

Patterns for Evaluating Usability of Domain-Specific Languages

Ankica Barišić, Pedro Monteiro, Vasco Amaral, Miguel Goulão, Miguel Monteiro

CITI, Departamento de Informática
Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa

2829-516 Caparica, Portugal
+351 212 948 536

a.barisic@campus.fct.unl.pt, pmfcm@campus.fct.unl.pt,

vma@fct.unl.pt, mgoul@fct.unl.pt, mtpm@fct.unl.pt

ABSTRACT

For years the development of software artifacts was the sole domain of developers and project
managers. However, experience has taught us that the Users play a very important role in
software development and construction. On Domain Specific Languages the inclusion of the
domain experts directly in the development cycle is a very important characteristic, as they have
often an important role in making and constraining the domain of the language.

DSLs are credited with increased productivity and ease of use, but this fact is hardly ever proven.
Moreover, usability tests are frequently only performed at the final stages of the project when
changes have a significant impact on the budget. To help prevent this, in this paper we present a
pattern language for evaluating the usability of DSLs. Our patterns can help show how to use an
iterative usability validation development strategy to produce DSLs that can achieve a high
degree of usability.

KEYWORDS: Pattern Language, Domain-Specific Language, Software Language Engineering,
Usability Evaluation

1. INTRODUCTION

An increasing number of people rely on software systems to perform their daily routines, work-
related and personal tasks. As such, the number of software systems has risen greatly in the last
few years and new products need to be developed rapidly so as to satisfy the demand. Domain-
Specific Languages (DSLs) arise in this context as a way to speed up the development of
software by restricting the application domain and reusing domain abstractions. Thus, DSLs are
claimed to contribute to a productivity increase in software systems development, while reducing
the required maintenance and programming expertise. The main purpose of DSLs is to bridge the
gap between the Problem Domain (essential concepts, domain knowledge, techniques, and
paradigms) and the Solution Domain (technical space, middleware, platforms and programming
languages).

However intuitive this idea might be, we need to have means to assess the Quality and success of
the developed languages. Not embracing quality assessment is to accept the risk of building
inappropriate languages that could even decrease productivity or increase maintenance costs.

Software Language Engineering (SLE) is the application of a systematic, disciplined and
quantifiable approach to the development, usage, and maintenance of software languages. One of
the crucial steps in the construction of DSLs is their validation. Nevertheless, this step is

frequently neglected. The lack of systematic approaches to evaluation, and the lack of guidelines
and a comprehensive set of tools may explain this shortcoming in the current state of practice. To
assess the impact of new DSLs we could reuse experimental validation techniques based on User
Interfaces (UIs) evaluation as DSLs can be regarded as communication interfaces between
humans and computers. In that sense, using a DSL is a form of Human-Computer Interaction
(HCI). As such, evaluating DSLs could benefit from techniques used for evaluating regular UIs.

We reviewed current methodologies and tools for the evaluation of UIs and General Purpose
Languages (GPLs), in order to identify their current shortcomings as opportunities for improving
the current state of practice [1]. That brought us closer to providing adequate techniques for
supporting the evaluation process which, we argue, should be based on methods for assessing
user experience and customer satisfaction, applied to DSL users. By promoting DSL usability to
a priority in the DSL development, usability must be considered from the beginning of the
development cycle.

One way of doing this is through user-centered methods [2], i.e. placing the intended users of a
language as the focal point of its design and conception, thus making sure the language will
satisfy the user requirements. In order to tailor such methods to DSL development, we need to
establish formal correspondences for all stages between the DSL development process and the
Usability evaluation process [1].

Patterns represent tangible solutions to problems in a well-defined context within a specific
domain and provide support for wide reuse of well proven concepts and techniques, independent
from methodology, language, paradigm and architecture [3]. Thus, using patterns, we aim to
disseminate the knowledge of this best practice to both expert and non-expert language
engineers, easing the adoption of these solutions in other systems.

The rest of this paper is organized as follows: In section 2 we present our pattern language and
the patterns that compose it. In section 3 we describe related work, while in section 4 we
conclude and discuss future work.

2. PATTERN LANGUAGE

A pattern language is a set of inter-dependent patterns that provide a complete solution to a
complex problem [3].

Our pattern language is divided into two design spaces: Process and Organization and
User-Centered Language Development (see Figure 1).

- Process and Organization: This design space considers patterns devoted to Project
Management and Engineering of a Domain-Specific Language. This is the most important
design space because it is through Process and Organization that the language engineers
access the remaining design spaces.

- User-Centered Language Development: The users are the central part of a DSL. This
design space considers how to engage the user in the development process and how to
collect valuable information about the DSL and its level of usability while it is being
developed.

Figure 1 - Patterns for Evaluating Usability of Domain-Specific Languages

2.1. Pattern Language Terminology

Language Engineer is a professional who is skilled in the application of the engineering
discipline to the creation of software languages. Language engineers design the software
language and are responsible for making it functional at the system level. They are involved in
the language specification, implementation, and evaluation, as well as providing templates and
scripts [4].

End User is a person who uses software languages to create applications [4] (e.g. application
developers). In domain-specific modeling the possible user base of the models can easily be
broader, as it allows application users to be better involved in the application development
process. In that case customers, other than typical application developers, can read, accept and in
some cases change application specifications, being directly involved in the application
development process. End user can work with models that apply concepts directly related to
specific characteristics of configuration, like specifying deployment of software units to
hardware or describing high-availability settings for uninterrupted services with redundancy and
reparability for various fault-recovery scenarios. Yet another group of users is responsible for

specifying services that are then executed in the target environment [5].

Domain Expert is a person that is involved in the language development process, sometimes
known as a knowledge engineer. In the case of domain-specific modeling they do not need to
have software development background, but they can specify application for code generation.
They can specify models for concept prototyping or concept demonstration, and language
engineers can proceed from these models. In contrast with end users, they should have domain
knowledge that includes areas of all target model applications.

Usability is the quality characteristic that measures the ease of use of any software system that
interacts directly with a user. It is a subjective non-functional requirement that can only be
measured directly by the extent with which the functional architecture of the language satisfies
users’ needs based on their cognitive capacity. It focuses on features of the human-computer
interaction.

Usability is result of the achieved level of Quality in Use of a software system i.e. a user’s view
of Quality. It is defined by ISO 9241 as “the extent to which a product [service or environment]

can be used by specified users to achieve specified goals with effectiveness, efficiency and

satisfaction in a specified context of use”[6]. It is dependent on achieving the necessary external
and internal quality that is influenced by achievement of different quality attributes dependent on
context of use. Tests of language usability are based on measurements of the users' experiences
with it.

Productivity is the ratio between the functional value of software produced to the labor and
expense of producing it. It is considered that good systems analysis enhances software
productivity and software productivity is a success measure of systems analysis. Measure of
productivity is based on the value of results of the software use. The high level of usability
directly increases productivity of software.

Productivity metrics need to capture both the effort required to produce the software and the
functionality provided to the software user. This measures should give software managers and
professionals a set of useful, tangible data points for sizing, estimating, managing, and
controlling software projects with rigor and precision [7].

User-centered methods are comprised in user-centered design of software product at different
points of the product development lifecycle. They include user-centered techniques such as
ethnographic research, participatory design, focus group research, surveys, walk through,
preliminary prototyping, expert or heuristic evaluation, usability testing, as well as follow up
studies [2].

2.2. Physicist’s EAsy Analysis Tool for High Energy Physics

In order to exemplify the proposed pattern language, we will take an existing DSL for High
Energy Physics (HEP) called Pheasant (Physicist’s EAsy Analysis Tool), developed using some
of the methods described in this paper. A detailed description of Pheasant can be found in [8].

In the context of High Energy Physics (HEP), physicists try to discover new short-lived particles
and their properties or the properties of their interactions, in order to develop a model of the real
world at a subatomic level. Large accelerators accelerate subatomic particles to induce collisions.
These collision events are recorded by sub-detectors which measure and analyze the results.
Afterwards, the large volume of data collected by detectors is mined and used to try to infer
statistical physics results, validating them against currently proposed Physics Models. The

physicists' analysis systems are composed of a visualization tool, a set of scientific calculation
libraries, and a storage manager. Traditionally, in a first step of his analysis, the user selects a
subset of data from the storage manager. Then, several reconstruction algorithms with scientific
calculations filter out data and compute new values that are stored in private collections. Finally,
the new data collection is visualized in the visualization tools (for instance by histograms).

The reconstruction and investigation of decays and decay chains of short-lived particles are the
main computationally demanding tasks of the data analysis, which starts after the data
acquisition. Roughly speaking, this phase, physicists have to select those kind of decays and
particles they are interested in. For this selection, it is usually necessary to reconstruct parts of
the particles' trajectories (also called segments), to match them with other segments in order to
reproduce the full particle trajectories (called tracks), to extract further properties, and to deduce
the complete decay chain.

