
1 / 24

Designing the Architecture of Clotho 3.0:
An Interactive Pattern Story

Ernst Oberortner, Swapnil Bhatia,

Douglas Densmore
Department of Electrical and Computer

Engineering
Boston University

{ernstl,swapnilb,dougd}@bu.edu

J. Christopher Anderson

University of California Berkeley
jcanderson@berkeley.edu

Abstract

The Clotho software platform is tailored for the synthetic biology domain and
offers a rich set of Apps to engineer novel biological systems. Clotho 2.0 has
several shortcomings regarding its architecture and data object model. In this
paper, we tell an interactive pattern story about the design process of the Clotho
3.0 architecture in order to overcome the drawbacks of Clotho 2.0, as well as to
address newly emerging functional and non-functional requirements. The pattern
story reflects our design decisions and solutions to prepare the Clotho 3.0
architecture for a pattern-based architecture review.

1. Introduction

Synthetic biologists engineer complex and novel living systems, which do not exists in nature.
This domain incorporates large amounts of biological data, such as the compositions of large
Deoxyribonucleic acid (DNA) sequences and meta-data information, for example, information
about the fabrication lab, literature information, assembly algorithms and trees, or bio-safety
features. Automated DNA fabrication methods, as well as software and computational tools
have gained momentum in the synthetic biology research domain. It is challenging to develop
user-friendly software tools that can keep up with the tremendous increase of biological data.

The Clotho software platform [XBB+11,DDJ+09] is tailored to manage large amounts of
synthetic biological data in relational data repositories. Clotho 2.0 offers a rich repertoire of
applications (Apps) that allow its users to create, query, modify, and operate on the biological
data located in the repositories. Since all Clotho components must reside currently at one
user’s local machine, we have identified the following shortcomings: (1) the users' software
environments are uncontrollable, (2) a versioning of each user's local Clotho installation is not
supported, (3) data inconsistencies among several data repositories are difficult to manage.
Also, Clotho's current architecture makes it difficult for the App developers to extend the data
object model for user- or lab-specific requirements, as well as to integrate the new App into
an existing Clotho installation.

To overcome these shortcomings, we have designed a new architecture for Clotho 3.0. In this
paper, we prepare the new architecture for a Pattern-based Architecture Review (PBAR)
[HA11] by telling an interactive pattern story. The story serves as a vehicle to demystify the

2 / 24

architectural design decisions taken during the design process [TA05]. Our story's patterns
stem from various pattern books, such as the Design Patterns [GHJ+95] book and the POSA
series [BMR+06, SSR+00, POSA4]. The storytelling is based on the stories told in [BHS07b],
and [SP09]. Ultimately, we utilize a Data Flow View [AZ05] to illustrate the Clotho 3.0
architecture and its operating data object model. However, we do not present any technical
details about the architecture’s implementation, the data exchange, and the data storage.

This paper is structured as follows: The next section, Section 2, gives basic background of the
synthetic biology domain. In Section 3, we explain Clotho 2.0's architecture and its
drawbacks, and we list the requirements on the new architecture. In Section 4 we tell the
interactive pattern story about the architecture’s design process and how the architecture
tackles its requirements. Then, in Section 5 we present the resulting Clotho 3.0 architecture
and data object model. The paper concludes and presents future work in Section 6.

2. What is Synthetic Biology?

Synthetic biologists try to construct novel biological organisms, which do not exist in nature
and behave in a predictable and controllable way. Therefore, well-engineered biological
components, such as promoters, ribosome binding sites, and genes are synthesized [BS05,
KC10]. Deoxyribonucleic acid (DNA) serves as the storage molecule of biological information
for the construction and function of cells. DNA is interpreted to build a protein through a two-
step process: transcription and translation. Transcription is the process during which mRNA
(messenger ribonucleic acid) is transcribed from DNA by RNA-polymerase. Translation is the
process of translating the transcribed mRNA to a protein, by using a ribosome molecule
according to the genetic code [TT03].

Synthetic biologists try to construct novel strands of DNA that produce proteins that behave in
a predictable way [End05]. The transcription and translation processes include various
functioning and well-engineered genetic parts. For example, a promoter part initiates the DNA
transcription and a terminator terminates the DNA transcription. Transcription factors enhance
or repress promoters. A ribosome-binding site (RBS) is an un-translated sequence important
for the translation process. Such parts are of particular importance in synthetic biology in
order to construct devices that behave in a controlled and predicted way.

To enhance the understandability of synthetic biology, we draw an analogy between logical
gates and genetic devices. A logical NOR gate (see Figure 1) has two input signals and one

Figure 1: Logical NOR Gate

3 / 24

output signal that depends on the two input signals. The output signal is “on” only if both input
signals are “off”. In an equivalent way it is possible to control – turn “on” or “off” – the
expression of genes.

Similarly, a genetic NOR gate [Voi06] (see Figure 2) is a device that contains several genetic
parts of DNA. It starts with two inducible promoter parts, which initiate – dependent on their
input signals – an expression of a reporting gene (Reporter), such as a green fluorescent
protein (GFP). Input signals are environmental signaling molecules that can chemically bind
to the promoters. If both input signals are “on” or one of them, then the repressor part will
repress the red downstream promoter, and ultimately the reporting fluorescent protein will not
glow green. If both input signals do not bind to the inducible promoters -- the input signals are
“off” -- the repressor part allows the red downstream promoter part to initiate the reporter part,
making ultimately the green fluorescent protein glow.

Synthetic biology encounters various interesting applications, such as the production of
biofuels, the creation of tumor killing bacteria, or the fabrication of biosensors. For biosensors,
for example, genetic gates can be wired together into more complex circuits in order to detect,
for example, arsenic in water. Software and computational tools facilitate the specification and
design of novel genetic systems, as well as to automate the physical assembly of DNA using
liquid handling robotics. Also, software tools tailored for the synthetic biology domain need to
scale appropriately to manage the increasing amount of novel biological data.

