
1 

 

A pattern for the WS-SecureConversation standard for web services 

Ola Ajaj and Eduardo B. Fernandez 

Department of Computer and Electrical Engineering and Computer Science 

Florida Atlantic University 

777 Glades Road, Boca Raton, Florida 33431-0991 USA 

oajaj@fau.edu, ed@cse.fau.edu 

 

Abstract: 

 

When using web services, the involved parties need to address two main concerns: first, each party needs to 

determine if it can trust the credentials of the other party; and second, how to protect their data and how to provide 

a secure session between the parties. WS-Trust takes care of the first challenge by defining how to establish trust 

between interacting parties, while WS-Security is in charge of the second part by providing message integrity, 

confidentiality, and authentication. However, web services exchange multiple messages that increase the overhead 

of key establishment and decrease performance, which eventually affects business interactions. By defining a shared 

context among the communicating parties for the lifetime of a communications session that combines secure 

communications and trusted relationship, we facilitate the process of communication and increase overall 

performance. This shared context is implemented by the WS- SecureConversation standard, and we present here a 

pattern for it. 

 

 

1. Introduction 
 

Web services interact with users and other web services to conduct business. Those business interactions have 

different degree of complexity and validity depending on their nature. Some interactions exchange a large number of 

messages, which adds complexity and overhead to the message exchanges and thus increase cost. In addition, 

sometimes users and web services are not predefined and known to each other and a trust relationship must be 

established before any interaction can happen between them. Those users also might have different requirements and 

their own policy rules, implementing different security constraints. Addressing all these concerns in one abstract and 

practical solution will facilitate the interaction between web services. This is the motivation behind the WS-

SecureConversation standard.  

 

The Web Services Secure Conversation Standard (WS-SecureConversation) is built on top of the WS-Security, WS-

Trust, and WS-Policy standards to provide secure interaction and data exchange between web services [IBM]. WS-

Security [OASa] describes how to embed existing security mechanisms such as XML Encryption, XML Digital 

Signature, and Security Tokens into SOAP messages to provide message confidentiality, integrity, authentication, 

and non-repudiation. WS-Trust [OASb] is a standard to support the establishment of trust relationships between web 

services. WS-Policy [W3C07] provides specifications that describe the capabilities and constraints of the security 

(and other business) policies on intermediaries (for example, required security tokens, supported encryption 

algorithms, and privacy rules) and how to associate policies with services and end points.  

 
To perform its functions, WS- SecureConversation [OASc] defines mechanisms for establishing and sharing 

Security Context Token (SCTs), and deriving keys from security contexts to authenticate messages between parties. 

This shared context defines who, how, what and for how long each user is able to conduct business. The involved 

parties share these SCTs throughout the lifetime of the communication channel [IBM, OASc]. 

 

Figure 1 shows a pattern diagram describing the relationships between the patterns for some web services standards. 

The diagram shows dependencies between the patterns; for example, WS-Security uses policies defined by WS-

Policy. Our group has written all these patterns except WS-Federation, which is ongoing work [Fer12].   

mailto:oajaj@fau.edu
mailto:ed@cse.fau.edu


2 

 

WS-Federation

WS-Trust

WS-Policy

WS-Secure

Conversation

WS-SecuritySAML
XACML 

Evaluation

XACML 

Policy

XML 

Signature

XML 

Encryption

policy

specification

policy

specification

policy

specification

policy

specification

information

hiding
authentication

authorization

access 

control

assertion 

transport

 
 

Figure 1: Pattern diagram for web services security standards 

 

Web services standards are rather complex and verbose and it is not easy for designers and users to understand their 

key points. Our approach is to express web services security mechanisms and standards as patterns. In this way we 

can verify if an existing product implementing a given security mechanism supports some specific standard [Fer06]. 

Inversely, a product vendor can use the standards to guide the development of a product. By expressing standards as 

patterns, we can compare them and understand them better. For example, we can discover overlapping and 

inconsistent aspects between them. A standard defines a generic architecture and this is a basic feature of any 

pattern; it can then be confirmed as a best practice by looking at products that implement the standard (and 

implicitly the pattern). 