The Pheasant project was developed to mitigate user’s productivity problems in this domain. It
aimed to develop reusable engineering methodologies through Model-Driven Techniques. A
declarative Domain Specific Visual Query Language (DSVQL) was used to raise the abstraction
level in the existing query systems and give room to new optimizations of different levels. The
goal of Pheasant was to automate as much as possible this process as well as providing the users
(with different profiles ranging from totally non computer experts to high-level programmers)
appropriate abstractions to hide the complexity of programming error prone algorithms in
languages such as C, C++ or Fortran, using a wide plethora of libraries and frameworks to
achieve their goals.

It served to confirm that the proposed query language tailored to the specific domain was
beneficial to the end-user. The physicists, non-experts in programming, no longer were required
to cope with different GPLs and adapt to the intricacies supporting database infrastructure.

The DSL developed through the Pheasant project is a good example of a pattern language to be
illustrated in this paper, as it is a complete exercise for a DSL development and is designed with
strong user feedback, focusing on understanding how the language is perceived, learned, and
mastered. It also gives classification of users, categorizing them by identification of their specific
requirements. The validation of the language through usability evaluation tests is included [9].

2.3. Process & Organization Patterns

2.3.1. User and Context Model Extraction

Problem Description: How to distinguish for which user profiles and contexts of use we have
validated the DSL's usability level.

Context: The number of users involved in the usability evaluation of a DSL should be significant
in relation to the actual number of intended DSL users. This means that, in the majority of cases,
the number of user profiles and user contexts will also be relevant. This introduces the problem
of knowing if all user groups are represented and how those user groups relate with the others
and with the overall context and domain. Moreover, if usability is to be validated iteratively, the
project manager and language engineer need to be able to manage and extract feedback from a
large number of users on a regular basis.

Forces:

On-Budget Completeness: By building a complete user and context model we are able
to control for which extent of targeted user population and environmental and technical
range usability is achieved. However, this is hard to achieve on a strict budget and the
development team should be aware that some requirements might only be identified at
later stages.

User Coverage: It is sometimes easy to forget that, in general, a DSL is intended to be
useful for only a relatively small set of users and not a wide range of them. When
designing a language we must pay close attention not to place too much effort in
satisfying requirements of non-target users.

Solution: Before building a new DSL we should identify all intended user profiles and target
context of use. These user groups should be characterized by their background profiles and
domain expertise, as well as different stakeholder positions in solving problem groups. These
general user characteristics should be weighted according to its relevance, which will influence
the relevance level of each chosen test user group.

Also, in the same way we should define a complete context model that will contain all
technology variations that will be possible to use, equipment availability, additional software
support and its compliance to new system, as well as intended working environments and its
effect on using a system.

Building the context and user model should be emerged with Domain analysis phase of
development the DSL. As the new domain concepts are identified for the DSL, potential users of
this concept, and context of use should be defined.

Example: The user model is obtained by identifying the list of main characteristics that can help
in categorizing the set of user groups. For the case of Pheasant (see

Table 1) these characteristics are prioritized with a Likert scale representing an evaluation
importance weight ranging from 1 to 5, where 1 means ‘Unimportant’ and 5 means ‘very
important’. After indicating these weights, it becomes trivial to extract important user models
that need to be evaluated.

Table 1 – List of user characteristics

Technical characteristics Profile characteristics Stakeholder
Personal

characteristics

Knowledge

about HEP

experiments

5 Physicist 5 - experimenter 5 Experiment

Role

5 - Experiment

designer

5 Analytical

thinking

5

Knowledge of

particle

physics

4 - theoretician 1 - Analyst

performer

4 Logic reasoning 4

Knowledge of

programming

3 - querying 4 Engineer 4 Academic

Title

4 - Professor 5 Sight problems 1

 - c programming 4 Programmer 3 - PhD 4

 - Fortran

programming

2 - Master

student

4

 - c++

programming

2 - PostDoc 3

This weight hierarchy will become increasingly detailed with each new iteration. For instance, if
the main profile observed is that of a physicist, we need to find details which help to isolate
specific characteristics, thus creating sub profiles. In the case of Pheasant, we are interested in
physicists who 1) have knowledge of HEP experiments and particle physics, and 2) have
knowledge of programing and querying.

The context model details the user’s working equipment. As Pheasant is meant to be used from
computers, it is essential to describe the scope of computer characteristics (see Table 2). This
allows us to reason about whether any usability issues detected in the language can be traced to
inappropriate equipment or working environment. User working environment can also cause user
to obtain lower results during use of language, so it is important to describe and control main
environment equipment.

Table 2 – Users working equipment and environment

Users Working Equipment Users Working Environment

office computer

as working

platform

processor power capacity: 2GHz-3,6GHz number of cores 2-4 working desk 5

RAM capacity: 2GB-8GB chair 5

internal storage capacity: 250GB-2TB number of discs: 1-4 windows 3

monitor size: 20''-24'' color: yes office lights 4

network capacity: X wireless,wired offline aircondition system 3

power range: 550W-750W heating machine 3

office electrical power system: secondary power:

keyboard: optical

mause: optical

office computer

as connection

device to

clustered

system

processor power capacity: 2GHz-3,6Ghz number of cores: 2

RAM capacity: 1GB-4GB

internal storage capacity: 120GB-1TB number of discs: 1-2

monitor size: 20''-24'' color: yes

network capacity: 112Mbs -1Gbs wireless,wired online

power range: 300W-550W

electrical power system: secondary power:

keyboard: optical

mause: optical

Also, it is important to characterize the language operating environment to which we target the
desired usability levels (see

Table 3). As it may be too expensive to perform testing with all language operating environments
configurations, one should assign different priorities for different configurations, so that at least
the most important configurations are tested.

Table 3 – Language operating equipment and environment

Language Operating Equipment Operation System Environment

Detector 1 OS
Linux UNIX 5

Storage 5 Windows Dos 3

Calculation libraries 5 Mackintosh MAC OS 4

Robotic tape 2 Visualization Tool JAS 5

Accelerator 1
Framework Fortran

PAW 4

 ARTE 4

C++

ROOT 3

 ARTE 4

 BEE 5

Related Patterns:

Iterative User-Centered DSL Development Process: To begin the development
process, it is imperative that the language engineer proceeds with User and Context

Model Extraction.

Evaluation Process and Design Planning: While the language engineer gathers
resources for the user and context model, a plan for evaluation should also be considered.

Known uses: In usability testing one of main problems for achieving usable products is that
development focuses mainly on the machine or system, not considering the human aspects of
software. There are three major components that should be considered in any type of human
performance situation: Activity, Context and Human. Designers should focus on all three
elements during development [2]. Benefits of user and context modeling on management and
final product are confirmed in areas of service and interface development.

2.3.2. Evaluation Process and Design Planning

Problem Description: How to plan the processes of usability evaluation experiments and control
the adequacy of the produced solutions to the intended users and respective context models.

Context: Usability evaluations and experimental designs should be carefully planned through an
experimental process model. Planning is a time consuming task and if not done carefully induces
the risk of spending resources on usability evaluations with questionable validity and usefulness.

Forces:

- Planning and Control: Through good and careful planning the language engineer
becomes more able to control and validate results, and to know the scope of their impact.

- Reusability: Results, if packaged correctly, can be reused or replicated on another
solution or similar context as long as adequate measures for each context are controlled
and validated. However, it becomes easier to reason about the impact of
recommendations that resulted from each experiment and reuse these conclusions for
another evaluation session.

- Balance user need validity and budget: from the users view point all wished features
and requirements are valid and essential. However, not all features fall within budget and

not all users have the same level of importance to push new features.
- Experimental evaluation cost: There is a tension between the cost of a full-blown

experimental evaluation and the need to make short delivery sprints.

Solution: When planning the process of Usability evaluations and experimental designs, the
language engineer must document the main problem statements and the relations with intended
experiments. The documentation should include initial sample modeling (considering all possible
samples, groups, subgroups, disjoint characteristics, etc.), context modeling, instrumentation
(e.g. type of usability tests and when to use them), the instrumentation perspectives (e.g.
cognitive dimensions fundamental to assessing usability) and their relation with metrics acquired
through data analysis and testing techniques.

To assess the validity of results that will lead us to reason about usability of the domain-specific
solution, language engineers should carefully plan the process and extent of experiments. The
main problem statements and intended usability experiments should be designed with care, to
ensure replicability, and to control the result of alterations.

Example: In this pattern we need to identify and prioritize all goals of the language, as well as
the goal of the evaluation. The goals for Pheasant are described in Table 4.

These goals will later be used to control which goals were addressed by the problem statements
of experiments and the heuristic evaluations.

Table 4 – Goal lists

 System goals

Evaluation goals

Deal with petabytes of data.

Query steps in Pheasant vs the object-oriented coding

Support hundreds of simultaneous queries.

Aggregation

Return partial results of queries in progress

Expressing a decay

provide interactive query refinements.