Figure 2: Genetic NOR Gate

4 / 24

3. The Clotho 2.0 Architecture, its Shortcomings, and Requirements

Now, we explain the Clotho 2.0 architecture and its drawbacks, followed by a description of
requirements for the Clotho 3.0 architecture. In this section, as well as in the rest of the paper,
we differentiate between Clotho users and Clotho clients. A Clotho user is an individual, such
as a synthetic biologist, who utilizes Clotho and its Apps to design a novel biological system,
for example, to cure cancer. Therefore, the Clotho user utilizes a Clotho client, which is
Clotho’s software component that offers various Apps to the Clotho user in order to achieve
their work.

3.1 The Clotho 2.0 Architecture

In Clotho 2.0, the Clotho Core and the user-required Apps are installed at each user's local
machine. The Clotho Core builds the interface between the Apps and a Clotho database and
is responsible to retrieve and store the Apps' required data. From a pattern perspective, the
Clotho 2.0 architecture (see Figure 3) recalls the REPOSITORY [Shaw96] and the SHARED
REPOSITORY [VKZ04] architectural patterns.

However, Clotho 2.0 has several shortcomings. Every Clotho Core can have an additional
local database, and the Clotho user decides at Clotho's startup either to connect to the local
or to the remote database. However, it is not possible to synchronize the local database's
data with the data in a specified remote database. If the user decides to work on the local
database, then there is no way to push the local database's data into a remote database.
Also, a pull mechanism is missing to fetch data from a remote database into the local
database. If a Clotho user utilizes, for example, an App to fetch data from the connected
remote database and the requested data is not available, then an empty data set will be
returned. However, it is possible that the requested data resides in another remote data
repository. The loose coupling between the local and the remote data repositories, as well as
among the remote repositories, can result into serious data inconsistencies.

Figure 3: The Clotho 2.0 Architecture

5 / 24

Since it is difficult to define a data model that fits all kinds of Apps and users, Clotho 2.0 offers
a rich data model to store biological data, such as composite parts of DNA sequences, as well
as meta-information, such as fabrication lab or bio-safety information. From an App
developer's perspective, it can be difficult to squeeze the App's data into Clotho 2.0's data
model, since the data model does not offer extension points.

3.2 Requirements on the Clotho 3.0 Architecture

In this section we list the requirements of Clotho 3.0 that the new architecture should satisfy.
We differentiate between functional requirements (FR) and non-functional requirements
(NFR) [BMR+06]. First, we explain the non-functional requirements on Clotho 3.0:

NFR-1: Lighten the strong coupling between the Apps and the Clotho Core
In Clotho 2.0, the Clotho Core and the user’s Apps must be installed together on one
machine. Hence, the Apps and the Clotho Core are tightly coupled, which leads to the
aforementioned drawbacks (see Section 3.1). We envision a physical separation that is
transparent to the Clotho users to lighten the strong coupling between the Apps and the
Clotho Core.

NFR-2: Testability and Debugging Facilities
The Clotho 3.0 architecture should be modular in order to provide testing and debugging
facilities of common synthetic biological data flows. Such a data flow consists, for example, of
the retrieval of existing DNA parts, their synthesis into a complex system, and the final
storage of the new biological system into a data repository.

NFR-3: Scalability
Due to the desired physical separation of the Clotho Core and the Apps, the Clotho 3.0
architecture should support simultaneous communications between multiple Cores and
multiple Apps. Hence, the Clotho Core must be scalable and any performance drops should
not influence the Apps’ performance.

NFR-4: Quick data access and retrieval
Clotho's main application is to manage large amounts of biological data. Since data retrieval,
data modification, and data storage are subject to automation processes, Clotho 3.0 should
support an efficient retrieval and storage of the data.

Besides the non-functional requirements, Clotho 3.0 must also fulfill the following functional
requirements:

FR-1: Support of various types of clients and requests
Due to the desired separation between the Clotho Core and the Apps, Clotho 3.0 should
support multiple types of clients that host the Apps, such as lightweight clients, web-based
clients, or mobile clients.

The entire Clotho 2.0 infrastructure does not have any type of clients because the entire
Clotho software package is installed on one user's local machine. But, Clotho 3.0 should
provide a solution to integrate existing Clotho 2.0 clients seamlessly.

6 / 24

Because of the physical separation of the Apps and the Clotho Core, both have to
communicate with each other over a network. Therefore, various technologies should be
supported, such as web sockets or XML HTTP requests.

FR-3: Maintaining the state of the client's and the user's
Because various types of clients should be supported, it should be possible to keep track of
the clients’ state. For example, a Clotho user logs into Clotho to design a novel biological
system. Because the design process will not be finished within a normal working day, the user
should be able to resume the design process at any later time. Therefore, Clotho 3.0 should
provide session handling.

FR-4: Asynchronous data exchange
Clotho users should be able to continue their work while they are waiting until the Clotho Core
responds the requested data. Clients should not stall in the meantime, and hence,
asynchronous data exchange between the Clotho clients and the Clotho core must be
supported.

FR-5: Notify users about relevant data changes
Clotho 2.0 offers an “Auto Update” feature, making it possible to pull updated software
versions from the Clotho software repository, such as the Clotho Core or of a particular App.
For Clotho 3.0 it is desired to notify the Clotho users automatically if there are not only new
software versions available, but also new biological data, such as novel parts of DNA
sequences.

FR-6: Support of management facilities
Clotho 2.0 does not offer any kind of management facilities, such as to monitor the status of
the data repositories or to configure and install pre-packaged Clotho App solutions for users.
However, in Clotho 3.0 we envision user-friendly management interfaces that are accessible,
for example, over the web.

FR-7: Extensible Data Object Model
The data object model of Clotho 2.0 is rich, however, it does not provide any extension points
to customize it for new Apps, as well as for individual Clotho users and/or laboratories. In
Clotho 3.0 we must improve this major shortcoming of Clotho 2.0.

7 / 24

4. The Interactive Pattern Story

In this section, the paper's main contribution, we tell an interactive pattern story about the
design process of Clotho's new architecture and its data object model. The story reflects the
taken design decisions in order to fulfill the aforementioned requirements. We recall the
problem and solution statements of the story's pattern in the Appendix.

Every step in the story ends with choices how to proceed reading the story. It is your decision
how you want to read the story. Our story offers three options to start:

Option 1: If you are interested in the design steps of the Clotho 3.0
architecture, then start reading the story with Step 1.
Option 2: If you are interested in the architecture's data object
model, then start with Step 7.
Option 3: If you don’t want to experience our design process, then
you can see the resulting architecture and its data object model in
Section 5.

