first emerged
with the seminal work on design patterns[17], and has since
been extended into different areas of software engineering.
In the context of software system traceability, a pattern
refers to a general solution that can be applied to a common,
recurring problem related to creating and using traceability
links in support of various tasks such as architecture design
reasoning, and change impact analysis.

In the pattern system presented in this paper, traceabil-
ity patterns are categorized according to whether they de-



Build-a-tTIM

Load bearing 

walls

Map to Proxy 
Panoramic View

Multi-grained 

Traces

Visualize Intent

Tactic-in-the-

middle

Displays

Creates 

mapping 

points

Preserves

Enriches 

Notification

Enables 

Multiple 

Traces

Creates 

mapping 

points
Documents 

Reusable 

Traceability 

knowledge

Active Plumbline
Legend:

Trace 

creation 

pattern

Trace 

Usage

pattern

Defines 

Tactic’s 

Roles

Enables 

Multiple 

Traces

Preserves

Refines 

Links

Figure 1: Pattern System: Traceability Patterns and their relationships

scribe trace creation or trace usage. Trace creation patterns
present solutions for establishing traceability links between
quality goals and related architectural concerns, while trace
usage patterns present techniques for utilizing the created
links to support specific architectural tasks. All of the pat-
terns are designed for tracing architecturally significant re-
quirements that are satisfied through one or more architec-
tural decision. Although such decisions may include the use
of architectural styles, frameworks, design patterns, or tac-
tics, we use the term tactic to refer to all of them throughout
the remainder of the paper.

2. TRACEABILITY PATTERNS
In this section we provide a brief overview of the eight pat-

terns presented in this paper. There are six different trace
creation patterns which are explained further in section 4,
and two different trace usage patterns which are explained in
section 5. Trace creation patterns are designed to minimize
the cost and effort of creating and maintaining traceability
links while maximizing their potential benefits. Trace usage
patterns provide solutions for utilizing the created traceabil-
ity links to support activities such as change impact analysis,
architectural knowledge sharing and software program com-
prehension, all of which provide support for architectural
preservation. The patterns are as follows.

Tactic-in-the-Middle: This pattern describes a tactic-
centric approach in which all traces are centered around a
tactic. Pre-tactic traces extend back to requirements and
quality goals, while post-tactic traces extend forward to the
architectural elements in which the tactic is realized. Placing
an architectural decision, such as a tactic in the center of the
traceability graph reduces complexity and groups similar-
links together.

Load Bearing Walls: This pattern describes a solution
in which a tactic (or other architectural decision) is modeled
as a traceability information model (TIM). The key roles,
i.e. the load bearing walls, of the tactic are captured and
modeled in the TIM. The TIM is then used as a reference
model by project stakeholders as they establish semantically
typed traceability links between the tactic and related ar-
chitectural elements.

Map to Proxy: This pattern describes how to create a
proxy for each traceable element in the TIM, so that trace-
ability links can be created by simply mapping concrete ar-
chitectural elements to a proxy. The use of trace proxies has
two primary benefits. First, it transforms the more complex
task of traceability to a simple mapping task, and secondly,
it enables re-use of the TIM’s previously defined traceability
links, thereby reducing the number of project-specific traces
which need to be created and maintained.

Panoramic View: This pattern describes how to estab-
lish traceability links across different architectural and code
views of the system. This is necessary when a given tactic
is visible across multiple views. The solution to this prob-
lem is to allow a single proxy in the TIM to be mapped to
heterogeneous elements, across multiple views.

Multi-grained Traces: This pattern describes how to
explicitly differentiate between fine and coarse-grained trace-
ability links in the TIM, so that trace creators can generate
traces at either level. This is useful as there is a definite
trade-off in the costs and benefits of creating coarse versus
fine-grained links.

Build-a-tTIM: Applying the first three patterns of Tactic-
in-the-Middle, Load Bearing Walls, and Map to Proxy for a
specific tactic or a group of related tactics, results in what we
refer to as a Tactic Traceability Information Model (tTIM).
This Build-a-tTIM pattern describes the process for creat-



ing re-usable tTIMs, which can represent significant cost and
effort savings when the tTIMs are reused in future projects.