Specification of filtering conditions

Deal with data on secondary and tertiary storage access for simultaneous

queries

Vertexing and the usage of user-defined functions

Support statistical selection mechanisms (uniform random sampling)

Path expressions (navigational queries)

Provide a flexible schema which supports versioning

Expressing the result set

Provide an environment for data analysis that is identical on desktop

workstations and centralized data repositories.

The expressiveness of user-defined functions

Goals are fulfilled by executing tasks ans so we need to list and prioritize tasks, to further help us
decide how to design instrumentation and metrics to capture this special tasks (see

Table 5)

As the goal of Pheasant is to obtain better querying than in the previos approaches, it is important
to list comparation elements that should be addressed during evaluation (see Table 6).

Table 5– Task list

Query tasks User tasks Cognitive tasks

Run/tag selection:
- Trigger selection Inform status Query writing

- Run period Write query Query reading

event Selection:
- Filled bunch Save query Query interpretation

- No coasting beam Load query Question comprehension

- No empty events Generate code Memorization

- Refined confirmation of the trigger Undo/Redo Problem solving

Reconstruction:
- Track selection Execute

- Particle ID filter condition Get Query results

- Combination of tracks Define Shema

- Vertexing DefineUDF

- Kinematic or geometric filter conditions Define constants

Histogramming and/or comparison with Monte Carlo Simulation

Table 6 – List of comparison elements

Comparision elements

Capture test

 textual v.s. graphical syntax general purpose v.s. domain specific

Final exams

Expressive Readability

Immediate comprehension

Easy to learn Assesability

Reviews

Syntax error Free design reuse

Productivity

Semantics error Free high-level abstraction

Retention

Small Conceptual distance clarity of program specification

Re-learning

Memorizable program checkin

Easy to use language performance

Non-Ambigous Maintainability

Formalizable Portability

 Effectivness

Related Patterns:

Iterative User-Centered DSL Development Process: Developing an evaluation plan of
action is an important starting point for iterative development.

Evaluation Process and Design Planning: A plan for evaluation should be considered
side by side with the user and context model it intends to evaluate.

Known uses: Identifying and controlling evaluation process and design trough set of tasks,
evaluation goals, and different test approaches is a common approach for evaluating experience
in using any product or service. Examples of its use can be found in assessments of customer
satisfaction, evaluation of public opinion, evaluation of psychological capabilities in human
resources, as well as in evaluation of user interfaces. Detailed example of practical application to
query languages can be seen in [10].

2.3.3. Iterative User-Centered DSL Development Process

Problem Description: How to ensure that the domain-specific solution will result in high level of
the DSL users’ productivity when compared to the existing baseline.

Context: When developing a new DSL, the development cycle is intertwined with scheduled
deliveries of incremental versions of the DSL. Since the focus of development is usually on the
delivery time and functionality rather than the users it is usual to attain a solution which is not as
usable as it should or could be.

Forces:

• Cost of Usability Control vs. Cost of Future modifications: if we do not control
usability during the several development stages, essential usability failures may lead us to
meta-level changes that are equivalent to development from scratch.

• Development Cost: Developing any language is a very expensive endeavor, more so
because of the need to ensure that in the end we will get a highly usable language.

Solution: To prove the long claimed productivity increase provided by introducing DSLs,
Language Engineers need to ensure that high usability level of produced DSL is achieved.

In order to do this, and in turn increase the chances of adoption by users within the domain, the
language engineers should embed user-centered design activities within the DSL development
process itself. It is important to involve domain experts and end-users in the development
process, therefore empowering them to drive the project. However, executives and users of the
language models should be involved but not overly committed to it, as users will quickly become
afraid of being accountable for eventual project mishaps.

Each iteration of the development cycle should be combined with a user-centered design activity
where usability requirements are defined and validated through constant interaction with target
user groups. This means that the user becomes an invaluable part of the development process and
receives some measure of responsibility over the outcome of language design and development.

Example: Like the pattern explains, we should build a schedule of all iterations at the beginning,
clearly identifying participants and what features are to be tested. At each passing iteration we
can then re-prioritize the remaining iterations according to what was accomplished.

These schedules should also include careful aproximations of how much time and how many
participants will be involved in active work on the usability evaluation. This includes the time
that is required to make guidelines, list requirements, choose metrics, perform focused
workshops to discuss the results, analysis of results and so on. An example of a one such
schedules is shown in

Table 7.

In this case, the set of Pheasant iterations can be seen as a single development cycle step after
which, if additional development was required, we would have similar usability iterations inside
a new cycle with the new product in use. On this next cycle, the schedule would be easier to
predict since they would be based on the numbers from the previous cycle. This gives the
language engineers the means to control the cost of evaluation.

Table 7 – Evaluation iteration description

ITERATION DESCRIPTION OUTPUTS PERSONS TIME

1st

heuristic analysis of

implemented features with

domain expert

list of typical tasks user want to perform with the language usability expert 1

200h list of usability problems from previous cycle domain experts 1-2

list of beneficial usability aspects from previous approach language engineer 1-2

2nd

heuristic analysis of

implemented features with

usability expert

checklist of usability for interfaces (ref) usability expert 2-3

40h specification list of element structure, position, etc. domain expert 1

 language engineer 1-2

3rd

usability analysis of

language metamodel

quality

List of language semantic clones usability expert 1

60h List of language syntactic clones domain expert 1

 language engineer 2

4th

pilot test for the first

experimental evaluation

with users

list of features that need to be rechecked usability expert 1

120h list of tasks to perform with language domain experts 2-3

 language engineer 1-2

5th

experimental evaluation

with users following

experiment design

list of detailed task and usability elements usability expert 1

120h metrics specification subjects 14-24

 language engineer 1-2

As expected, the 200 hour requirement of the first iteration includes the time needed to prepare
and estimate the first evaluations. The following iterations require considerably less time as they
are base in the previous ones.

Related Patterns:

Iteration Validation: Each iteration should be followed by a validation stage where the
output of the iteration is validated against expectations.

Context Scope Trading: Allows the analysis of what should be done in the next
iteration.

User-centered language development: At the level of this pattern all patterns within the
User-centered language development design space should be considered.

Known uses: The usability engineering lifecycle is iterative by itself and should be merged with
development of any product [11]. Involvement of user-centered techniques in iterative
development of software product is becoming common, and examples vary from user interfaces
to service oriented applications [12].

2.3.4. Iteration Validation

Problem Description: How to control which usability problems were solved, and analyze their
possible relation with new ones that could arise.

Context: As the DSL development process progresses and the number of features increases, it is
easy to lose track of intermediary goals. It then becomes increasingly important to validate what
has been accomplished at each iteration and measure how far we are to our true goal of a usable
DSL.

Forces:

New features vs. fixes: During development, it is frequent to discover new requirements
that the user considers of importance. It is up to the Language Engineer and project
manager to decide if these are considered new features or fixes to improve usability. The
latter should have top priority while the former should be carefully analyzed and sized.
Featurism vs. usability: The language engineer should clearly define the line where the
number of features begins to jeopardize usability rather than promoting it.

Iteration Validation schedule: The validation itself should be short and concise, so as to
not overstep the boundaries of the current iteration’s development schedule. However it
should be dense enough to allow the least amount of work to be postponed for additional
iterations.

Regression Testing: At each iteration evaluation is focused mainly on new features of
the language but, as the language is growing incrementally, it ends up re-covering
language details addressed in previous iterations. This is essential to ensure that new
features don’t deem previous features unusable, however there is also a cost associated
with retesting every previously tested feature. In this case the requirement is that at key
iterations, when a new stable major version of the language is developed, testing and
validation is performed on the full set of language features and not only on those newly
added.

Solution: Although DSLs are developed in constant interaction with domain experts, by
validating the iterations in Time Box fixed intervals we can monitor progress and check if it is
going in the desirable direction. If it is not, developers are able to react to possible problems on
time. At any point during language development, new requirements may arise and it is the job of
the language engineer to evaluate them from a language point-of-view, while the project
manager is required to analyze and frame the new requirements into the time-box. The length of
the project itself should not be allowed to extend over the intended deadline or to surpass the
original budget except on very specific cases when the new requirements translate into
make-or-break features that cannot fit into the original project scope. Nonetheless, every change
in the project has to be carefully analyzed and a compromise must be reached with the
decision-maker stakeholders.

If Iteration Validation is not completed at least every few iterations, when the number of features
developed is enough to warrant user tests, then there is a higher risk of failure of iterative
development.

Time boxing is concluded with a progress report and with documenting results of the validations
in an Iteration Assessment that consists of:

• A list of features that obtained required level of usability
• A list of usability requirements that were not addressed
• A list of usability requirements that need to be reevaluated or that represent new

requirement items

This should be done through explicit communication with all relevant stakeholders of the
validated iteration.