Step 1: Lighten the coupling between the Apps and the Clotho Core
In Clotho 2.0, the Apps and the Clotho Core are tightly coupled and installed together on a
Clotho user's local machine. We started to think about “How can we lighten the strong
coupling between the Apps and the Clotho Core?” (NFR-1).

Since we had already a separation between the Application Logic (i.e. the Apps) and the Data
Access Logic (i.e. the Clotho Core) we thought about “Why do we not separate the Apps and
the Clotho Core physically?” The Apps can send requests to the Clotho Core in order to fetch
or store biological data. Hence, we decided in favor of a CLIENT/SERVER [AZ05] architectural
style. The separation into a client and a server component improves the testing and
debugging facilities (NFR-2), since both components can be tested and debugged separately.

Option 1: If you want to know how we designed the Clotho Core as
a server component, then go to Step 2.
Option 2: If you are interested how Clotho 2.0 clients can get
extended in order to access the Clotho 3.0 server, then go to Step
6.

Step 2: Design of the Clotho Core
As a next step, we discussed about “How should we design and structure the Clotho Core in
order to fulfill the requirements as good as possible?”

In order to answer this question, we first defined the duties and responsibilities of the new
Clotho core. We agreed on three inter-related responsibilities: (1) handle to communication
between the clients and the Clotho core, (2) do the processing of the clients' requests, and (3)
access the data repositories. As a result, the new Clotho Core consists of three LAYERS
[BMR+06]: the Communication Layer (Layer I), the Request Handling Layer (Layer II), and
the Data Access Layer (Layer III).

8 / 24

Following the LAYERS pattern helps to satisfy the NFR-2 requirement – testability and
debugging facilities – in two ways. First, every layer and its consisting components can be
tested individually. Second, a layered architecture eases to follow the INDIRECTION LAYER
pattern [AZ05, Zdu03] in order to trace user requests to detect the origin of eventual bugs and
system failures.

Option 1: If you want to know how the Communication Layer was
being designed, keep on reading with Step 3.
Option 2: If you want to know more about the design of the
Request Handling Layer, then go to Step 4.
Option 3: If you are interested in the Data Access Layer, you can
skip to Step 5.

Step 3: The Clotho Core's Communication Layer
The Communication Layer of the new Clotho architecture receives requests from the clients
and responds to the clients accordingly. One of the first questions that arose during our
design sessions, were “How can the Communication Layer support various types of clients
and request formats (FR-1)?”

We decided to deploy a Router component that forwards the incoming requests depending
on their types. This solution recalls the MESSAGE ROUTER pattern [HW03]. Regarding the
MESSAGE ROUTER pattern, every request gets forwarded to another component via a MESSAGE
CHANNEL. But, to which component does our Router forward the incoming requests? We
introduced a Listener component that serves every type of request that the Clotho Core
supports. Adding a new request type requires, however, to re-configure and extend the
Message Router and to deploy a new Listener. To add new request types, we plan on utilizing
PLUGIN patterns [Mar99].

The Listener component forwards the request to an appropriate component in the Request
Handling Layer, which does the actual request processing. This separation recalls the
FORWARD-RECEIVER pattern [BMR+06]. The request forwarding from the Communication
Layer to the Request Handling Layer resembles the INDIRECTION LAYER [Zdu03]
architectural pattern.

Option 1: If you are interested in the further components of the
Communication Layer to achieve Session Handling (FR-3) and
Asynchronous Data Exchange (FR-4), then keep on reading.
Option 2: If you want to get more information about the Request
Handling Layer, then go to Step 4.
Option 3: If you are interested in the Data Access Layer, then skip
to Step 5.

Step 3.1: Session Handling Support
Although Clotho offers various Apps to support synthetic biologists in the design of novel
biological systems, the design process is tedious. Similar to software architectures, novel
biological systems are not fully designed within one design session. Hence, one further
question was “How should the Clotho 3.0 architecture support session handling?”

9 / 24

We had a look into the pattern literature and discovered a paper on session patterns [Sor02].
Especially the KEEP SESSION AT THE SERVER pattern got our attention. We have integrated
a Mind component into the Communication Layer that stores the session information of every
Clotho user, making it possible to satisfy the requirement FR-3. However, we do not present
any further technical details how the Mind stores the session data in this manuscript. In the
Clotho 3.0 architecture, the Router component requests the Mind component to get the user's
current session data.

Option 1: Go to the next step (Step 3.2) if you want to know how
we augmented the Communication Layer to support asynchronous
data exchange.
Option 2: If you are interested in the Request Handling Layer's
components, then go to Step 4.
Option 3: If you want to experience the components of the Data
Access Layer now, then go to Step 5.

Step 3.2: Support of Asynchronous Data Exchange
Whenever a Clotho client sends a request to the Clotho server, the client should not stall. For
example, the verification of a designed synthetic biological system against bio-safety and
biophysical requirements, can take a long time. In such a case, Clotho users should be able
to continue their work while they are waiting for the server's response. How does the Clotho
3.0 architecture support asynchronous data exchange?

We had a look into the pattern literature and discovered a book about Remoting Patterns
[VKZ04]. In this book, the authors explain patterns for an asynchronous data exchange. To
fulfill the requirement FR-4, we integrated a Callback-Handler component into the
Communication Layer, which follows the RESULT-CALLBACK pattern to support asynchronous
data exchange. The Callback-Handler is responsible to respond the requested data to the
clients. The Listener component of the Communication Layer instantiates an appropriate
Callback-Handler by following the FACTORY METHOD pattern [GHJ+95] and forwards a
reference to the instantiated Callback-Handler to the Request Handling Layer.

Now, you have experienced the Communication Layer of the Clotho 3.0 architecture. It
consists of four inter-related components, i.e. the Router, the Listener, the Mind, and the
Callback-Handler.

Option 1: In the next step (Step 4), we explain the design of the
Request Handling Layer and its components.
Option 2: If you are, however, interested in the Data Access Layer,
which builds upon the Request Handling Layer, then go to Step 5.