Active Plumbline: Although many organizations in-
vest significant cost and effort into the traceability process,
the traceability links are not always used effectively during
maintenance activities. As a result, a Software Engineer
may modify a component without fully understanding the
underlying architectural decisions. This pattern describes
how traceability links can be used to register and moni-
tor architecturally significant elements, so that maintainers
working on registered components can be kept informed of
underlying architectural decisions.

Visualize Intent: Software architectures often include
very complex interdependencies and trade-offs, and are de-
veloped according to an extensive set of carefully considered
design decisions. These complexities are difficult to ade-
quately portray in a text-only format. This pattern there-
fore describes how tTIMs can be used to effectively visualize
the underlying architectural decisions.

These eight patterns interact with each other to form the
pattern system depicted in Figure 1. The interrelationships
between patterns are discussed in greater depth throughout
the remainder of this paper.

3. GUIDE TO NOTATION
We use two different kinds of diagram to describe the pat-

terns and to illustrate them with concrete examples. Pat-
terns are described using an informal Line-and-Box draw-
ing style, while the concrete examples are presented using a
UML profile which defines the design elements, implemen-
tation classes, variables and other artifacts. This section
describes these two notations.

Pattern descriptions: Each pattern is presented using
a simple box and line notation in which boxes and their tex-
tual labels represent traceable elements while lines represent
traceability links. Traceable elements can include tactics,
qualities, goals, design, or implementation elements. De-
sign rationales associated with each architectural tactic are
depicted using the standard document notation. Proxy ele-
ments, used in the Map to Proxy pattern, are depicted with
dashed borders.

Figure 2: Schematic notation to present patterns

Concrete examples: Concrete examples of each tactic
traceability pattern are presented using a customized UML
profile in which each type of traceable element is represented
with its own symbol. The following legend describes this
profile.

Elements such as Requirements, Business Goals, Ratio-
nales, and Tactics are used in the same way across all the
examples; however Roles and Parameters, which represent
the internal structure of a tactic, use a variety of different
stereotypes. Some of these stereotypes are unique to a given
tactic, while others are shared across multiple tactics.

Figure 3: UML-Based notation used to illustrate
each pattern

The profile includes two types of connectors, the first type
is depicted as a solid line, and represents a relationship in-
ternal to the tactic, while the second type is depicted as a
dashed line, and represents an external association. Both
types of links can be stereotyped to represent the purpose
of the link. For example Maps indicates that an external
element is mapped to an element of the TIM, while Helps
indicates that a tactic contributes towards satisfying a goal.

4. TRACE CREATION PATTERNS
In this section we provide a more detailed explanation for

each of the six trace creation patterns. Each of the patterns
is illustrated using an example taken from the NASA Crew
Exploration system (CEV) from NASA’s Constellation Sys-
tem of Systems. This system is an exploratory vehicle de-
signed to provide round trip transportation for human crews
between Earth and Space. The CEV is designed to coordi-
nate with transfer stages, landing vehicles, and surface ex-
ploration systems in order to support manned voyages to the
Moon and beyond. Requirements, architectural decisions,
and architectural models of CEV were obtained from pub-
licly available documentation manuals [20], [37]. Through-
out this paper we describe all of the patterns with respect
to the following architectural decision to use semantic based
scheduling with task sequencing in the CEV System.

CEV Tactic1: Semantic Based Scheduling with Task se-
quencing.
CEV Quality Goals: CEV Performance, CEV Reliability.
CEV Requirement1: When the CEV is performing auto-
mated maneuvers during any phase of the mission, if it ex-
periences unexpected and significant loss of communication
with Earth, it will return the crew to Earth.
CEV Rationale1: This tactic guarantees the real-time ac-
complishment of both nominal and trajectory missions, task
by task based on mission phases and situations.

4.1 Tactic-in-the-Middle
Context: Any highly dependable, safety critical system

which incorporates requirements management, architectural
reasoning, and design maintenance.