 

Section 2 shows a pattern that describes the WS-SecureConversation standard while section 3 ends the paper with 

some conclusions. Our description is intended for users and designers of business workflow systems that use web 

services.  

 

2. WS- SecureConversation 
 

Intent 

 

This pattern describes a standard to allow security context establishment and use through the lifetime of the 

communication session between web services. This security context is used to provide secure communication 

between web services by extending the mechanisms of WS-Security, WS-Trust, and WS-Policy.  

 



3 

 

Example  

 

The Ajiad travel agency implements several business portals to offer services for tickets, hotel and car rental to its 

customers.  Ajiad needs to keep channels that provide secure and trusted relationships with its partners, and needs to 

be able to determine which travel services to invoke for which customer. Without a well-defined structure, Ajiad 

will not be able to determine if the communication channel is secure or not, if a partner should be trusted or not, or 

to automate the business relationships securely with its partners. This situation may lead to losing a valuable 

business goal of offering integrated travel services.  

 

Context  
 

Distributed applications using web services that need to collaborate with each other to perform business workflows 

using insecure networks, e.g. the Internet. 

 

 

Problem  
 

Before initiating a conversation with people, we need to know with whom we are talking and what do we want to 

talk about. We initiate conversations with different persons, based on our roles and interests. The same is true for 

web services.  

 

The functions of WS-Security which include integrity, confidentiality and authentication of messages are useful for 

simple or one-way messages; but this solution is impractical and could cause a problem in case of the necessity of 

parties to exchange multiple messages [OASa]. If there are multiple message exchanges between service provider 

and consumer, then the overhead of XML signature and XML encryption are significant.  

 

Further, establishing security relationships is fundamental for the interoperation of distributed systems. Applying 

relevant policies is needed to make it clear for the users what is allowed or which conditions apply to the use of web 

services. Without applying relevant policies and trust relationships between the involved parties, web services have 

no means to assure security and interoperability in their integration and may lose their ability to provide service. 

 

The possible solution to the problem of establishing a secure context is constrained by the following forces: 

 

 Securing Context Tokens: While communicating using context tokens, web services exchange multiple 

messages containing sensitive data; we need to provide message protection for this exchange. 

 

 Time Restrictions: Any interactions or means of communications between web services may be restricted 

in time. We should be able to amend, renew, or cancel those interactions properly, as needed. 

 

 Policy: A web service uses policy(ies) to define all the required conditions and constraints that should be 

met before using that web service. We should reference this policy for verification and proper use. 

 

 Overhead: Web services exchange multiple messages that add complexity, increase the overhead of key 

establishment, and decrease performance; we need to keep overhead at a minimum. 

 

 Interoperability: Web services and requesters should interact seamlessly despite differences in domains 

and platforms.  

 

Solution 

 

We define explicitly an artifact that uses a Security Context Token (SCT). The SCT defines what kinds of assertions 

are required to be satisfied by any interaction between the involved web services and encapsulates the claims and 

information sent by the requester in order to obtain the required SCT. Once initiated, this SCT can be used to 

conduct secure communications. All entities involved share a key that has been agreed in order to establish a 

communication session with their target partners. 

 



4 

 

Structure 

 

Figure 2 describes the structure of this pattern. Pink classes describe a logical web service connection; blue classes 

describe the token management structure, while yellow classes describe security tokens and claims. 

 

+generateStatements()

-parameters

Claim
SignedSecurityToken

-data

ProofOfPossession

+addDigitalSignature()

SecurityToken

+establishSecurityContextToken()

+amendSecurityContextToken()

+renewSecurityContextToken()

+cancelSecurityContextToken()

+provideChallenge()

+extendSecurityContextToken()

SecurityTokenService

Initiator Requester

1..*

1

1..*

1..*

4 

Cryptographically endorsed 

by a specific authoriy

(X.509 or Kerberos ticket)

Encrypted with 

a key known only 

to the recipient

* *

setUpToken

+deriveKeys()

+addSignature()

-identifier

-instance

-sharedSecret

SecurityContextToken

Derived Keys are 

expressed as

 security tokens

1

1

1..*

1

1

1..*

1

1..*

P
ro

v
id

e

manageSecurityContextToken

+generateAProof()