Example: Picking up Pheasant’s 5th iteration from

Table 7, validation of the iteration is accomplished by defining what features were addresses and
successfully implemented and which still require some work (see Table 8). Understanding the
status of usability evaluation for the current iteration allows us to redesing the schedule for the
next few iterations.

Table 8 – Iteration validation

Validated To be revalidated Not addressed
Additional

functionality

Expressing filter conditions Path expressions Enviromental equipment testing Query reuse

Expressing and using

vertexing Expressing and using UDFs

Interface design heuristics from

Microsoft Query scripting

Expressing the result set

Different data schema

feature

Expressing a decay

Structuring the query

Related Patterns:

Validate Iterations: More than understanding if iterations are on track and re-working
the following iterations accordingly, as the Validate Iterations pattern [13] suggests,
Iteration Validation requires the project team to validate if usability remains a concern
throughout every iteration.

Iterative User-Centered DSL Development Process: Validation is a part of the iterative
development process.

Context Scope Trading: The output of Iteration Validation is fed into Context Scope

Trading to allow the analysis of future iterations.

Fixed budget Usability Evaluation: Validation controls how the budget was spent to
accommodate usability questions.

Known uses: Validating iterations of product development cycle is beneficial for controlling
development of any end product. It makes clear what issues are addressed and reviles new
requirements that are overseen in planning of first cycle, and keeps track of validated
approaches. This methodology helps to justify new specifications for project management and
involves their decisions trough project [13].

2.3.5. Context Scope Trading

Problem description: How to ensure that each development iteration remains focused on the
user’s needs while maintaining a short time frame.

Context: When working within a budget and time limit, it is hard to focus on all usability
requirements at each iteration and continue to ensure a successful iteration outcome. Some
requirements are bound to receive more attention than others and lengthy requirements tend to
always get pushed to future iterations [14]. Although tempting, in medium/large projects it is
impossible to take into account all intended user profiles, environmental dependences and
domain concepts in a single iteration. It is up to the Language Engineer and Project Manager to
decide the iteration scope and to recognize how to profit from short iterations bursts.

Forces:

In-loco user: Working directly with representative user groups, will allow detecting early
the majority of usability defects so that they can be fixed at a minimum cost.

Following Recommendations: Following guidelines of recommendations for the most
relevant quality characteristics can be a time consuming task. However this will result in
early adoption of best practices that will eventually contribute to a usable solution.

User Needs vs. Project Management: Sometimes defining requirement priorities
according to user needs goes against Project Management best practices. It is up to the
language engineer and project manager to ensure that both goals are achieved within the
same package.

Solution: Short iterations require short and well scoped contexts. Each iteration needs to
precisely characterize the context that specific iteration will capture from the set of global
context, intended users and domain solution.

To keep the user as the focus of each development iteration, the results of usability tests should
be used to ensure that development prioritizes the most significant features, with focus on
prioritized quality attributes and on the most representative user groups for the relevant context.

In order to effectively achieve this, each iteration should be preceded by a Scope Trading

Workshop where all relevant stakeholders should come to an agreement on the context scope of
the iteration. They should also agree on how the captured outcome of usability tests and
experimental evaluations is to be handled.

The workshop should be used to:

- Assign a strict sequence of priorities to items in usability requirements list, depending on
relevance of the domain concept’s use-case;

- Identify the most relevant items from the backlog that should be solved in the next
iteration;

- Reanalyze priorities of usability problems according to intended scope of user & context
model;

This workshop should take place in the domain analysis phase, after validating iterations. Prior to
the first iteration of the development process, identification of scope is achieved according to the
extracted user and context model from the initial project plan. The intended scope of user and
context model is analyzed more in depth after its definition during the workshop.

Example: Following the scope model defined in the User and Context Model Extraction
(section 2.3.1), we define the Language Use Scope as given in Figure 2.

This scope is a subset of the scope defined in

Table 1 and Table 2, accounting for the fact that changes occurred in the set of available user
groups and environment throughout the iterations. Using this new reduced scope and with the
definition of evaluation for the iterations of the first cycle, as defined in

Table 7, we define the current Evaluation Scope as is shown in Figure 3.

Having defined this scope, it is easier to calculate the budget of the evaluation, and to design
experimental evaluation focusing just on the given goals.

Figure 2 - Language Use Scope

Figure 3 – Evaluation Scope

Related Patterns:

Scope Trading: These patterns are very similar in idea, however, while Scope Trading
[13] relates more to strict requirements, Context Scope Trading can be seen as an
extension of the original pattern to allow context trading considerations, which are
valuable for DSLs.

Iterative User-Centered DSL Development Process: Context Scope Trading is a part of
the development methodology of Iterative User-Centered DSL Development Process.

Fixed budget Usability Evaluation: The iteration scope defined within Context Scope

Trading constrains what can and can’t be done within budget limits.

Iteration Validation: The output of each validation stage is used to define what went
wrong and if its solution is within budget.

Known uses: Scope trading on any product development method gives input means to its budget

definition [13]. Any evaluation requires precise definition of its scope, in order to be able to
validate its results and indicates trade-offs in design decisions [2].

2.3.6. Fixed budget Usability Evaluation

Problem description: How to maintain the budget within planned limits and ensure development
results in a language with satisfying level of usability.

Context: We need to develop a usable DSL for a fixed budget. The abstract nature of the
language and complexity of the domain knowledge prevents contractual details from capturing
every aspect that needs to be considered for a language design and implementation that leads to a
system that optimally supports users in their work.

Forces:

Scope vs. Cost: Usability evaluation, its scope and context, should be wisely planned in
order to minimize its cost but provide valid usability assurance.

Solution: The Language engineer should regularly validate iterations to user-drive the language
under construction. However, in order to reduce the cost of Usability validation in each iteration
the development team should focus on:

- Using short time-board iterations that concentrate on implementing main features first
and drafts of additional ones

- Producing shippable DSLs in short iterations sprints. Since only a few features will be
addressed in each iteration, the end result might have features which are left obviously
unfinished and ambiguous. These unfinished features should act as motivators for user
feedback.

- Getting ‘live’ feedback about unfinished features through brainstorming of possible
solutions

- Producing first level applications and evaluate them with users, focusing to capture
usability validations related to the language design

After each usability evaluation, Usability requirements that have failed validation must be
annotated with clarifications, and listed alongside any new usability requirement that may have
emerged during the last iteration. Subsequently the development team re-calculates realistic costs
for all open usability requirements to enable scope trading and iteration sizing.

After a few such iterations, the work can be packaged and made available in the form of
intermediary release. At this stage usability evaluation can/should be performed in real context of
use with representative user groups, and language artifacts can be fully validated.

Example: Having defined the evaluation iterations of the first evaluation cycle, presented in
Table 7, we can calculate and fix the budget for our evaluation cycles. This budget is
recalculated after each iteration validation. Cost estimation is made easier by having detailed cost
diagrams. This enables the project manager to compare the cost of each independent evaluation
against the achieved result. Keeping this budget accounting also allows a more precise prediction
of future costs.
Table 9 shows, for the first iteration cycle of Pheasant, how the budget evolved to encompass

changes in iteration duration and cost estimation. At each passing iteration, the actual cost of the
iteration was checked against the expected cost and budget corrections were made to the
following iterations so that the project can be globally balanced. Having a well-balanced budget
means that it becomes easier to know if the project is going according to what is expected.

Table 9 - Budget evolution for Pheasant

Initial Data 1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration

Expec

ted

Work

days

A priori

Estimati

on

Da

ys

Cost

Estimati

on

Cost

Correc

tion

Da

ys

Cost

Estimati

on

Cost

Correc

tion

Da

ys

Cost

Estimati

on

Cost

Correc

tion

Da

ys

Cost

Estimati

on

Cost

Correc

tion

Da

ys

Cost

Estimati

on

Cost

Correc

tion

15

1.000 € 17

1.050 € +5% 17

1.100 € +5% 17

1.100 € 17

1.100 € 17

1.100 €

20

1.200 € 21

1.250 € +4% 21

1.370 € +10% 21

1.370 € 0% 21

1.370 € 21

1.370 €

25

1.500 € 25

1.550 € +3% 25

1.670 € +8% 26

1.620 € -3% 26

1.620 € 0% 26

1.620 €

32

2.100 € 32

2.150 € +2% 32

2.270 € +6% 32

2.220 € -2% 32

2.070 € -7% 32

2.070 € 0%

39

3.100 € 39

3.150 € +2% 39

3.270 € +4% 39

3.220 € -2% 39

2.970 € -8% 42

2.970 € 0%

 One thing that must be noted in the budget of the successive iterations is that the number of
expected work days also changes. This is an important fact as this indirectly influences both the
monetary cost of the iteration and the scope of the following iterations.

Related Patterns:

 Fixed Budget Shopping Basket: It is never enough to stress that it is important to keep a
fixed budget for whichever iteration style. Fixed Budget Shopping Basket [13] details
how to split the overall project development budget over all iterations.