Problem Statement: Most safety critical domains man-
date traceability to support activities such as compliance
verification, requirements validation, and impact analysis [8]
[2] [5] [34]. It is especially important to understand the way



Figure 4: Structure of Tactic-in-the-Middle Pattern

Figure 5: “Semantic Scheduling Decision‘’ imple-
mented as Tactic-in-the-Middle

in which critical quality concerns such as reliability, per-
formance, and security, are realized in the design so that
these decisions can be carefully maintained throughout the
lifetime of the system [1] [29]. Unfortunately, tracing qual-
ity concerns into architectural designs or code, can be quite
challenging, primarily because many quality concerns im-
pact the architecture in broad and diverse ways, and there-
fore result in a proliferation of traceability links [9]. Fur-
thermore, rationales of trace relationships are often lost, in-
hibiting future reasoning and comprehension of the system
[31] [33].

Solution: Quality requirements are primarily satisfied
through a series of architectural decisions which lead to the
implementation of specific frameworks, design patterns, or
tactics (referred to collectively as tactics in the remainder of
this pattern). Traceability links should therefore be estab-
lished between quality requirements and architectural ele-
ments via these tactics. As depicted in Figure 4, this requires
establishing pre-tactic traces between tactics and quality re-
quirements, and post-tactic traces between tactics and ar-
chitectural decisions.

Example: Figure 5 depicts an example from the NASA
Crew Exploration system showing how traceability links are
established between the semantic scheduling tactic and per-
formance and availability goals, the rationale behind this
decision, and an associated quality requirement. Further-
more, it shows how downstream traceability links are estab-
lished to scheduled tasks including the Flight Dynamic Task
List Selector and the Avionic Vehicle Executive. The tac-
tic is also traced to a previously documented rationale and
requirement.

Related Patterns: Tactic-in-the-Middle is often used in
conjunction with Load Bearing Walls. Load Bearing Walls
allows an analyst to semantically type the traceability links
generated by the Tactic-in-the-Middle pattern.

4.2 Load Bearing Walls
Context: Traceability links are created between archi-

tectural elements (visible in either code or design views)and
quality goals and constraints. The semantics of each link
are either defined manually by the user at the time of trace
creation, or else are inferred through examining the source
and target of each trace link.

Problem Statement: In practice, users tend to create
trace links without explicitly defining the semantics of the
link [36] [6]. This makes it difficult for trace links to be used
in an automated way, and also reduces their understandabil-
ity. This is especially true in tracing architectural concerns
where a single quality concern may trace to multiple archi-
tectural elements, and a single architectural element may
trace back to multiple quality concerns [9]. The lack of se-
mantic typing reduces the usefulness of such links [26][34].

Solution: Identify the “Trace Link Types‘’ of each tactic.
Create a Traceability Information Model (TIM) that clearly
depicts key roles of a tactic which can be traced into the
design and implementation. Also identify the set of external
links which connect the tactic to its environment. External
links are semantically typed according to the target of the
link, for example a link from the tactic to a related qual-
ity goal might be semantically typed as helps, while a link
from a rationale to the tactic might be semantically typed
as justifies. The TIM is used to guide the creation of trace
links and to provide information about the relationships be-
tween various architectural components. The structure of
this pattern is depicted in Figure 6.

Figure 6: Structure of Load Bearing Walls

Example: Figure 7(a) shows how the semantically based
scheduling tactic, previously depicted in Figure 5 as a black-
box tactic, is decomposed into specific roles and attributes,
and then augmented to show semantically typed traceability
links. A TIM is informational only. It shows that the key
roles in the tactic are scheduled processes and the scheduler.
The trace user can utilize this information to make informed
traceability decisions.

Related Patterns: Load Bearing Walls requires use
of the Tactic-in-the-Middle pattern. It adds semantics to
the trace links. Map to Proxy allows an analyst to create
proxies for each of the key roles identified in Load Bear-
ing Walls, thereby transforming the tracing task to a sim-
pler mapping task. This pattern can be refined by Multi-
grained Traces to differentiate between coarse-grained and
fine-grained traceability links. Finally, Active Plumbline can
be used in conjunction with Load Bearing Walls to keep de-
velopers informed of underlying architectural decisions dur-
ing the maintenance process.