Step 4: The Clotho Core's Request Handling Layer
In one of our design sessions we came across the design decision about how the actual
process handling should be handled. Regarding the stated requirements, the Clotho
architecture should be able to process requests of multiple clients simultaneously (NFR-3).
The ultimate question was “How can we build a scalable request processing architecture?”

10 / 24

Again, in the pattern literature we found advice how to achieve a well-established solution.
The data exchange between client and server follows the COMMAND PROCESSOR pattern
[BMR+06] that builds on the COMMAND pattern [GHJ+95]. In the Request Handling layer we
integrated an Executor component, which receives the incoming request objects from the
Listener component of the Communication Layer. The Executor unwraps the requests' data
objects and instantiates an Assistant following the FACTORY METHOD pattern [GHJ+95], which
perform the actual processing of the data objects. An Assistant calls the Data Access Layer to
access the data stored in the data repositories. To return the result to the requesting client,
the Assistant invokes the assigned Callback-Handler.

Ultimately, the Clotho 3.0 architecture achieves load balancing – according to the LOAD
BALANCER pattern [Sor02] – via four collaborating components: the Router and Listener
components of the Communication Layer, and the Executor and Assistant components in the
Request Handling Layer. The collaboration of the Listener and the Executor resembles the
FORWARD-RECEIVER pattern [BMR+06].

Option 1: To experience the Data Access Layer and its
components keep on reading with the next step (Step 5).
Option 2: If you are interested in the integration of the
management facilities into the architecture, then go to Step 6.
Option 3: If you want to discover the data object model now, then
skip to Step 7.

Step 5: The Clotho Core's Data Access Layer
We dedicated some of our design sessions to a come up with appropriate data access and
storage solutions. In these design decisions we were stating questions about “How should the
Clotho 3.0 architecture be designed to satisfy the requirement regarding efficient data access
(NFR-4)?”

The Data Access Layer of the Clotho 3.0 architecture builds on the Request Handling and
consists of components to store and retrieve the in the client request specified data objects.
The Collator component provides an API to the Request Processing Layer to fetch and
retrieve data objects from the data repositories. The Collator fetches the requested data
objects first from the Collector, which is a cache the holds frequently used objects in-memory
for efficient data retrieval. If the requested data is not in the Collector (i.e. the cache), the
Collator must query the data from the Persistor component, which is responsible for the
physical data retrieval from the appropriate data repositories.

If the data objects are serialized to flat files, the Collator also manages and organizes the
indexing mechanisms. The Collator component assembles three patterns:

• An EXPLICIT INTERFACE [BH03] that provides an API to store, to retrieve, and to
manage data in the data repositories.

• An OBJECT MANAGER [BH03] to checks the clients' session information in order to
protect the data from illegal access, and

• A CACHE ACCESSOR [Noc03] to separate the caching logic from data access details.

11 / 24

Since the Collector component is a cache to keep frequently accessed data objects in
memory for efficient data retrieval, the Collector can be seen as a CONTAINER [BHS07a].

The Persistor component is an EXPLICIT INTERFACE since it provides an interface to a
physical storage subsystem to store and fetch data objects physically from the data
repositories. The Persistor also follows the HOST ACCESS patterns (Host Communication
Agent; Flat File Write), as well as the SERIALIZER pattern [RSB+98].

Now, you know the layered architecture of the Clotho core, how the layers are build on each
other, and how each layer's components interact with each other.

Option 1: If you want to learn how Clotho 3.0 utilizes patterns to
support Clotho 2.0 clients, then keep on reading with the next step
(Step 6).
Option 2: If you are interested in the augmentation of the
architecture with management facilities, then skip to Step 7.
Option 3: If you want to experience the extensible data object
model of Clotho 3.0, then go to Step 8.

Step 6: Support of Clotho 2.0 Clients
One of the biggest challenges that we were facing is “How can Clotho 2.0 clients be
integrated into the Clotho 3.0 infrastructure?” Which well-proven solutions do exists in order to
overcome this problem?

After having a look into the pattern literature we came up with two possible solutions: Utilizing
the BROKER pattern and/or the PROXY pattern [BMR+06]. Both are effective solutions to
integrate Clotho 2.0 clients into a Clotho 3.0 infrastructure.

Option 1: If you want to know about the architecture's management
facilities, then keep on reading with Step 7.
Option 2: Go to Step 8 now if you want to experience Clotho's new
data object model.
Option 3: If you want to stop reading the story now, then you can
go to Section 5, in which we visualize and exemplify the resulting
architecture and its data object model.

Step 7: Integration of Management Facilities
After we have had designed the architecture's layers, their components, and their interactions
we started to discuss about addressing FR-6. How should we provide management interfaces
and pre-packaged App solutions to the Clotho users?

As a result, each Clotho server is equipped with a Management component to maintain and
monitor all resources and components of the corresponding server. In our design session, we
decided that the architecture's management facilities should also be responsible to notify
users about relevant data changes (FR-5). Therefore, we follow the PUBLISHER-SUBSCRIBER
pattern [BMR+06]. First, the Clotho users must specify about which updates they want to be

12 / 24

notified. This information can be stored at the server, for example, in the user's Certificate
object. The Manager component can be utilized (1) to subscribe and unsubscribe users and
clients to and from specific topics and (2) to manage topics. The Mind component of the
Communication Layer stores the data updates to the user's sessions and, hence, can notify
the users appropriately.

The Manager component is also connected to the App Store, a CONTAINER [BHS07a] of all
available Clotho Apps and libraries. Apps are lightweight containers that encode a list of
Libraries. Libraries are the portable version of the data objects held by components of the
Data Access Layer, i.e., Collator, Collector, and Persistor. Apps represent PLUG-INs and the
App Store follows the PLUG-IN REGISTRATION pattern [Mar99].

Clotho administrators can handle the installation, removal, and update of Apps for specific
Clotho users via the Manager component. Clotho Apps encode a list of Libraries, which are
portable data objects held by the Collator, the Collector, and the Persistor. If you go into the
App Store and browse it as a developer, you are likely looking for libraries. If you browse it as
a user, you see Apps, which are finished tools. When a Clotho Core is asked to install an
App, it sees what of that list of Libraries it is missing, downloads and adds them.