Context Scope Trading: The iteration scope that is defined in turn constrains what can
and cannot be done within budget limits.

Iteration Validation: The output of Fixed budget Usability Evaluation is used by
Iteration Validation to understand if iterations are going according to plan.

Known uses: This pattern represents a concrete application of a method from risk management
and analysis. It is used for lowering the risks that result from big project investments and
provides various advantages such as requiring the contractor to be responsible for project design
and development, as well as for legacy of the projects. Applicability of these models in
scheduling and cost estimation of a fixed budget that is built in construction projects is shown to
be very beneficial [15].

2.4. User-centered language development

2.4.1. Usability Requirements Definition

Problem Description: How to define expectations and desired quality in use of the intended
DSL.

Context: When building a DSL we always have to keep in mind that the target outcome is to
develop a language that can be used by a set of target users. These users originate from
potentially different cultural backgrounds and have different responsibilities and motivations
within the domain. That means that the perspective with which each end user of the language can
look at it varies. By looking to the same language artifact, different stakeholders will mainly
focus on a partial view of it, but all those partial views should be kept consistent. Features will
have different importance to different stakeholders, shifting his interest to different measures of
quality. We essentially need to have a way to keep all target user groups needs in mind when
developing the language.

Forces:

Independent perspectives on quality: Language engineers are able to reason about
quality during development process. However, their perspective on quality does not
necessarily match the perspective of other stakeholders, namely the DSL’s end users.
Failing to identify this mismatch may lead to a solution that does not meet the
expectations of the DSL users.

Conceptual model: Analysis of usability requirements can bring us closer to building a
correct conceptual model of solution from the end-users point of view.

Language Comparison: When surveying common used software tools in the domain it
is very easy to end up comparing apples with oranges. Systematic studies of the tools of
the trade need to be performed, placing careful consideration with the intended use of the
different tools. Tools with slightly different applicability, even if used in the same restrict
context of use should not be compared, unless the comparison takes into account these
application dissimilarities. For instance, Microsoft Excel and the statistical software R
can both be used to perform statistical analysis. However these are two very different
tools and each excels in its own specific niche.

Solution: While building domain concepts, through direct interaction with domain experts it is
valuable to collect background information of the intended users of each language concepts, to
find what usability means to them.

The language engineer should formulate a survey, questionnaire or interview with intended user
groups about their knowledge background and experience with previous approaches. This will
help the language engineer to define a precise user and context model that should be the focus of
the iteration cycle. While electing domain concepts, critical features that the user is concerned
with should be identified and their relation with appropriate quality dimensions and attributes
should be modeled. This model will later be used during experiment design to construct correct
instruments, like questionnaires, to measure the distance between wished and achieved quality in
use of provided solution.

In addition it is necessary to collect all data relating to the work environment and software
products that are already in use to solve the problems inherent to the domain. It is important to
identify characteristics that the users find that are useful, frustrating or lacking while using those
products. In this way language engineers can find what quality means in the specific context of
use for the DSL user profile.

Example:

In the case of Pheasant, one of the main requirements that motivated the project was the need to

provide a more efficient and easier to learn query language, thus overcoming the problems of the
previous approach. However, the new Pheasant queries needed to remain consistent with the
underlying system framework, so that would not be necessary to change previously existing
queries or future queries developed in other systems. The Pheasant language needed to be
developed aiming to raise the level of abstraction in such a way that the end users could ignore
individual query implementations of the different frameworks and in fact share their queries (i.e.
have a way to talk about the specification of their queries without having to go deeply into the
details of the programming environment).

In the following Table 10 we present the list of Usability requirements and tasks for Pheasant.
They can be assessed at levels of Internal/External Quality and Quality in Use.

Table 10 – Usability Requirements

Usability

Requirement

Description Internal quality External Quality Quality in Use

Understandabili

ty

The language elements should be easy to

understand, represented in terms that user is

familiar with

Check consistency with

physics notation they use

Language syntax elements should be easy to

remember by the user

Expressiveness

Provide simple way to present complex

queries

Improved readability of queries

Operability

Language actions and elements should be

consistent

Error messages should explain how to

recover from the error

Undo should be available for most actions

Actions which cannot be undone should ask

for confirmation

Prevent users from producing syntax errors

(e.g. misspelling)

Prevent users from producing semantic

errors

(e.g. query not behaving as the user expects

it to)

Functionality

Most frequent Querying task should be easy

to do

Build concept element from

most frequent tasks which

have common logic

Count number of

steps required to

perform task

Measure time and

number of mouse

clics/keystrokes to

perform the task

Concepts that are parts of same task should

be presented sequentially, following same

logic

Sequence of domain

concept relations should be

analyzed against the tasks

they belong to

Make sequence

diagrams with

domain concepts

Focus on repetitive

operations of tasks

and make sure they

have the same use

process

Learnability

The user documentation and help should be

complete

 Check how fast is user

able to perform

querying using help

The help should be context sensitive and

explain how to achieve common tasks for

different types of users

 Check if the user is

able to reuse same

concepts in different

context.

Language syntax elements should be easy to

remember by user

 Follow how recent

user is asking help to

find same concepts

(operators, relation

symbols)

The following diagram (Figure 4) shows how Internal/External Quality influences Pheasant’s
Quality in Use:

Figure 4 – Kiviat diagram of Internal/External Qualities for Pheasant

 Related Patterns:

Conceptual Distance Assessment: The requirements identified in Usability

Requirements Definition are prioritized based on the quality attributes they impact.

Usability Requirements Testing: Usability tests performed at each iteration are
evaluated against the usability requirements so as to allow a definition that encompasses
the current usability status of the language.

Known uses: Usability is seen as a special aspect in requirement engineering, of which the main
phase is requirements definition [16]. Benefits of requirement engineering for model driven
development approach can be seen in examples of software product lines, supporting traceability
and contributing to flexibility and simplicity in development [17].

2.4.2. Conceptual Distance Assessment

Problem Description: How to measure conceptual distance between the user point of view to
solve the problem and the provided solution.

Context: Extracting information from the users is a valuable source of data by which to measure
the current status of ours solutions. However, to be able to analyze how each requirement
impacts the DSL, we need to find a way to extract influential quality attributes.

Forces:

Quality Impact on Usability: more than defining what quality attributes is important, it
is essential to identify the quality attributes whose lack of actually impacts usability. That
information should enable developers to produce pertinent usability metrics.

Solution: In order to understand how the design of the language’s architecture impacts the
usability requirements, the language engineer is required to elect quality attributes and connect
them with domain concepts, creating a two-way relationship of <influences/is influenced by>.

Furthermore, for each domain concept and related usability requirement, we should identify
both, its frequency and relevance within the domain. Weights should be assigned between the
quality attributes and the domain concepts according to their influence on the final usability of
the language.

This process will allow the language engineer to decide which usability tests are most pertinent
in the current development stage and for a specific usage context. Controlling iteration priorities
in turn enables a higher level of management over the usability process, by defining which
usability aspects and features are to be tested iteration-wise.

Example: For Pheasant, considering only query writing tasks, the list of subtasks that the user is
required to cope with and respective frequency is as follows (see Table 11):

Table 11 – Task frequency use table

Task Frequency

Inform Status 3

Write Query 5

Generate Coder 4

Execute 4

Get Query Result 4

Define Shema 3

Writing query task consist of four subtasks: (i) Selecting Collections, (ii) Selecting Events, (iii)
Selecting the Decay and (iv) Selecting the Result. These subtasks are capturing the domain
concepts presented as the metamodel elements (see Table 12).

Table 12 – Query subtask connection with metamodel elements

METAMODEL: QPheasant
Querying subtask

Connectable <--Selection
Selecting the Decay

 <--TransitionResult

Transition
Selecting the Decay

Aggregation
Selecting the Decay

CollectionNode <--CCOP <--Union
Selecting Collections

 <--Intersection

 <--CollectionSet

 <--Exclusdion

Event
Selecting Events

ResultNode <--OneD
Selecting the Result

 <--TwoD

 <--ThreeD

 <--Histogram

Comparisson
Selecting the Decay

Distance <--AbsDistance
Selecting the Decay

 <--RelDistance

After having this analysis, it makes it easier to connect the metamodel elements with usability
requirements and produce concrete metrics in the terms of combination of subtasks that user
need to perform.

 Related Patterns:

Usability Requirements Definition: In order to consider Domain Concept impact on the
development, a clearly defined list of usability requirements is essential.

Domain Concept Usability Evaluation: The impact of the domain concept on the
quality of the end product influences evaluation priority and importance.

Known uses: Conceptual distance has its roots in cognitive psychology. The concept of
modularity that is involved in model driven development allows us to measure this distance
using cognitive maps [18]. Application of this approach is visible in terms of analysis of
cognitive effectiveness [19], [20].

2.4.3. Domain Concept Usability Evaluation

Problem Description: How to capture domain concept related usability problems using metrics.