(a) Constructing a TIM to define the link semantics
and guide trace creation

(b) Final traceability links after using the pattern

Figure 7: Example Implementation of Load Bearing
Walls

4.3 Map to Proxy
Context: A project manager has determined that trace-

ability links must be established between quality goals and
architectural elements. Typically, such links are created at
coarse-grained levels and stored in a trace matrix [14]. Even
when a traceability information model is present, the trace
creator must make a series of decisions to determine the
source and target artifacts for each link, and must also doc-
ument the meaning of each link [18] [6] [23] [36]. Additional
information such as rationales, trade-offs, and decisions etc
must be documented separately and then integrated into the
trace matrix [32] [33].

Problem Statement: The effort needed to plan, create,
and maintain traceability links can serve as a prohibitive
implementation barrier [23] [8]. As a result, trace users of-
ten create a very minimal set of untyped traceability links,
which provide only limited benefits for ongoing software en-
gineering activities [36].

Figure 8: Structure of Map to Proxy

Solution: Instead of using a tactic’s TIM (described in
the Load Bearing Walls pattern) for informational purposes
only, instantiate the TIM and re-use its internal and ex-

Figure 9: Architectural elements mapped to proxies
in the Semantic based Scheduling tactic

ternal links as active traceability links within the current
project. Furthermore, for each role defined as a load bear-
ing wall, create a proxy element in the TIM to represent the
concrete architectural element that actually satisfies that
role. Replace the tracing task with a simple mapping task in
which the project stakeholder establishes a traceability link
by mapping an architectural element to a relevant proxy in
the TIM. The primary benefits of this approach are simplic-
ity, and effort reduction. Once an architectural element is
mapped to a proxy, it inherits all of the semantically typed
traceability links defined for that tactic, meaning that fewer
project specific links need to be created and maintained.

Example: Figure 9 depicts two proxies modeled for the
semantic based scheduling TIM. These proxies are for trac-
ing scheduled processes and for schedulers. The figure also
depicts actual architectural elements mapped to the prox-
ies. For example, the Flight Dynamic task list selector and
Avionic Vehicle Executive components are mapped to the
scheduler proxy while the Navigation component is mapped
to the Scheduled Process (SP) Proxy. In each of these cases,
establishing the mapping delivers traceability all the way
from architectural elements, via the tactic, to quality goals.

Related Patterns: Map to Proxy requires the use of
Load Bearing Walls and creates mapping points for the un-
derlying tactic’s key roles. Panoramic View is often used
with Map to Proxy to allow a single proxy to map to ele-
ments in multiple architectural views. Multi-grained Traces
can be used on top of Map to Proxy to facilitate the creation
of fine grained traces.

4.4 Panoramic View
Context: Architectural decisions are visible across mul-

tiple views including both architectural and code views. For
example, a particular decision might be traced to a single
component in the decomposition view, and also to a set of
concurrent threads in a runtime view. Almost every archi-
tectural decision needs to be mapped to both code and one
or more architectural design views.



Figure 10: Structure of Panoramic View

Figure 11: Mapping the Scheduled Process role to
a deployment and code view

Problem Statement: Architectural documentation is
notoriously incomplete. Although practitioners may follow
a standard documentation approach such as Kruchten’s 4+1
Views [27], actual architectural decisions are inconsistently
documented. Some decisions do not appear explicitly in
any architectural views, while others appear across multiple
architectural diagrams. A single element in a tactic often
needs to be traced to multiple components [9] [31].

Solution: The Panoramic View pattern allows an archi-
tectural decision (i.e. the entire tactic, a role in the tactic,
or a proxy for a role) to be traced to multiple architectural
views. This is depicted in Figure 10. A special case occurs
when the architectural decision represents tacit knowledge,
or is so dispersed across the architectural design and the
code, that it is not possible to physically map the role to
any specific components or views. In this case traceability
is considered implicit.

Example: Figure 11 provides an example in which the
Scheduled Process component from the semantically based
scheduling tactic is traced to both the runtime component
view in the architectural documentation, and also the code
view. It should be noted that these maps do not establish
traceability directly between associated architectural and
code views. In other words, no explicit traces are established
between the navigation component in the runtime view and
the navigation code. However, this can be accomplished
either implicitly through naming conventions, through an
additional trace matrix, or through refining the link types
in each of the individual traces. Furthermore, most architec-
tural modeling tools will automatically track cases in which
multiple elements appear in multiple views.