Option 1: If you are interested now in the design of Clotho's data
object model, then keep on reading with Step 8.
Option 2: If you are interested in a graphical representation of the
architecture, then continue reading with Section 5.

Step 8: Clotho 3.0's Data Object Model
Since Clotho 2.0 offers a rich data object model already, we did not want to change it
completely. We just wanted to modify it in a way that it is easy to extend and customizable
(FR-7). We started to discuss about “How can we achieve this”?

In the pattern literature we endeavored patterns how to design the data object model for being
extensible. The Datum class is the root of the data object model, which is an EXTENSION
INTERFACE [SSR+00]. Following the OBJECT IDENTIFIER pattern [Kel98], the Datum class
holds an UUID attribute, making it possible that every data object has a unique identifier.

For the time being, the Clotho data object model provides some pre-defined sub-classes, i.e.
User, Doo, and Certificate. The User classes deal with user management issues. In order to
detect failures, data flows – tracked by the Doo objects – can be traced/logged through the
entire architecture in every component, making it also possible to debug Clotho's architecture
easily (NFR-2). Certificate classes deal with user management and authentication
mechanisms.

The Datum class can be extended individually with user-required functionalities. However,
introducing new Datum sub-classes requires the implementation a new Assistant that is able
to process the objects of the newly introduced Datum subclass. As explained in Step 4,
Assistants reside in the Request Handling Layer, and the architecture's implementation
follows the PLUGIN patterns [Mar99] in order to integrate new Assistants easily. In order to
store individual Datum objects in the data repositories, the ObjBase class must be extended

13 / 24

and a reference to a specific Schema object must be provided. Instances of the Connection
class have, for example, scripts that handle the communication with the Communicator
component of the Clotho core.

Also, the DataField class is an EXTENSION INTERFACE [SSR+00] that wraps primitive types,
such as Strings (cf. WRAPPER patterns [GHJ+95]).

Option 1: If you jumped directly into Step 7, then you go to Step 1
now to inform yourself about the design of the Clotho 3.0
architecture, its layers, and their collaborating components.
Option 2: If you are already aware of the architecture's layers and
its components, then you reached the end of the story. You should
now have a look into the resulting architecture in Section 5.

14 / 24

5. The Clotho 3.0 Architecture and Data Object Model

In this section, we present the outcomes of our design sessions, the Clotho 3.0 architecture
and its data object model. First, we present the architecture from a high-level perspective,
followed by an exemplified Data Flow View through the Clotho Core using a typical workflow
of the synthetic biology domain. The section concludes with the illustration of Clotho’s new
data object model.

5.1 A High-Level Overview of Clotho's new Architecture

In Figure 4 we give a high-level overview of the Clotho 3.0 architecture, where the clients, the
Clotho Core, and the data repositories are physically separated. However, the Clotho core
and the data repositories must not be physically separated necessarily. Clotho 3.0 supports
four types of clients: web-based applications, lightweight clients, mobile clients, and – to
maintain backward compatibility – Clotho 2.0 clients. Every server is connected to at least one
data repository, which is a database that contains the biological data corresponding to Clotho
3.0's data object model.

Figure 4: A High-Level Overview of the Clotho 3.0 Architecture

For example, to request biological data from a data repository, the client sends an appropriate
request to the server (i.e. the Clotho Core). The server processes the clients' requests,
performs the in the request specified operations on the data repository, and returns the
results back to the requesting clients.

15 / 24

5.2 A Data Flow View of the Clotho Core

In Figure 5 we illustrate how data flows through the layers of the Clotho Core using a typical
synthetic biological workflow. In this scenario, the Clotho user utilizes the EugeneScripter App
to write a Eugene script [BCW+11] to constrain the composition of parts of DNA sequences.

At the client side, the EugeneScripter App connects automatically to the server Clotho core at
startup. For authentication purposes, the Mind component evaluates the client's certificate
and creates a new session if the certificate is valid and no session is active. After successful
authentication, the user can now utilize the App, for example, to request stored DNA
sequences. The App initiates the underlying middleware (not shown in Figure 5), which
marshals and transmits the requests to the Clotho server.

At the server-side, the Router component of the Communication Layer retrieves the
encapsulated request, unwraps it, and – dependent on the connection type – instantiates an
appropriate Listener. Then, the Forwarder creates a Callback-Handler with the client and
request information in order to return the requested data accordingly. The Listener forwards
the request's data to an appropriate Executor of the Request Handling Layer, which itself

Figure 5: A Data Flow View of the architecture’s layers and collaborating components

16 / 24

instantiates an Assistant. The Assistant does the actual processing of the client request and
it receives a reference to the previous instantiated Callback-Handler.

In order to request the data repositories, the Assistant invokes an appropriate method of the
Collator component, which builds the interface between the Request Handling Layer and the
Data Access Layer. First, the Collator queries the requested data from the Collector
component, which has the functionality of a cache. If the data is present in the Collector, then
the Collector returns the data to the requesting Collator. If the data is not present in the
Collector, then the Collator invokes the Persistor component. The Persistor queries a data
repository for the requested data and returns the results to the Collator.

To return the requested data to the client, the Collator returns the data to the Assistant which
invokes the, to the request associated, Callback-Handler. At the client-side, the Clotho core
forwards the received data to the EugeneScripter App, which ultimately displays the data to
the user for further processing.

Not involved in this workflow are the Manager component and the App Store. For example,
the Manager is utilized to manage the users’ certificates to guarantee that only authorized
users can log into the system.

5.3 Clotho's new Data Object Model

In Figure 6 we sketch Clotho's data object model. The Datum class is the base class for
objects that can be persisted into data repositories. The Datum class is a lightweight bean
implementation to facilitate persistence and memory management. Each Datum has a
universal unique identifier (UUID), making every object stored in the data repositories unique.

The group of User classes represents information about individual Clotho users and can store
information, for example, when a user logged off or on.