Context: There are many advantages of determining the required quality characteristics of a DSL
before it is developed and used.

During the metamodel implementation phase, which is usually complex as the language engineer
needs to model all the domain concepts into the metamodel, it is also the time when all domain
concepts are fresher and can thus be analyzed from a top-down perspective.

However, the domain concepts defined in the language metamodel should not be considered final
and can/should be analyzed at fixed stages during development in order to evaluate the ability of
the metamodel to apprehend all needed domain concepts and to allow for inclusion of usability
requirements.

Performing some measure of qualitative analysis of initial language metamodel, which contains
the domain concepts mapping at their initially stages, is an important step in language
engineering, since problems identified at earlier phases would not be propagated onto the
following phases of development.

Forces:

Metamodel evaluation: The level by which a metamodel is analyzed for usability issues
has a direct relation to future failures in implementation.

Solution: Using metrics to analyze metamodel concept’s representation allows the language
engineer to reason on how different concept modeling will impact the quality in use of the DSL.
Applying internal and external quality metrics we can reason about syntax dependences (i.e.

metamodel’s features) and their relation (i.e. meaning that they give).

Ideally the language engineer should be able to understand how changes and variations in the
metamodel’s design influence functionality, operability and overall usability of the language.
With this knowledge he can measure and decide the importance of quality attributes to achieve
the end goal and therefore which ones should be targeted and subsequently validated.

Not all metrics and measurements contribute to this end as they might not provide important
feedback regarding quality improvement. The most significant metrics analyze direct DSL usage
by DSL users and extract information from the gathered DSL corpus.

Clone Analysis: Like in GPLs, duplicated code is a very well-known code smell that
indicates modularization problems[21]. In DSLs corpus, more than a need to modularize,
the existence of several clones, consistently showing up with a given pattern, should
trigger our attention.

Cluster Analysis: Identifying clusters of domain concepts in the language corpus allows
the language engineer to evaluate if related concepts or concepts that are often used
together represent a sub-language within the DSL, i.e. how the changes in the corpus are
reflecting in the usability of the DSL. This is again a modularity issue, as clusters should
be, as much as possible, modularly independent from other clusters, thus usability issues in
one cluster should not influence other clusters.

Semantics-based Analysis: Performing language analysis on the metamodel might help
identify variations of the same meaning.

Usage Analysis: Metamodel elements with a high level of use by the users require more
thought and consideration according to usability than less used concepts.

Metamodel design Patterns: Specification of a metamodel is dependent on the designer’s
domain knowledge and language expertise. Thus, it is advisable to follow existing designs
patterns for metamodels.

Careful consideration of these and other available heuristics of actual usage of the DSL will
allow the language engineer to direct project resources to the most critical language features.

Example: Evaluating Pheasant is not a trivial task. Nonetheless, the physicist, who takes the role
of the query modeler, is immediately aware of the changes in the instances of the
meta-meta-model just by using the visual operators when modeling his query (see Fig. 5). This
picture represents the direct mapping that exists from the user actions in the model to the
metamodel of language.

For the first cycles, the influence of quality characteristics of the language corpora on the user
should be determined from user tasks. From these, and after the first quality assessment of the
metamodel, the language engineer identifies potential need for clones and clusters. For instance,
consider that the user identifies the need for two ways to accomplish the same thing, i.e. two
distinct processes leading to the same outcome. The language engineer needs to design this in the
metamodel. In this case the metamodel element representing the action needs sub-elements
representing the different variations of the same task. This need should then be validated by
discussing the true impact of these clusters and clones on the language’s usability. In later
validations of quality in use these agreements should be tracked, so as to understand if the
existing metamodel analysis premises are needed in the new version or if the scope changed.

Figure 5 – Corpora relation to the metamodel tasks (Taken from [8])

Related Patterns:

Conceptual Distance Assessment: The true impact of domains concepts in the quality in
use of the DSL is measured by Domain Concept Usability Evaluation.

Usability Requirements Testing: Domain Concept Usability Evaluation will also help
reduce the budget for usability testing by directing tests to the most essential language
features.

Known uses: Evaluation of concepts is performed using a conceptual dimensions
framework [22]. This approach is also used in user interfaces evaluation by building a conceptual
models [23].

2.4.4. Usability Requirements Testing

Problem Description: How to analyze if the goal usability requirements are being met by the
DSL.

Context: Satisfying the user’s needs should be the primary goal of a DSL. Therefore all DSLs
have a strong consideration for quality in use, i.e. usability. It is important not only to define
what are the principles by which the language is to be measured, i.e. which usability
requirements and quality attributes define if a specific language is usable or not, but also what
tests can be performed to ensure that the desired level of quality is achieved.

Forces:

Cost of Heuristic Validation: Heuristic validation can be a very time consuming task.
However, performing non-expensive heuristic validation, we can reveal lots of relevant
information about achieved level of usability.
Cost of User Evaluation with small number of participants: Validation of usability
with a small number of users between release cycles can identify lots of usability failures.

Iterative Feedback: All feedback collected can be used to create mean values for the
indicators of the next iteration cycles.

Solution: At the end of each iteration, a usability requirements testing stage is required to
evaluate if the current implemented features go towards the usability goals previously defined
[11, 24, 25].

When considering which tests to perform it is useful to consider the current state of the end
product. There are usually three different levels of usability testing, depending on the current
iteration:

• Initial developments or non-stable product versions should be tested by a very reduced set
of users, and test should be strictly focused on the features under development. Feedback
can be direct, e.g. through workshops and meetings, or through small questionnaires.

• Intermediate stable versions should be tested with a group of users that is representative
of the user group most directly related to the provided stable features. It is important to
test changes and variations between stable versions and also to test if previously validated
features continue to achieve the intended goal. Feedback can be achieved through
workshops and small questionnaires as in the previous stages but the questionnaires
should be extended to include all features being tested. At this stage it is useful to observe
and analyze user’s usage processes to detect small scale usability problems related to
automatic tasks and cognitive processes that usually are not reported.

• Release candidates are the most important focus of usability tests. The language engineer
should ensure that the users are allowed to perform the tests with a minimum of
interference and constrains. If a user cannot test due to a bug in the beginning of an
activity, the entire test process is undermined.

Additionally the language engineer should define, with the assistance of key users, a set of
heuristic based validation methodology that will allow validation of the DSL without direct user
intervention. These can be for instance a measure of user clicks to achieve a certain use case,
product performance and responsiveness, ability to rollback on user errors, content placement,
etc.

There are a few guidelines that should be followed to successfully perform usability tests:

• Test usability with real DSL users
• Ideally use real usage test cases rather than dummy examples. For the final stages of

development, a beta testing of a stable version of the DSL in real life usage environment
should be considered.

• Tasks and features being tested should be directly related to the goals and concerns of the
current iteration.

• All user feedback should be accounted for, even if no measure of importance can be
given to the feedback, it might serve to provide feedback on the user’s state of mind and
motivations.

• If possible allow for discussion. Users usually have different views of a same subject and
it is useful to allow them to debate these views in order to reach a common
understanding.

One important fact about usability testing is that tests should be targeted at the domain under
study. Some domains are more prone to accept some types of tests rather than others. It’s up to

the language engineer to detect these patterns and proceed accordingly.

Also, most users are not aware that test versions might have minor issues and bugs that where
not detected (ergo the need for tests). When encountering a fatal bug, most users will
immediately consider the implications of that bug if it were on a real case situation and the
setbacks it might cause. This is a potentially fatal outcome for the tests as users will be cautious
of accepting new versions for testing.

Example: Falling back to the Goal of the 5th iteration (Table 7), i.e. knowing how easy the
language is to learn and use, Usability tests are constructed following the next table.

Table 13 – Usability testing

Usability measures Test types Treatmant

Effectiveness - error rates while user completes querying sentences Immediate comprehension Learning

Efficiency - time spent to complete a query Reviews Learning, Testing

Satisfaction - confidence feedback about query Final exams Testing

The testing instruments were developed as Evaluation Queries and Feedback questionnaires.

Evaluation Queries are given in four levels of complexity. Queries are given in natural language
English to be rewritten in the previously learned language (i.e. Pheasant). For each of the
queries, time taken to reply them is taken. In the Pheasant project, queries were evaluated
according to an error rate scale (0-5) and correctness was measured according to a
self-assessment by the subject of his reply, essentially rating his feeling of the correctness of the
answer. The rates were: totally correct (TC), almost correct (AC), totally incorrect (TI), not
attempted (NA).

After each session, the participants were asked to judge the intuitiveness, suitability and
effectiveness of the query language. After the tests are completed, the participants were asked to
compare specific aspects of query languages. They rated which query language they preferred
and to what extent. After the evaluation session the participants were asked to write down
informal comments and suggestions for improving the language.