Related Patterns: Panoramic View is often used with
Map to Proxy, as it allows a single proxy to map to ele-
ments in multiple architectural views. Panoramic View can
also be used with Tactic-in-the-Middle to trace the tactic to
elements in multiple architectural views.

4.5 Multi-grained Traces
Context: There is a well known trade-off between the

costs and benefits of tracing at coarse versus fine-grained lev-
els of granularity [21] [15] [11]. Coarse-grained traceability
links are easier to create and maintain, but provide less accu-
racy when the traceability link is actually used. Conversely,
fine-grained links require greater effort to create and main-
tain, but provide greater accuracy in pinpointing impacted
elements. Project stakeholders make traceability decisions
that take these costs and benefits into consideration.

Problem Statement: Trace users often do not under-
stand how to create fine-grained traces to a tactic without
generating a superfluous number of links. As such they tend
to create only high-level untyped links, which are not very
useful for supporting the automation of critical software
engineering tasks such as impact analysis or architecture
preservation.

Solution: Differentiate between the primary roles and
supporting attributes of a tactic and model them in the TIM.
Coarse-grained traces are generally established by tracing
the primary roles of a tactic, while fine-grained links are
established by tracing finer grained elements such as at-
tributes or configuration files. Therefore, clearly differenti-
ate between elements that should be traced in coarse-grained
strategies, versus those additional links which should be
traced if finer-grained traces are desired. Make these de-
cisions visible to trace users so that they can choose to cre-
ate either coarse-grained or multi-grained traceability links.
The structure of this pattern is depicted in Figure 12.

Figure 12: Structure of Multi-grained Traces

Example: Figure 13 shows how the traceable elements
(depicted as proxies) are divided into coarse and fine-grained
trace targets. The scheduler is configured by a configura-
tion file and contextualized according to the current oper-
ating mode. Therefore in this example, the user has chosen
to trace at the coarse-grained level to the Scheduler and
Scheduled Processes proxies and trace at the fine-grained to
the operating modes and priorities proxies. Coarse-grained
trace proxies are assigned darker borders than fine-grained
ones.

Related Patterns: Multi-grained Traces can be used
with either Tactic-in-the-Middle, Map to Proxy or Load Bear-
ing Walls to support traceability at different levels of gran-
ularity.



Figure 14: Tactic Traceability Information Model for Heartbeat Tactic

Figure 13: Semantic based Scheduling tactic show-
ing coarse-grained traces with fine-grained proxies
left unmapped

4.6 Build-a-tTIM
Context: Architectural frameworks, styles, design pat-

terns, and tactics tend to be reused in similar ways across
multiple projects [19]. This is particularly true within a sin-
gle organization, in which similar architectural decisions are
often made across families of solutions.

Problem Statement: Tracing architectural concerns us-
ing tactics requires significant planning. The use of patterns

such as Tactic-in-the-Middle, Map to Proxy, Load Bearing
Walls, and Multi-grained Traces requires skill and domain
knowledge. Project stakeholders may lack these skills or
may be unwilling or unable to invest the necessary effort to
implement them in an individual project.

Solution: Create a set of reusable TIMs for commonly
adopted tactics, store them in a reusable traceability knowl-
edge base, and reuse them across projects. We refer to
reusable tactic-specific TIMs as Tactic Traceability Infor-
mation Models (tTIMs) [35].

Example: The heart beat tTIM shown in Figure14 pro-
vides illustrations of reusable tTIMs. A tTIM can be re-used
as-is and mapped to specific architectural components found
in the particular application in which it is applied.

Related Patterns: Build-a-tTIM is always used on top
of Load Bearing Walls, Map to Proxy, and Multi-grained
Traces patterns in order to create a reusable and instantiable
traceability information model for a particular tactic.

5. TRACE USAGE PATTERNS
In this section we describe two additional patterns which

utilize the created traces to support tasks related to archi-
tectural preservation.