In the Clotho data model, a Doo is a unit of work that a client initiates, making it possible to
manage, schedules, log, and track workflows. A Doo guarantees that the action requested
doesn't just disappear when it fails – it is tracked during execution to confirm that it
successfully completes. If something goes awry, a stack of Doos can be sent to the
development team in order to fix bugs. The name 'Doo' comes from modeling work in terms of
asynchronous execution of discrete tasks that need to be 'done on', 'done by', or 'are due on'.
Originally, a Doo is a Wrapper [GHJ+95] around a bolus of work that would be implemented
by an Assistant at some time scheduled by the Executor.

In the lower portion of Figure 6, we present the Primitives of the Clotho data model.
Primitives implement the DataField interface and are WRAPPERs [GHJ+95] around various low-
level data types, such as Strings, numbers, or lists. For example, a BoolField can only accept
a data change if it can be interpreted as being a boolean. Currently, there are a finite number
of data fields, but, additional data fields, such as an image data file, can be added easily.

17 / 24

Every ObjBase in the data model holds a reference to a Schema object. Schemas can be
recursively built-up from the DataField wrappers to handle low-level data validations. For
example, the Schema class can be instantiated with a 'Institution' DataField, where 'UC
Berkeley' or 'Boston University' is a StringField, representing its name. The 'Institution'
DataField is then referenced by an ObjBase object, which holds information about the
creation and last modification date. Since all Strings will ultimately get compressed to a
StringField, there are many ways to index a String’s content to facilitate meaningful queries in
the Collator component.

Certificate objects deal with user rights and data access permissions. Every Clotho user is
equipped with a certificate, hold and evaluated by the Mind. The Manager component can be
utilized to create, modify, and delete users and its certificates.

Figure 6: The Data Object Model of Clotho 3.0

18 / 24

6. Summary and Future Work

In this paper, we told an interactive pattern story about the design process of the Clotho 3.0
architecture. The new architecture follows a CLIENT/SERVER architectural style and tackles
several drawbacks of the Clotho 2.0 architecture. The story reflects the design decision that
we were facing in various design session in order to create an architecture that fulfills several
functional and non-functional requirements. In the story, we align the architecture's layers and
components with patterns from the pattern literature. After telling the story, we visualize the
architecture using a data flow view, based on a typical workflow of the synthetic biology
domain. The main idea is to illustrate the Clotho 3.0 architecture and the taken architectural
design decisions to pattern experts for a Pattern-based Architecture Review (PBAR).

As future work, we focus on communication solutions among multiple Clotho Cores. From a
synthetic biological standpoint, this is of interest because one Clotho Core can contact other
Clotho Cores if some requested biological data is not available. However, this is particularly
challenging because storing novel biological designs into one data repository can lead to data
inconsistencies with data that already exists in another data repository.

Acknowledgements

We gratefully thank our shepherd, Stefan Sobernig, who gave us constructive feedback to
improve the paper's quality. It was primarily Stefan's idea to tell the interactive pattern story.

References

[AZ05] P. Avgeriou and U. Zdun, Architectural Patterns Revisited – A Pattern Language
 In: Proceedings of 10th European Conference on Pattern Languages of
 Programs (EuroPlop 2005), Irsee, Germany (2005)
[BCW+11] L. Bilitchenko, A. Liu, S. Cheung, E. Weeding, B. Xia, et al. (2011) Eugene – A
 Domain Specific Language for Specifying and Constraining Synthetic Biological
 Parts, Devices, and Systems. PLoS ONE 6(4): e18882.
 DOI=10.1371/journal.pone.0018882
[BH03] F. Buschmann, K. Henney, Explicit Interface and Object Manager, EuroPLoP
 2003.
[BHS07a] F. Buschmann, K. Henney, D.C. Schmidt, Pattern-Oriented Software
 Architecture, Volume 4: A Pattern Language for Distributed Computing, Wiley,
 2007
[BHS07b] F. Buschmann, K. Henney, D.C. Schmidt, Pattern-Oriented Software
 Architecture, Volume 5: On Patterns and Pattern Languages, Wiley, 2007
[BMR+06] F. Buschmann; R. Meunier; H. Rohnert; P. Sommerlad, M. Stal. Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns, John Wiley &
Sons, 1996

[BS05] S. A. Benner and A. M. Sismour. Synthetic biology. Nature Reviews Genetics,
6(1), 2005. http://www.ncbi.nlm.nih.gov/pubmed/15995697

[DDJ+09] D. Densmore, A. Van Devender, M. Johnson, and N. Sritanyaratana, A platform-
 based design environment for synthetic biological systems. In The Fifth Richard

19 / 24

 Tapia Celebration of Diversity in Computing Conference: Intellect, Initiatives,
 Insight, and Innovations (TAPIA'09). ACM, New York, NY, USA, 24–29.
 DOI=10.1145/1565799.1565806
[End05] D. Endy. Foundations for engineering biology. Nature, 438 (7067):449–453,
 2005. ISSN 1476-4687. doi: 10.1038/nature04342.
[GHJ+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
 Reusable Object-Oriented Software. Addison-Wesley Professional, 1995.
[HA11] N. Harrison, P. Avgeriou, Pattern-Based Architecture Reviews, IEEE Software,
 vol.28, no.6, pp.66-71, Nov.-Dec. 2011, DOI=10.1109/MS.2010.156
[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building,
 and Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co.,
 Inc., Boston, MA, USA, 2003.
[Kel98] W. Keller, Object/Relational Access Layers – A Roadmap, Missing Links and
 More Patterns, In Proceedings of the Third European Conference on Pattern
 Languages of Programming and Computing (EuroPLoP), 1998.
[KC10] A. S. Khalil and J. J. Collins, Synthetic biology: applications come of age, Nature
 Reviews Genetics 11, 367-379 (May 2010). doi:10.1038/nrg2775
[Mar99] K. Marquardt, Patterns for Plug-Ins, In Proceedings of the Fourth European
 Conference on Pattern Languages of Programming and Computing (EuroPLoP),
 1999
[Noc03] C. Nock, Data Access Patterns: Database Interactions in Object-Oriented
 Applications, Addison-Wesley Professional, 2003. ISBN 0-13-140157-2.
[RSB+98] D. Riehle, W. Siberski, D. Baeumer, D. Megert, H. Zuellighoven, Serializer, in
 Pattern Languages of Program Design 3, Addison-Wesley, 1998, Chapter 17,
 293–312.
[SC97] M. Shaw and P. C. Clements, A Field Guide to Boxology: Preliminary
 Classification of Architectural Styles for Software Systems. In Proceedings of the
 21st International Computer Software and Applications Conference
 (COMPSAC), pages 6–13. IEEE Computer Society, 1997.
[Sor02] K. E. Sorensen, Session Patterns, EuroPlop 2002.
[SP09] J. Siddle and M. Platts, "Choose your own architecture" – Interactive Pattern
 Storytelling. In Transactions on Pattern Languages of Programming II, James
 Noble and Ralph Johnson (Eds.). Springer-Verlag, Berlin, Heidelberg 16–33.
[SSR+00] D. Schmidt, M. Stal, H. Robert, F. Buschmann. Pattern Oriented Software
 Architecture - Volume 2: Patterns for Concurrent and Networked Objects. ISBN:
 0-471-60695 2, Wiley & Sons, 2000.
[TA05] J. Tyree and A. Akerman, Architecture Decisions: Demystifying Architecture,
 IEEE Software, vol.22, no.2, pp. 19- 27, March-April 2005
 doi: 10.1109/MS.2005.27
[TT03] N. J. Trun and J. E. Trempy, Fundamental Bacterial Genetics. Blackwell