-name

-ID

-reference

Policy

+verifyClaimsAgainstPolicy()

+verifyAttributesAgainstSignature()

+verifySecurityTokenIssuers()

TrustEngine

*

1

1

1

Participant

generate

c
o

n
s

u
lt

re
c

e
iv

e

 
Figure 2: Class Diagram for the WS-SecureConversation Pattern 

 

Participant represents an entity (e.g., human, computer, message, an endpoint, interaction, resource) that is in 

charge of managing SCTs. It can has the role of: Initiator, the one creates a SCT or asks a STS to create one for her, 

or Requester, who asks for a SCT to conduct business and use web services. 

 

A Claim is a statement about a client, service or other resource (e.g. name, identity, key, group, privilege, capability, 

etc.). Claims are assertions such as “I am Adnan”, “I am an authenticated user and I am authorized to print.” A 

Security Token is a collection of claims (such as X.509 certificate, Kerberos ticket, and username).It is responsible 

for adding signatures to tokens. Security Token also is a generalization of: Signed Security Token, that is 

cryptographically endorsed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket), and Proof-of-

Possession (PoP) Token which contains a secret data parameter that can be used to prove authorized use of an 

associated security token. Usually, the proof-of-possession information is encrypted with a key known only to the 

recipient of the POP token. 

 

A Security Context Token is a representation of a security context, which in turns refers to an established 

authentication state with negotiated keys that may have additional security-related properties. Requestors can use 

SCTs to sign and/or encrypt a series of SOAP messages, known as a conversation, between a message sender and 

the target web service.  

 



5 

 

Security Token Service (STS) is a web service that issues SCTs by itself, or relies on another STS to do so using 

its own trust statement. It produces assertions based on evidence that it trusts, provides challenge for requesters to 

ensure message freshness (the message has not been replayed and is currently active), verifies authorized use of a 

security token and establishes, extends trust among a domain of services. Each STS has a Trust Engine that 

evaluates the security-related aspects of a message using security mechanisms and implies a policy to verify the 

requester’s assertions. The Trust Engine is responsible for verifying security tokens and verifying claims against 

policies. A Policy is a collection of policy assertions that have their own name, references, and ID. 

 

 

Dynamics 

 

We describe the dynamic aspects of the WS-SecureConversation using sequence diagrams for the use cases 

“Establish a SCT to create a context” and “Amend a SCT”. 

 

Establish a SCT to create a context (Figure 3): 

Summary: STS creates a SCT using the claims provided by the initiator. 

Actors: Initiator, requester. 

Precondition: The STS has the required policy to verify the requester claims and the requester provides 

parameters in form of claims and RequestType signed by a signature. 

:Requester :STS

claimsApproved( )

getSCT(URI)

:Policy

verifyClaimsAgainstPolicy( )

signatuerApproved( )

:TrustEngine

checkRequest(Claims)

issuersApproved ( )

verifySecurityTokenIssuers ( )

requestApproved ( )

verifyAttributesAgainstSignature ( )

erquestSCT(claims,URI)

:SecurityContextToken

generateSCT

SCTGenerated(URI)

:Initiator

createSCT(SecurityTokens)

getSCT(URI)

 
 

Figure 3: Sequence Diagram for establishing a SCT to create a context 

 

Description: 

a. The requester asks for a SCT to use a web service. 

b. The initiator requests a SCT by sending the required parameters of claims signed by a Signature to the 

STS in forms of security tokens. 

c. The STS uses WS-Trust mechanisms of Trust Engine and WS-Policy to check the initiator’s claims.  

d. Once approved, the STS creates a new SCT in the form of an URI and sends it back to the initiator, who 

in turns sends it back to the requester.  

Post condition: The initiator has a SCT that can be used to communicate with other web services.  



6 

 

 

 

Amend a SCT (Figure 4): 

Summary: A STS will amend an existing SCT to carry additional claims upon the initiator’s request. 

Actors: Initiator. 

Precondition: The initiator owns a SCT. 