5.1 Active Plumbline
Context: A software architecture has been carefully de-

signed to satisfy a set of stakeholder quality goals. The
architecture incorporates a varied set of architectural de-
cisions, some of which are more visible to developers than
others.

Problem Statement: During the long-term maintenance
of a software system, it is easy for architectural quality to
gradually erode as changes are applied to the design and



code [38, 25, 4, 13]. This problem is exacerbated when de-
velopers making the changes are unaware [30, 12, 3]of un-
derlying architectural decisions and their rationales. While
some of these decisions, such as the use of layers, may be
clearly evident in the design, other decisions may be quite
obscure. Unless developers are kept informed of underly-
ing design decisions, they may inadvertently make a change
which degrades the overall quality of the system. Further-
more, although many projects document architectural de-
cisions in an informal way, this documentation is typically
only available if the developer pro-actively searches for it
[33].

Solution: Register all critical architectural elements with
a central coordinator, monitor those elements for modifica-
tions, and generate informational messages to keep the main-
tainer informed of underlying architectural decisions [35, 7,
9]. This pattern is typically implemented through automat-
ically registering any architectural elements that are traced
to elements in a tactic. The pattern is constrained by the
degree of automated support provided for event monitoring
in the modeling or development environment. The sequence
of these actions is depicted in Figure 15.

Example: Consider the case of the semantic based sched-
uler tactic. All of the traced components are registered with
the central observer. If a human maintainer modifies the
Phase Mode - Flight task list he or she will be notified that
this list configures the scheduler, which in turn schedules the
navigation, control, targeting, and guidance systems.

As a second example, Figure 14 shows the tTIM for the
Heartbeat tactic used in a Lunar Robot application, and
Figure 16 shows a snapshot of design models in which the
heart-beat emitter role is mapped to the Obstacle Detection
component, the heart-beat monitor to the Path Planning 1
component, and the fault monitor to the Navigation Health
Management component. As a byproduct of the mappings,
each of these three components are registered with the cen-
tral coordinator. When the developer makes changes to the
component named “Obstacle Detection” within the Enter-
prise Architect’s IDE. The component is immediately anno-
tated to indicate it is load-bearing. All underlying architec-
tural decisions are then displayed.

Related Patterns: Active Plumbline can be used with
Tactic-in-the-Middle and Load Bearing Walls, to help main-
tain a tactic in the architectural design by monitoring the
tactic’s critical elements. Visualize Intent can be used with
Active Plumbline to visualize warnings and notifications dis-
played to the maintainer.

5.2 Visualize Intent
Context: Architectural decisions are often far-reaching

and exhibit numerous trade-offs and dependencies. Certain
load-bearing elements therefore contribute towards realizing
multiple architectural decisions. Such decisions need to be
available to developers as they construct and maintain soft-
ware systems.

Problem Statement: Most existing techniques docu-
ment and present architectural decisions in a textual format,
creating a disconnect between the decision and its implemen-
tation in a design. Textual lists of architectural decisions
often fail to fully communicate the complex interactions be-
tween decisions, and also fail to display the full impact of
the decision upon various elements of the architectural de-
sign [30, 12, 3].

Figure 15: Monitoring Critical Architectural Ele-
ment during Maintenance

Solution: Use the infrastructure of the tTIMs and their
traces to concrete architectural elements to visualize archi-
tectural decisions [35]. Present relevant architectural deci-
sions to developers using the visual format of the developed
tTIM. Map this onto the actual architectural components.

Example: Figure 16 not only depicts the way critical ar-
chitectural elements are monitored, but also illustrates the
visualization of the heart-beat tactic during a change event.
In the main screen of the Enterprise Architect IDE, when
the user modifies the obstacle detection component, a “load
bearing”symbol (i.e. a pyramid) is displayed on the modified
component, and the underlying heart-beat tactic is visual-
ized in a special panel on the right-hand side of the screen.
Both sections of the screen are color coordinated to make it
easier for the user to understand the underlying role of each
architectural component.

Related Patterns: Visualize Intent can be used with
Tactic-in-the-Middle and Active Plumbline to visualize in-
formation presented to the maintainer in order to keep him
or her informed of underlying design intent.