Science, 2003.
[VKZ04] M. Völter, M. Kircher, U. Zdun, Remoting Patterns - Foundations of Enterprise,
 Internet, and Realtime Distributed Object Middleware, Wiley Series in Software
 Design Patterns, ISBN: 0470856629, Wiley & Sons, Oct 2004
[Voi06] C. A. Voigt, Genetic parts to program bacteria. Current Opinion in
 Biotechnology, 17(5):548–557, 2006.
[XBB+11] B. Xia, S. Bhatia, B. Bubenheim, M. Dadgar, D. Densmore, and J. C. Anderson,

20 / 24

 Clotho v2.0: A Software Platform for the Creation of Synthetic Biological
 Systems, Methods in Enzymology, Volume 498, 2011.
[Zdu03] U. Zdun, Patterns of Tracing Software Structures and Dependencies, EuroPLOP
 2003.

21 / 24

Appendix: Related Patterns

LAYERS
[BMR+06]

Imagine that you are designing a system
whose dominant characteristic is a mix of
low- and high-level issues, where high-
level operations rely on the lower-level
ones.

Structure your system into an appropriate
number of layers and place them on top of
each other.

MESSAGE ROUTER
[HW03]

How can you decouple individual
processing steps so that messages can
be passed to different filters depending on
a set of conditions?

Insert a special filter, a Message Router,
which consumes a Message from one
Message Channel and republishes it to a
different Message Channel channel
depending on a set of conditions.

BROKER
[BMR+06]

When distributed components
communicate with each other, some
means of inter-process communication is
required. If components handle
communication themselves, the resulting
system faces several dependencies and
limitations.

Clients access the functionality of servers
by sending requests via a BROKER. A
broker's tasks include locating the
appropriate server, forwarding the request
to the server and transmitting results and
exceptions back to the client.

PROXY
[BMR+06]

We do not want to hard-code its physical
location into clients, and direct and
unrestricted access to the component
may be inefficient or even insecure.
Additional control mechanisms are
needed.

Let clients communicate with the data
repositories via a representative rather
than the data repositories itself. A PROXY
offers interfaces of the data repositories
and allows additional pre- and post-
processing, such as data access control.

COMMAND PROCESSOR
[BMR+06]

An application that includes a large set of
features benefits from a well-structured
solution for mapping its interface to its
internal functionality. You often need to
implement services that go beyond the
core functionality of the system for the
execution of user requests.

The Command Processor pattern builds
on the COMMAND design pattern
[GHJ+95]. Both patterns follow the idea of
encapsulating requests into objects.
Whenever a user calls a specific function
of the application, the request is turned
into a command object. The COMMAND
PROCESSOR pattern illustrates more
specifically how command objects are
managed.

FORWARD-RECEIVER
[BMR+06]

A common way to build distributed
applications is to make use of available
low-level mechanisms for inter-process
communication (IPC). These often
introduce dependencies on the underlying
operating system and network protocols.

Distributed peers collaborate to solve a
particular problem. A peer may act as a
client, requesting services, as a server,
providing services, or both. The details of
the underlying IPC mechanism for
sending or receiving messages are
hidden from the peers by encapsulating
all system-specific functionality into
separate components.

PUBLISHER-
SUBSCRIBER
[BMR+06]

A situation often arises in which data
changes in one place, but many other
components depend on this data. We are
looking for a more general change-
propagation mechanism that is applicable
in many contexts. When some internal
data element changes all clients that
depend on this data have to be updated.

One dedicated component takes the role
of the publisher (SUBJECT [GHJ+95]). All
components dependent on changes in the
publisher are its subscribers (OBSERVER
[GHJ+95]). The publisher maintains a
registry of currently subscribed
components. Whenever the publisher
changes state, it sends a notification to all

22 / 24

its subscribers. Whenever a client wants
to become a subscriber. it uses the
subscribe interface offered by the
publisher. Analogously,
it can unsubscribe.

CONTAINER
[BHS07a]

Components implement self-contained
business or infrastructure logic that can
be used to compose applications. Since
components may be deployed across a
diverse range of applications and
platforms, however, they cannot assume
specific execution scenarios and technical
environments.

Define a container to provide the
execution environment for a component
that supports the necessary technical
infrastructure to integrate components into
application-specific usage scenarios, and
on specific system platforms, without
tightly coupling the components with the
applications or platforms.

EXTENSION
INTERFACE
[SSR+00]

It is hard to design stable interfaces,
because requirements can change in
unanticipated ways after components
have been delivered and integrated into
applications. When not handled carefully,
these changes can break existing client
code that uses the components.

Program clients to access components via
separate interfaces, one for each role a
component plays, rather than
programming clients to use a single
component that merges all its roles into a
single interface or implementation. In
detail: Export component functionality via
extension interfaces, one for each
semantically related set of operations.
Every component must implement at least
one extension interface.