 

:SecurityTokenService

:SecurityContextToken
amendSCT(additionalSCT)

amendSCTResponse : newSCT

:Initiator

amendSCT(additional SCTs)

SCTisAmended: newSCT

requestProofOfPossession(key)

createsSignature(key)

signatureIsApproved

addAdditionalSCTs

 
Figure 4: Sequence Diagram amending an existing SCT 

 

Description: 

a. The initiator asks to change a SCT she owned to carry additional SCTs. 

b. The STS asks for the key associated with the SCT as a proof of possession. 

c. The initiator replies back with a signature. 

d. Once approved, the STS adds those additional SCTs to the SCT to form a new SCT and sends it back 

to the initiator. 

 

Postcondition: The initiator has an amended SCT that can be used to communicate with other web services. 

 

 

Implementation 

 

When it comes to encrypt a message, SCTs use a symmetric key rather than an asymmetric key, which makes them 

faster and more efficient. A STC allows a context to be named by a URI, also for reference purposes. The 

participating web services determine a shared secret to use as the basis of key generation. In other words, shared 

secrets are in form of derived keys. The derived keys are expressed as security tokens. 

 

In order to assure effective implementation, we need to take in consideration the following: 

 

 Using a service requires a signature to prove knowledge of a security token or set of security tokens. Three 

possible scenarios are presented to establish a SCT; by one of the communicating parties, by a 

negotiation/exchange process between the participants, or by a separate STS. 

 

 Although the messages exchanged between the involved entities are protected by WS-Security; still three 

possible issues related to security tokens are handled: security token format incompatibility, security token 

trust and namespace differences. The WS-Trust pattern can address these issues by: Defining a 



7 

 

request/response protocol (in which the client sends RequestSecurityToken and receives 

RequestSecurityTokenResponse and introducing a Security Token Service (STS). 

 

This pattern could be used to guide the development of a product. Users can use this pattern to ask for certain 

security mechanisms that fit their business goals. Developers and product vendors should be aware that no complete 

security solution for web services is guaranteed through WS-SecureConversation by itself. WS–Secure Conversation 

should be used in conjunction with other web services standards such as WS-Security, WS-Trust, and WS-Policy for 

an optimal solution [OASc]. Implementing various security mechanisms through those standards will lead to an 

optimal solution. Implementations of those WS standards are beyond the goals of this pattern and were covered in 

[Aja10a], [Aja10b] and [Has09]. 

 

 

Example Resolved 

 

Ajiad now has the ability to automate the business relationships with its partners by assuming that all partners are 

registered and by issuing customers unique IDs. In this case, Ajiad provides an intermediate link between the 

customers and its partners and plays the role of negotiator as well as third-party player who is looking to satisfy both 

sides. Ajiad now can offer a SCT Service for its business partners, who may find useful ways to take advantage of 

credit processing and other of its services, Ajiad now has new business opportunities. 

 

Known uses 

 

 WS-SecureConversation is used in the Microsoft Web Services Enhancement 2.0 toolkit [Gud04]. 

 

 WS-SecureConversation support in Apache’s CXF builds upon the WS-SecurityPolicy implementation to 

handle the SecureConversationToken policy assertions [Apa]. 

 

 Java applications support in IBM products includes support for WS-SecureConversation [Sos10]. 

 

 SAP is using the security context primarily to allow WS-ReliableMessaging to reuse a security context, so 

that the server can contact the client [SAP]. 

 

Consequences 

 

The WS-SecureConversation pattern presents the following advantages: 

 Policy providers now can use mechanisms provided by other web services specifications such as WS-

Security, XML Digital Signature [W3C08], and WS-Metadata Exchange [W3C09] to protect the messages 

needed to create a secure context. 

 

 Time restriction: We can specify time constraints in the parameters of SCTs, which can specify how long 

that token is active. Upon expiration, the SCT’s holder may amend, renew, or cancel it. 

 

 Policy: We can implement WS-Policy to support trusted partners by expressing and exchanging their 

statements of trust expressed as a trust policy. 

 

 Overhead: For the communication channels that require end-to-end security and have frequent message 

exchanges, the WS-SecureConversation may reduce the overhead. Using either encryption or signing is 

better than using both, since combining both produces significantly lower performance [Liu05]. 