Example of result analysis of confidence with using the language constructs is given in

Table 14 – Language constructs analysis

Pheasant / BEE Non-P P Mean

Structuring the query 5/1 4/4 4.5/2.5

Different data schema feature 3.5/1 3.5/3 3.5/2

Expressing filter conditions 5/1 4.5/2 4.75/1.5

Expressing and using vertexing 5/1 5/4 5/2.5

Expressing the result set 5/1 5/3.5 5/2.25

Expressing a decay 5/1 4.5/2 4.75/1.5

Path expressions 5/3.5 3/5 4/4.25

Expressing and using UDFs 4.5/1 3.5/5 4/3

 4.8/1.3 4.2/3.9

 Related Patterns:

 Iteration Validation: the tests performed in Usability Requirements Testing are used to
supply feedback to each Iteration Validation.

Usability Requirements Definition: Feedback data collected can help define next
iteration usability requirements.

Domain Concept Usability Evaluation: The users’ feedback provides a good starting
point to define which domain concepts are correctly mapped and which pose problems.

Experimental Language Evaluation Design: Usability Requirements Testing is
complementary to Experimental Language Evaluation Design as the goals and test
methodology differs.

Known uses: This approach originates from usability engineering [2]. Its application can be seen
in existing usability evaluation examples [9], [26], [27].

2.4.5. Experimental Language Evaluation Design

Problem Description: How to design and control the process of empirical experimentation to
achieve language evaluation.

Context: Using Iterative User-Centered DSL Development Process, not all iterations require
full-fledged evaluation in order for the requirements to be considered successfully achieved.
However, presenting to the DSL user a final version of the language without it being thoroughly
and extensively tested by DSL users in a real-life use case is not an ideal solution. Nonetheless
option is used many times due to the complexities of performing experimental evaluation with
DSL users.

Forces:

Experimentation definition: The definition of the experimentation expresses something
about why a particular language evaluation was performed and may help justify the
budget assigned to this type of validation [28].

User Expectations: The expectations of users need to be managed and evened out prior
to the experiment, otherwise there is a high chance of impact in the end result: an
extremely good result, if expectations are low or a poor result in case of high
expectations.

User Distribution: Ensuring that experimental evaluation is performed with an
equatitative distribution of users representative of the most influential groups will reduce
selection bias and ensure the end results will be representative of the goal real life usage.

Hypothesis Guessing: The language engineer and development team through experience
usually have a pre-conceived idea of the hypothesis result. This can influence the
behavior of the experiment’s participant.

Solution: When a release candidate version of the DSL for a specific target user group seems to
be ready for deployment, an experimental usability validation should be performed with real
users and real test case scenarios.

Experiment planning expresses something about how it will be performed. Before starting the

experiment, some considerations and decisions have to be made concerning the context of the
experiment. The language engineer needs to define:

• Problem statement
• The hypotheses under study, i.e. what composes the claim that the DSL is in

accordance with the users’ definition of quality in use; The hypothesis usually can
be supported or refuted, but not proven;

• The set of independent and dependent variables that will be used to evaluate the
hypotheses. These have to be correctly chosen in order to provide results with any
measure of statistical validity;

• What are the user groups represented in the experiment and how and which users
are to be select;

• The experiment’s design
• Instrumentation design, i.e. the artifacts used in the experience (e.g.

questionnaires).
• The means to evaluate the experiment’s validity.

Only after all these details are sorted out should the experiment be performed. The outcome of
planning is the experimental language evaluation design, which should encompass enough
details in order to be replicable by and independent source, case the need arises.

Experimental evaluation is based on quantitative evaluation of measurable properties collected
from real scenarios. In this case, the aim of the experiment is to support or refute the hypothesis
that the end result DSL has a direct and positive impact on usability and user performance.

Example: Following with the example of Pheasant and experimental evaluation models [29], we
define the problem statement as a confluence of the academic context in which Pheasant is to be
used. Therefore usability objectives and the experiments to measure these objectives have to take
into account this context, i.e. academic level of the users, purpose, objectives and goals. This will
help model a problem statement that encompasses all contextual aspects (Figure 2).
The context of an experiment determines our ability to generalize from the experimental results
to a wider context. However, regardless of the specific context of the experiment, there are a
number of context parameters that remain stable and their value is the same for all the subjects in
the experiment.

Thus, having an instrument design model definition makes the task of analyzing the feedback
received for target features across different iterations and users a much easier task. Modeling
instruments is also useful to measure the independent tasks that directly impact usability.
Experimenters in human factors have developed a list of tasks to capture particular usability
aspects (Sentence writing; Sentence reading, Sentence interpretation, Comprehension,

Memorization and Problem solving).

Figure 6 –Pheasant experimental Problem Statement model

Figure 7 – Pheasant experimental Context model

For Pheasant, the language engineer defined two types of instruments for the experimentation:
Task Questionnaires, designed to capture Sentence Writing, Memorization and Problem Solving,
and Feedback Questionnaires, which are used to get better insight in users satisfaction, and
additional recommendations.

Figure 8 – Pheasant experimental Instrumental design model

The language engineer should clearly define the profile of the participants and the artifacts that
are involved in the experiment.

Figure 9 – Pheasant experimental Sample design model

Quality focus needs to be defined through criteria, which can be recursively decomposed into
sub criteria. For each criterion we should specify different recommendations, i.e. positive
assessments that characterize criteria. We should specify a weight for each recommendation to
define which of them are more important than others for the subjects involved in the
experimental evaluation.

Evaluations of each quality criteria should be performed through methods that are specified by
metrics and/or practices. Metrics gives us numerical results that can be comprised between some
limits when defined, while practice can be either a pattern or an anti-pattern, applied at the
process level, or on a language. Both are directly evaluated on the experiment subjects’ trough
recommendations [30].

When a result of the evaluation does not satisfy the expected level of quality in use, the designer
will need to increase the quality by setting a transformations or set of transformations. These
transformations are related to language artifacts on which the evaluation was performed.
Iterations can be done in same experimental settings until the desired quality is reached.

Figure 10 – Pheasant experimental Quality Design model

The analysis techniques chosen for the language evaluation experiment depend on the adopted
language evaluation design, the variables defined earlier, and the research hypotheses being
tested. More than one technique may be assigned to each of the research hypotheses, if
necessary, so that the analysis results can be cross-checked later. Furthermore, each of the
hypotheses may be analyzed with a different technique. This may be required if the set of
variables involved in that hypothesis differs from the set being used in the other hypotheses
under tested.

Figure 11 - Pheasant experimental Hypothesis and Variable design model

Related Patterns:

Usability Requirements Definition: The requirements defined will be validated at this
stage. Also, if the development cycle is not yet complete, the feedback from Experimental

Language Evaluation Design is fed back into Usability Requirements Definition to
redefine the goals of the next iteration evaluation.

Usability Requirements Testing: Experimental Language Evaluation Design is
complementary to Usability Requirements Testing as the goals and test methodology
differs.

Known uses: Detailed evaluation design is used in both usability engineering and experimental
software engineering. This approach is modeled from the language comparison from [31] and
discussed in [29].

3. RELATED WORK

There is a related line of work on Human Computer Interaction patterns, branching areas like
ubiquitous systems [32], web design[33], safety-critical interactive systems [34], as well as more
general interaction design languages [35-38]. Although HCI has a large focus on usability, the
patterns available mainly avoid process patterns and prefer patterns that represent actual usable
human interaction artifacts[39], like News Box, Shopping Cart or Breadcrumbs.

Spinellis [40] presents a pattern language for the design and implementation of Domain Specific
Languages. Contrary to ours, these patterns refer to concrete implementation strategies and not to
the process of building the DSL or usability concerns. Günther [41] presents a pattern language
for Internal DSLs. These patterns mainly focus on how to map domain concepts to language
artifacts and follow by implementing said artifacts with a general purpose language capable of
supporting internal languages. In [42] Jones, Dunnavant and Jay present a pattern language that
handles the language part of DSL design. It presents patterns such as Key-value Pairs, Semantic
Evaluator or Language Composition that describe language implementation features.

Much of our patterns are based upon Völter and Bettin’s pattern language for model driven
software development(MDD) [13]. These patterns represent a well-rounded view of MDD but
they do not explicitly account for the importance of Usability in DSLs and therefore do not give
explicit instructions on how to test and validate usability of the end product. It is our opinion that
our pattern language can be composed with Völter and Bettin’s to produce a more complete
version of a pattern language for MDD with usability concerns. To the best of our knowledge,
ours is the only pattern language focusing on Domain Specific Language development process
with user centered design.