6. CONCLUSIONS
This paper has a presented a pattern system for tracing

architectural concerns. Each of the patterns was discov-
ered through an extensive study of architectural decisions
in safety critical systems, combined with our own experi-
ences of establishing and utilizing traceability links in such
systems.

The trace creation patterns describe reusable solutions for
establishing and maintaining traceability between quality
goals, tactics, and concrete architectural elements. These
patterns are designed to improve the quality of the estab-
lished traceability links in order to maximize their benefits,
and to minimize the effort needed to create those links. As
described in the “related patterns” sections of each pattern
description, a trace user can opt to use only a single pat-
tern, such as Tactic-in-the-Middle or Multi-grained Traces,
or else could utilize a set of interdependent patterns in or-
der to establish a more sophisticated traceability infrastruc-



Figure 16: Visualizing architectural tactics within Enterprise Architect

ture. All of these individual trace creation patterns provide
useful guidance for improving the effectiveness of the trace-
ability effort; however longer term benefits can be realized
if traceability knowledge is documented and reused through
implementing the Build-a-tTIM pattern. Our current work
in this area involves creating and validating a generic library
of tTIMs for commonly used tactics [35].

The trace usage patterns focus upon architectural preser-
vation during long-term maintenance activities. They utilize
the created traceability links to support critical activities
such as impact analysis, compliance verification, and keep-
ing maintainers fully informed of underlying architectural
concerns. This paper documents the two trace usage pat-
terns we have found to be most effective; however in future
work we plan to identify and document a more extensive set
of usage patterns.

7. ACKNOWLEDGMENTS
The work described in this paper is partially funded by the

National Science Foundation under grants CCF-0447594 and
CCF-0810924. We thank Bob Hanmer for initially challeng-
ing us to document our work on architectural traceability in
the form of patterns. We also thank Sam Suppakul, who, in
his role as shepherd to this paper, provided extensive and in-
sightful comments and suggestions, which helped us to more
fully understand our patterns and to document them more
effectively.

8. REFERENCES
[1] L. Bass, P. Clements, and R. Kazman. Software

Architecture in Practice. Adison Wesley, 2003.

[2] B. Berenbach, D. Gruseman, and J. Cleland-Huang.
Application of just in time tracing to regulatory codes.
In Proceedings of the Conference on Systems
Engineering Research, 2010.

[3] G. Booch. Draw me a picture. IEEE Software, 28:6–7,
2011.

[4] J. Bosch. Software architecture: The next step. In
EWSA, pages 194–199, 2004.

[5] T. Breaux and A. Antón. Analyzing regulatory rules
for privacy and security requirements. IEEE Trans.
Softw. Eng., 34(1):5–20, 2008.

[6] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi,
and E. Romanova. Best practices for automated
traceability. Computer, 40(6):27–35, 2007.

[7] J. Cleland-Huang, C. K. Chang, and M. J.
Christensen. Event-based traceability for managing
evolutionary change. IEEE Trans. Software Eng.,
29(9):796–810, 2003.

[8] J. Cleland-Huang, M. Czauderna, Adam fand Gibiec,
and J. Emenecker. A machine learning approach for
tracing regulatory codes to product specific
requirements. In ICSE ’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering, pages 155–164, New York, NY, USA,
2010. ACM.

[9] J. Cleland-Huang, W. Marrero, and B. Berenbach.
Goal-centric traceability: Using virtual plumblines to
maintain critical systemic qualities. IEEE Trans.
Software Eng., 34(5):685–699, 2008.

[10] J. Cleland-Huang, R. Settimi, O. B. Khadra,
E. Berezhanskaya, and S. Christina. Goal-centric



traceability for managing non-functional requirements.
In ICSE, pages 362–371, 2005.

[11] J. Cleland-Huang, G. Zemont, and W. Lukasik. A
heterogeneous solution for improving the return on
investment of requirements traceability. In RE, pages
230–239, 2004.

[12] R. C. de Boer, P. Lago, A. Telea, and H. van Vliet.
Ontology-driven visualization of architectural design
decisions. In WICSA/ECSA, pages 51–60, 2009.