 

 Interoperability: STS satisfies the capabilities and constraints of the security (and other business) policies 

on intermediaries which at the end increase the interoperability between web services. By implementing 

STS, the WS-SecureConversation framework will be more comprehensive and can carry out secure 

conversations between parties in different trust domains.  

 

 



8 

 

The WS-SecureConversation pattern presents the following liabilities: 

 

 The WS-SecureConversation standard is a lengthy document with a lot of details that were left out to avoid 

making the pattern too complex. Somebody interested in addressing more details can check the WS-

SecureConversation Standard web page [OASc]. 

 

 No complete security solution for web services is guaranteed through WS-SecureConversation by itself. 

WS–Secure Conversation should be used in conjunction with other web services standards such as WS-

Security, WS-Trust, and WS-Policy for an optimal solution [OASc]. 

 

Related Patterns 

 

 A Pattern for WS-Security [Has09] defines how to secure SOAP messages applying XML security 

standards such as XML Encryption and XML Signature.  

 

 A pattern for the WS-Trust standard of web services [Aja10a] provides a framework for requesting and 

issuing security tokens, and to broker trust relationships. It uses WS-Security to transfer the required 

security tokens, using XML Signature and Encryption to provide confidentiality. This standard may use 

WS-Policy to specify which security tokens are required at the target. 

 

 A pattern for the WS-Policy standard [Aja10b] describes how to express requirements that are needed or 

supported by a web service. For instance, it can indicate that a specific signature algorithm must be used 

when signing a document. 

 

 

3. Conclusion 
 

We presented a pattern for the WS-SecureConversation that describes how a web service can authenticate requester 

messages, how requesters can authenticate services, and how to establish mutually authenticated security contexts. 

 

Message authentication is useful for simple or one-way messages; parties intending to exchange multiple messages 

can create a secure session. A security context is shared among the communicating parties for the lifetime of a 

communications session. These security context-token-issuance services build on WS-Security, WS-Trust and WS-

Policy to transfer the requisite security tokens in a manner that ensures the integrity and confidentiality of those 

tokens. 

 

In our future work, we will write a pattern for WS-Federation standard, which enables appropriate sharing of 

identity, authentication, and authorization data using different or similar mechanisms. WS-Federation depends on 

WS-SecureConversation to perform its functions. This will complete the pattern diagram of Figure1, and will give 

us the opportunity to investigate and analyze how WS-Federation fits with other web services standards and how it 

could facilitate implementing these standards in business applications. 

 

 

Acknowledgements 
We thank our shepherd Kiran Kumar for his useful comments that significantly improved the paper. 

 

 

References 
 

[Aja10a] Ajaj, O., and Fernandez E.B., “A pattern for the WS-Trust standard of web services”, Procs. of the 1st 

Asian Conference on Pattern Languages of Programs (AsianPLoP 2010) , Tokyo, Japan, March 16-17, 2010,  

http://patterns-wg.fuka.info.waseda.ac.jp/asianplop . 

 

[Aja10b] Ajaj, O., and Fernandez E.B., "A pattern for the WS-Policy standard", Procs. of the 8th Latin American 

Conference on Pattern Languages of Programs (SugarLoafPLoP 2010), Salvador, Bahia, Brazil, Sept 23-26, 2010,  

http://patterns-wg.fuka.info.waseda.ac.jp/asianplo
http://patterns-wg.fuka.info.waseda.ac.jp/asianplo
http://wiki.dcc.ufba.br/SugarLoafPlop


9 

 

http://wiki.dcc.ufba.br/SugarLoafPlop 

 

[Apa] Apache CXF, WS-SecureConversation, http://cxf.apache.org/docs/ws-secureconversation.html 

 

[Fer06] Fernandez, E.B., and Delessy, N. 2006. “Using patterns to understand and compare web services security 

products and standards”, Proceedings of the Int. Conference on Web Applications and Services (ICIW'06), 

Guadeloupe, February 2006.  IEEE Comp. Society, 2006. 