As for usability, there are not many patterns or pattern languages available to cover usability
concerns. Folmer and Bosch[43] developed a usability framework based on usability patterns to
investigate the relationship between usability and software architecture. This work however has
little relation to usability tests and to the development of usable software through usability
validation. Thy instead map well know HCI patterns, such as Wizard, Multi-tasking and
Model-View-Controller to quality attributes and usability properties. However, this is somewhat
related to our Conceptual Distance Assessment pattern and the framework could in theory be

used to identify the mappings between domain concepts and quality attributes. Ferre et al’s
software architectural view of usability patterns [44] follows a similar approach. Graham’s
pattern language for web usability [45] deals with usability evaluation and usability testing
process. However, we feel that his patterns are hard to follow due to the number of patterns and
lack of formal structure. Furthermore, Graham’s patterns are targeted at web-based software.
The pattern language most similar to ours is Gellner and Forbig’s Usability Evaluation Pattern
Language[46]. This pattern language is composed of thirty five patterns for usability testing. Of
those, the Eight Phase pattern represents a set of eight stages of the process of usability
evaluation. This is a similar approach to ours and has the merit of summarizing the process into a
single pattern. However, the goal of the pattern is to disseminate usability evaluation for small
scale projects while our pattern language considers small to large projects.

4. CONCLUSION

The software development industry is only now starting to invest effort in providing efficient
development strategies that consider usability. For the world of Domain Specific Language
Engineering, is a very important feature.

This paper describes a pattern language for evaluating the usability of domain specific languages.
The 17 patterns described here represent a collection of usability-oriented best practices,
collected from a wide set of domains, from GPL design to human computer interaction. Very
little work has been done in ensuring these best practices become standard practices in the DSL
world. This work intends to provide a platform to disseminate this knowledge and help bridge
the gap.

In the future we intend to refine this pattern language and continue to expand it. DSL
development is a new and exciting field and there is no doubt that many more patterns wait to be
found.

5. ACKNOWLEDGEMENTS

We would like to acknowledge CITI - PEst -OE/EEI/UI0527/2011, Centro de Informática e
Tecnologias da Informação (CITI/FCT/UNL) - 2011-2012) - for the financial support for this
work.

Besides, we would like to thank Uira Kulesza, whose comments have been incredibly helpful
and insightful. His shepherding helped us significantly improve the quality of this paper. We
would like to thank also to anonymous reviewers and to our program committee member Uwe
Zdun that was following the shepherding process.

REFERENCES

[1] A. Barišić, et al., "How to reach a usable DSL? Moving toward a Systematic Evaluation,"
Electronic Communications of the EASST (MPM), 2011.

[2] J. Rubin and D. Chisnell, Handbook of usability testing: how to plan, design and conduct

effective tests: Wiley-India, 2008.
[3] F. Buschmann, et al., "A system of patterns: Pattern-oriented software architecture," ed:

Wiley New York, 1996.
[4] A. G. Kleppe, Software language engineering: creating domain-specific languages using

metamodels: Addison-Wesley, 2009.

[5] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full code generation:
Wiley-IEEE Computer Society Press, 2008.

[6] ISO, "ISO/IEC 9241-11 Ergonomic requirements for office work with visual display
terminals (VDTs) -- Part 11: Guidance on usability," ed, 2001.

[7] C. Jones, Applied software measurement: assuring productivity and quality: McGraw-
Hill, Inc., 1991.

[8] V. Amaral, "Increasing productivity in High Energy Physics data mining with a Domain
Specific Visual Query Language," in Phd. Thesis, University of Mannheim, ed, 2005.

[9] A. Barišić, et al., "Quality in Use of Domain Specific Languages: a Case Study,"
presented at the Evaluation and Usability of Programming Languages and Tools
(PLATEAU) Portland, USA, 2011.

[10] P. Reisner, "Human factors studies of database query languages: A survey and
assessment," ACM Computing Surveys (CSUR), vol. 13, pp. 13-31, 1981.

[11] D. J. Mayhew, "The usability engineering lifecycle: a practitioner's handbook for user
interface design," The Usability Engineering Lifecycle A Practitioners Handbook for

User Interface Design, 1999.
[12] T. Catarci, "What happened when database researchers met usability* 1," Information

Systems, vol. 25, pp. 177-212, 2000.
[13] M. Völter and J. Bettin, "Patterns for Model-Driven Software-Development," presented

at the EuroPLoP'04, Irsee, Germany, 2004.
[14] C. Jones, "Software change management," Computer, vol. 29, pp. 80-82, 1996.
[15] A. Öztaş and Ö. Ökmen, "Risk analysis in fixed-price design–build construction

projects," Building and Environment, vol. 39, pp. 229-237, 2004.
[16] P. Carlshamre, "A usability perspective on requirements engineering: from methodology

to product development," Linköping, 2001.
[17] M. Alférez, et al., "A Model-Driven Approach for Software Product Lines Requirements

Engineering," presented at the 20th International Conference on Software Engineering
and Knowledge Engineering, San Francisco Bay, USA, 2008.

[18] M. P. Monteiro, "On the Cognitive Foundations of Modularity."
[19] D. Moody and J. van Hillegersberg, "Evaluating the Visual Syntax of UML: An Analysis

of the Cognitive Effectiveness of the UML Family of Diagrams," Software Language

Engineering, pp. 16-34, 2009.
[20] P. H. D. A. N. Genon, "Analysing the Cognitive Effectiveness of the BPMN Visual

Notation," Software Language Engineering, 2010.
[21] K. Beck, et al., "Bad smells in code," Refactoring: Improving the design of existing code,

pp. 75-88, 1999.
[22] T. Kosar, et al., "Comparing General-Purpose and Domain-Specific Languages: An

Empirical Study," Computer Science and Information Systems, vol. 7, pp. 247-264, 2010.
[23] J. Johnson and A. Henderson, "Conceptual models: begin by designing what to design,"

interactions, vol. 9, pp. 25-32, 2002.
[24] J. S. Dumas and J. Redish, A practical guide to usability testing: Intellect Ltd, 1999.
[25] J. Nielsen, Usability engineering: Morgan Kaufmann, 1994.
[26] N. S. Murray, et al., "Kaleidoquery--a flow-based visual language and its evaluation,"

Journal of Visual Languages & Computing, vol. 11, pp. 151-189, 2000.
[27] T. Conte, et al., "Usability evaluation based on Web design perspectives," 2007, pp. 146-

155.

[28] V. R. Basili, "The role of experimentation in software engineering: past, current, and
future," presented at the 18th International Conference on Software Engineering (ICSE
1996), 1996.

[29] A. Barišić, et al., "Evaluating the Usability of Domain-Specific Languages," in Formal

and Practical Aspects of Domain-Specific Languages: Recent Developments, M. Mernik,
Ed., ed: IGI Global, 2012.

[30] A. García Frey, et al., "QUIMERA: a quality metamodel to improve design rationale,"
2011, pp. 265-270.

[31] M. Goulão and F. B. Abreu, "Modeling the Experimental Software Engineering Process,"
in 6th International Conference on the Quality of Information and Communications

Technology (QUATIC 2007), 2007.
[32] J. Roth, "Patterns of mobile interaction," Personal and Ubiquitous Computing, vol. 6, pp.

282-289, 2002.
[33] D. K. Van Duyne, et al., The design of sites: patterns, principles, and processes for

crafting a customer-centered Web experience: Addison-Wesley Professional, 2003.
[34] A. Hussey, "Patterns for safer human-computer interfaces," Computer Safety, Reliability

and Security, pp. 686-686, 1999.
[35] J. Tidwell, Designing interfaces: O'Reilly Media, Inc., 2005.
[36] V. A. Schmidt, "User Interface Design Patterns," ed: AIR FORCE RESEARCH LAB

WRIGHT-PATTERSON AFB OH HUMAN EFFECTIVENESS DIRECTORATE, 2010.
[37] M. Van Welie and G. C. Van der Veer, "Pattern languages in interaction design:

Structure and organization," in Interact'03, Amsterdam, Netherlands, 2003, pp. 527-534.
[38] T. OReilly. (2005, What is Web 2.0: Design patterns and business models for the next

generation of software. Available: oreilly.com
[39] M. Mahemoff and L. J. Johnston, "Usability Pattern Languages: the" Language" Aspect,"

2001, p. 350.
[40] D. Spinellis, "Notable design patterns for domain-specific languages," Journal of Systems

and Software, vol. 56, pp. 91-99, 2001.
[41] S. Günther, "Development of Internal Domain-Specific Languages: Design Principles and

Design Patterns," presented at the PLoP 2011, Portland, OR, USA, 2011.
[42] C. Schäfer, et al., "A Pattern-based Approach to DSL Development," in compilation of

the co-located workshops on DSM'11, TMC'11, AGERE!'11, AOOPES'11, NEAT'11, &

VMIL'11, Portland, Oregon, USA, 2011, pp. 39-46.
[43] E. Folmer and J. Bosch, "Usability patterns in software architecture," 2003.
[44] X. Ferre, et al., "A software architectural view of usability patterns," 2003.
[45] I. Graham, A pattern language for web usability: Addison-Wesley Longman Publishing

Co., Inc., 2002.
[46] M. G. P. Forbrig, "A Usability Evaluation Pattern Language."