EXPLICIT
INTERFACE
[BH03]

A component represents an
implementation of a self-contained unit of
functionality and deployment with a
published usage protocol. Clients can use
a component as a building block in
providing their own functionality.
However, direct access to the full
component implementation would lead to
clients depending on the component
internals, which ultimately increases an
application’s internal coupling.

Separate the interface of a component
from its implementation so that the latter
can be modified transparently and
independently. Export the interface to the
clients of the component, but keep its
implementation and location private. A call
from the client through this explicit
interface will be to the component, but the
client code will depend only on the
interface and not on the component
implementation.

OBJECT MANAGER
[BH03]

Certain kinds of objects within an
application – in particular server-side
components, system resources, and
singletons – require access control and a
managed lifecycle. It is otherwise hard to
maintain and use them efficiently,
correctly, and without degrading the
application’s quality of service. However,
implementing such functionality within the
objects themselves overloads them with
peripheral responsibilities and makes
their simple and uniform use harder rather
than simpler.

Separate object usage from object
lifecycle and access control. Introduce a
separate object manager whose sole
responsibility is to manage and maintain
exclusively a given set of objects. Clients
can use the object manager to gain
access to objects with specific
capabilities.

DECORATOR /
WRAPPER
[GHJ+95]

Sometimes we want to add
responsibilities to individual objects, not to
an entire class. One way to add
responsibilities is with inheritance.
Inheriting attributes and methods from

A more flexible approach is to enclose the
component in another object that adds
appropriate attributes and methods. The
enclosing object is called a decorator. A
decorator conforms to the interface of the

23 / 24

another class puts the inherited attributes
and methods into every subclass
instance. This is inflexible, however,
because the choice of attributes and
methods is made statically.

component it decorates so that its
presence is transparent to the
component's clients.

FACTORY METHOD
[GHJ+95]

Frameworks use abstract classes to
define and maintain relationships
between objects. A framework is often
responsible for creating these objects as
well.

Define an interface for creating an object,
but let subclasses decide which class to
instantiate. Factory Method lets a class
defer instantiation to subclasses.

RESULT-CALLBACK
[VKZ04]

The client needs to be informed actively
about results of asynchronously invoked
operations on a remote object. That is, if
the result becomes available to the
REQUESTOR, the client wants to be
informed immediately, so that it can react
on the availability of the result. In the
meantime the client executes
concurrently

Provide a callback-based interface for
remote invocations on the client. Upon an
invocation, the client passes a RESULT
CALLBACK object to the REQUESTOR.
The invocation returns immediately after
sending the invocation to the server.
When the result is available, the
distributed object middleware invokes a
predefined operation on the RESULT
CALLBACK object, passing it the result of
the invocation.

INDIRECTION LAYER
[Zdu03]

Trace information can consist of
information in electronic documents (such
as the source code), but also of
information derived from dynamic
invocation data (and data flows). It is hard
to integrate these two kinds of trace
information, as the former is statically
provided in the sources, whereas the later
is obtained from the running system. How
to gather and integrate all relevant static
and dynamic trace information in a unique
way?

Provide an INDIRECTION LAYER
between the application logic and the
instruction set of the (sub-)system that
should be traced. The general term
“instruction set” can refer to a whole
programming language, but it can also
refer to the public interface of a used
component, sub-system, or layer. The
INDIRECTION LAYER wraps all accesses
to the relevant (sub-) system and should
not be bypassed. In this INDIRECTION
LAYER provide custom hooks to extract
the relevant trace information.

KEEP SESSION AT
THE SERVER
[Sor02]

Session specific data has to be stored in
between requests, and made available to
the code handling a request.

Keep all session specific data on the
server. Keeping all data on the server and
making sure it will newer leave the server,
means you have no need to write
elaborate error checking code to validate
data every time it reenters the system
from the client. It also frees you from
implementing code that converts from the
form the data is stored in while in the
server (e.g. hierarchies of objects) to a
form that can be transmitted over the wire
between client and server.

LOAD BALANCER
[Sor02]

How do you distribute the load from
multiple users accessing your system
over several instances of the system?
How can you take a server instance down
for maintenance without disrupting user
requests? How can you ensure
undisrupted service to users if one of your

A Load Balancer is a system that all
requests have to pass through on their
way to the server. The job of the Load
Balancer is to direct the requests to the
server instance that should handle them.

24 / 24

multiple server instances crashes?

CACHE ACCESSOR
[Noc03]

Data access operations consume a
significant portion of an enterprise
system's resources. They are a common
source of performance bottlenecks, so
optimization efforts often focus on
implementing data access components as
efficiently as possible.

Decouple caching logic from the data
model and data access details.

SERIALIZER
[RSB+98]

Every major application needs to read
objects from and write them to a varying
number of backends with different
representation formats. Application
classes should have no knowledge about
the external representation format, which
is used to represent their instances.
Otherwise, introducing a new
representation format or changing an old
one would require changing almost every
class in the whole system.

Therefore, every application class
provides an interface called Serializable.
This interface consists of two methods,
one for reading and one for writing the
object. Subclasses of the Serializable
interface implement this interface by
accepting Reader/Writer objects and by
reading from or writing their attributes to
them.

PLUG-IN
[Mar99]

An application that is required to be highly
adaptable, or be extensible to support
future functionality or modules. How can
functionality be added late? How can the
functionality be increased after shipping?

Factor out functionality, and place it in a
separate component that is activated at
run time. This component is called a
PLUG-IN.

PLUG-IN-
REGISTRATION
[Mar99]

Application has defined Framework
Interfaces and Plug-In Definitions. Plug-
Ins are available. User or application
decides at run time which Plug-In to
activate. How are the Plug-Ins known to
the application?

The application defines a place where it
looks for available Plug-Ins. Each Plug-In
installs itself there.

HOST ACCESS
[Kel98]

How do you connect an object/relational
access layer to a host computer running a
transaction system?

Write all queries to a communication
agent, using bundled write. Install another
communication agent on your host
computer that unpacks the query packets
and executes them one by one under the
control of the host transaction monitor.
Send back a packet containing query
results or the return codes of the access
layer modules from the host computer.

OBJECT IDENTIFIER
[Kel98]

How do you represent an object's
individuality in a relational database?

Assign the objects a synthetic key that
accompanies the object from birth to
destruction. Bury the key with the object.