  

[Fer12] Fernandez, E.B., Ajaj, O., Buckley, I., Delessy-Gassant, N., Hashizume, K.,  and Larrondo-Petrie, M.M., “A 

Survey of Patterns for Web Services Security and Reliability Standards”, Future Internet 2012, 4(2), 430-450. 

http://www.mdpi.com/1999-5903/4/2/430, - Last Access on August, 04, 2012 

 

[Gud04] Gudgin, M., “Using WS-Trust and WS-Secure Conversation”,  MSDN 2004, 

http://msdn.microsoft.com/en-us/library/ms996521.aspx, Last accessed on August 16, 2012. 

 

[Has09]  Hashizume, K.; Fernandez, E.B. A Pattern for WS-Security. First IEEE Int. Workshop on Security Eng. 

Environments, Dec. 17-19, 2009, Shanghai, China. 

 

[IBM] IBM, Security in a Web Services World: A Proposed Architecture and Roadmap, 

http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-secmap.pdf - Last accessed on March 30, 2012  

 

[Liu05]  Liu H., Pallickara S., and Fox G., ” Performance of  Web Services Security” Proceedings of the 13th 

Annual 13th Mardi Gras Conference, Baton Rouge, Louisiana, February 3-5, 2005. 

http://grids.ucs.indiana.edu/ptliupages/publications/WSSPerf.pdf 

 

[OASa] OASIS Standard, Web Services Security: (WS-Security 2004), http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf - Last accessed on 

December 15, 2009   

 

[OASb]   OASIS Standard, WS-Trust 1.4, http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf 

- Last accessed on March 07, 2012 

 

[OASc] OASIS Standard, WS-SecureConversation 1.4. http://docs.oasis-open.org/ws-sx/ws-

secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf - Llast Accessed on February, 29, 2012 

 

[SAP]   SAP AG,  WS-SecureConversation, 

http://help.sap.com/saphelp_nwpi711/helpdata/en/48/aea404ac5a3206e10000000a42189c/content.htm 

 

[Sos10] Sosnoski, D., Java Web Services: WS-Trust and WS-Secure Conversation, IBM May 2010. 

http://www.ibm.com/developerworks/java/library/j-jws15/index.html. Last accessed August 17, 2012. 

 

[W3C07] W3C, Web Services Policy 1.5 – Framework, 4 September 2007, http://www.w3.org/TR/ws-policy/- Last 

accessed on March 15, 2012  

 

[W3C08] W3C, XML Signature Syntax and Processing (Second Edition), 10 June 2008,  

http://www.w3.org/TR/xmldsig-core/ - Last Accessed on February, 29, 2012 

 

[W3C09] W3C, Web Services Metadata Exchange (WS-MetadataExchange), W3C Working Draft 17 March 2009, 

http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/ - Last Accessed on February, 29, 2012 

http://wiki.dcc.ufba.br/SugarLoafPlop
http://www.mdpi.com/1999-5903/4/2/430
http://msdn.microsoft.com/en-us/library/ms996521.aspx
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-secmap.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/WSSPerf.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://help.sap.com/saphelp_nwpi711/helpdata/en/48/aea404ac5a3206e10000000a42189c/content.htm
http://www.ibm.com/developerworks/java/library/j-jws15/index.html
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/


10 

 

Appendix I: Glossary 
 

Claim: a statement about a client, service or other resource (e.g. name, identity, key, group, privilege, capability, 

etc.).  

 

Participant:  represents an entity (e.g., human, computer, message, an endpoint, interaction, resource) that is in 

charge of managing SCTs.  

 

Policy: a collection of policy assertions that have their own name, references, and ID. 

 

Proof-of-Possession (PoP) Token: a security token which contains a secret data parameter that can be used to 

prove authorized use of an associated security token.  

 

Security Context Token (SCT): a representation of a security context, which in turns refers to an established 

authentication state with negotiated keys that may have additional security-related properties.  

 

Security Token: a collection of claims (such as X.509 certificate, Kerberos ticket, and username).It is responsible 

for adding signatures to tokens.  

 

Security Token Service (STS): a web service that issues SCTs by itself, or relies on another STS to do so using its 

own trust statement 

 

Signed Security Token: a security token that cryptographically endorsed by a specific authority (e.g. an X.509 

certificate or a Kerberos ticket) 

 

Trust Engine: responsible for verifying security tokens and verifying claims against policies. It evaluates the 

security-related aspects of a message using security mechanisms 

 

 

  