[13] D.E.Perry and A.L.Wolf. Foundations for the study of
software architecture. SIGSOFT Software Eng. Notes,
17(4):40–52, 1992.

[14] J. Dick. Design traceability. IEEE Software,
22(6):14–16, 2005.

[15] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher.
Determining the cost-quality trade-off for automated
software traceability. In ASE, pages 360–363, 2005.

[16] S. Eick, T. Graves, A. Karr, J. Marron, and
A. Mockus. Does code decay? assessing the evidence
from change management data. Software Engineering,
IEEE Transactions on, 27(1):1 –12, jan 2001.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[18] O. Gotel and A. Finkelstein. Contribution structures
(requirements artifacts). In RE, pages 100–107, 1995.

[19] R. Hanmer. Patterns for Fault Tolerant Software.
Wiley Series in Software Design Patterns, 2007.

[20] J. Hart, E. King, P. Miotto, and S. Lim. Orion GN&C
Architecture for Increased Spacecraft Automation and
Autonomy Capabilities, August 2008.

[21] C. Ingram and S. Riddle. Cost-benefits of Traceability.
In: Andrea Zisman, Jane Cleland-Huang and Olly
Gotel. Software and Systems Traceability.,
Springer-Verlag., 2011.

[22] C. Izurieta and J. M. Bieman. How software designs
decay: A pilot study of pattern evolution. In ESEM,
pages 449–451, 2007.

[23] A. Z. Jane Cleland-Huang, Olly Gotel. Software and
Systems Traceability. Springer Verlag, 2011.

[24] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In Proceedings of the
5th Working IEEE/IFIP Conference on Software
Architecture, pages 109–120, Washington, DC, USA,
2005. IEEE Computer Society.

[25] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In WICSA, pages

109–120, 2005.

[26] W. Jirapanthong and A. Zisman. Xtraque:
traceability for product line systems. Software and
System Modeling, 8(1):117–144, 2009.

[27] P. Kruchten. The 4+1 view model of architecture.
IEEE Softw., 12:42–50, November 1995.

[28] P. Kruchten. An ontology of architectural design
decisions, 2004.

[29] P. Kruchten, P. Lago, and H. van Vliet. Building up
and reasoning about architectural knowledge. In
QoSA, pages 43–58, 2006.

[30] L. Lee and P. Kruchten. Visualizing software
architectural design decisions. In ECSA, pages
359–362, 2008.

[31] M. Mirakhorli and J. Cleland-Huang. A
decision-centric approach for tracing reliability
concerns in embedded software systems. In
Proceedings of the Workshop on Embedded Software
Reliability (ESR), held at ISSRE10, November 2010.

[32] M. Mirakhorli and J. Cleland-Huang. Tracing
Non-Functional Requirements. In: Andrea Zisman,
Jane Cleland-Huang and Olly Gotel. Software and
Systems Traceability., Springer-Verlag., 2011.

[33] M. Mirakhorli and J. Cleland-Huang. Transforming
trace information in architectural documents into
re-usable and effective traceability links. In
Proceedings of the Sixth Workshop on SHAring and
Reusing architectural Knowledge, May 2011.

[34] M. Mirakhorli and J. Cleland-Huang. Tracing
architectural concerns in high assurance systems
(NIER track). In Proceedings of the 33th International
Conference on Software Engineering, New Ideas and
Emerging Results Track, ICSE, 2011.

[35] M. Mirakorli and J. Cleland-Huang. Using tactic
traceability information models
to reduce the risk of architectural degradation during
system maintenance. In ICSM, 2011.

[36] B. Ramesh and M. Jarke. Toward reference models for
requirements traceability. IEEE Trans. Softw. Eng.,
27:58–93, January 2001.

[37] S. Tamblyn, H. Hinkel, and D. Saley. Crew Exploration
Vehicle (CEV) Reference Guidance, Navigation, and
Control (GN&C) Architecture, February 2007.

[38] J. van Gurp, S. Brinkkemper, and J. Bosch. Design
preservation over subsequent releases of a software
product: a case study of baan erp: Practice articles. J.
Softw. Maint. Evol., 17:277–306, July 2005.


