
AOM Domain-Specific Validations 1

ATZMON HEN-TOV, Pontis Ltd.

DAVID H. LORENZ, Open University of Israel
LIOR SCHACHTER, Open University of Israel

REBECCA WIRFS-BROCK, Wirfs-Brock Associates, Inc.

JOSEPH W. YODER, The Refactory, Inc.

An Adaptive Object-Model (AOM) system represents the domain as metadata. This metadata is interpreted at run time to construct an
object model. One important characteristic of any robust AOM system is the ability to validate the correctness of domain entities, their
properties and property values, and relationships. This paper presents a pattern for domain-specific validation of user-defined domain
entities, attributes and relationships. This pattern describes how AOM validation solutions can start simply with built-in validations and
how they can grow and evolve as needed.

Categories and Subject Descriptors: D.2.2 [Design Tools and Techniques]: Object-oriented design methods; D.2.11 [Software
Architectures]: Patterns

General Terms: Design, Reliability

Additional Key Words and Phrases: Adaptive Object Models (AOM), Validation

ACM Reference Format:
Hen-Tov, A., Lorenz D. H., Schachter L., Wirfs-Brock, R., and Yoder, J. W., 2013. AOM Domain-Specific Validations. In Proceedings of the 20th
Conference on Pattern Languages of Programs (PLoP'13), Monticello, Illinois, USA (October 2013), 13 pages.

1. INTRODUCTION

An Adaptive Object-Model (AOM) architecture represents user-defined domain entities, attributes,
relationships and behavior as metadata [AOM, FY98, YBJ01]. In an AOM system, the domain model is
constructed at run time by interpreting externally stored definitions (metadata). One important aspect of any
robust AOM system is the ability to validate the consistency of domain entities, their properties, property
values, and relationships. In AOM architectures this is complicated by the fact that domain experts also need
support for changing the object model (or the metadata) to reflect changes in the domain.

The contribution of this paper is the presentation of a pattern for domain specific validations, which can
initially be implemented simply to provide basic, built-in validation support and can later be grown in
sophistication as needed. Incorporating this pattern in the early stages of developing an AOM framework and
embedding it in the process of evolving the system can prevent the inconsistencies and execution flaws
stemming from the relative easiness, introduced by the AOM architecture, in adapting structure and behavior
in production.

The pattern presented in this paper deals with a fundamental concern of AOM systems – keeping system
consistency and stability while evolving it on-site with AOM engineers. AOM engineers are knowledgeable
domain experts with skills sufficient to use AOM-specific DSLs or tools to extend or customize the system. This
pattern is intended for those who are building AOM systems with extensible validation mechanisms.

2. PATTERN: DOMAIN-SPECIFIC VALIDATIONS

2.1 Context

You are developing an application using the AOM architectural style to support changing the application model
dynamically, but you also want to keep your application model consistent. Your AOM engineers have the know-
how to define validations for the application model as they define it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers' workshop at the 19th Conference on Pattern Languages of Programs (PLoP'13). PLoP'13,
October 24-26, Monticello, Illinois, USA. Copyright 2013 is held by the author(s). HILLSIDE 978-1-941652-00-8

AOM Domain-Specific Validations: Page - 2

2.2 Problem

How do you provide the AOM engineers with means to express domain consistency rules as part of the
declarative AOM model definition.

2.3 Forces

Usability, extensibility, performance and development effort trade-offs need to be considered:
 Ease of use: The AOM user needs to define their own custom validations for domain entities and their

properties in addition to basic validations developers may provide. Very few domain experts can
actually write Object Constraint Language (OCL) to define rules that apply to Unified Modeling Language
(UML) based models. Can you provide support for users to define their own custom validations of their
domain model without requiring them to use formal constraint languages?

 Flexibility: It is hard to anticipate future validation needs. A simplistic, non-extensible, solution will render
the AOM user incapable of defining new validations. Can you provide simple yet extensible validations to
start that can grow in sophistication as needed?

 Evolving validation needs: Validation needs vary between different domains. It is better to develop the
validation system progressively rather than developing a full-blown validation framework up front as
part of your AOM application. How can you grow a validation framework?

 Model evolution: Changes in one Entity instance may cause other, dependent, Entity instances to become
invalid [HNS10]. How can you support evolving the model and its validations, while guaranteeing
consistency as it evolves?

2.4 Solution

A variety of solutions are possible, depending upon the domain-specific requirements. These could range from
something as simple as adding basic type validations and validator classes to creating a full-blown domain-
specific rule language for complicated business rules [YJR02]. What is important is to not over-design a
solution. The following outlines the solution space. Following are a list of several potential solutions that can be
applied to perform AOM model validations, ordered in terms of increasing sophistication and difficulty. An
extended validation framework or advanced validations can be added to basic validations, as needed.

- Basic validation
 Implement basic type validations in EntityType and PropertyType classes.

 Create simple Validators implemented as part of your AOM Entity and/or Property
framework.

- Extended validation framework [Jon99]
 Implement domain specific validations in domain specific subclasses of Entity and

Property (these validations will hereafter be referred to as built-in validations).

 Separate these validations into their own classes for easier composition.
 Allow the AOM user to configure built-in validations when defining new entity types.

- Advanced validations
 Allow the AOM user to add custom validation logic via hooks [AHS11].
 Create a base rule language for building and composing the validators.
 Incorporate a rules engine into the AOM for validation.

Declaring AOM entities and properties using TypeSquare constrains the legal types of property values for any

given EntityType. These simple type constraints can be augmented by adding declarations to the

PropertyType that describe required properties, cardinality and simple syntactic validations such as length

of Property value (see mandatory attribute in Figure 1). For example, consider an EntityType for Employee
which requires first name and last name whereas the middle name is optional. Additionally there can be
validation rules that state that the length of first name and last name are constrained to each be less than thirty
characters in length.

AOM Domain-Specific Validations: Page - 3

Figure 1 – User Interface for defining a field. Several prebuilt validations allow the user to define legal values for the field

AOM Domain-Specific Validations: Page - 4

 Ultimately, a more flexible solution separates the validations into their own classes. This allows for
composition of validators and possibly the creation of a validation language that can be reused throughout the
system [Fow97]. These often lead to using the interpreter pattern [GHJ95] for a little rule language or mini DSL
[Fow10]. Sometimes a rule engine is used for managing these validations and the validations can go across
many different entities with dependencies across the entities and their properties. Rules can usually be broken
down into 1) Constraints on values, relationships, state change, 2) Functional in nature, 3) Workflow, and 4)
Event based.
 When a little language evolves it is common to develop an editor or Visual Language for defining the
entities and rules. Figure 21 is an example of a property validator implemented using additional meta-data on
the property definition. Mandatory check box, Min/Max number of characters and Regular

expression fields are all used by the custom property validator (in this example StringValidator) to
validate instances. Figure 2 depicts an Entity validator implemented using the EVOLUTION RESILIENT SCRIPT
pattern [HLN10]. When defining new EntityType, in this case OptinPermutation, the validation logic is

expressed in Java-Script code. It will be invoked by the AOM framework, on an OptinPermutation

instance before persisting it to the database.

Figure 2 – An Editor in the PONTIS system for defining custom script-based validations

AOM Domain-Specific Validations: Page - 5

 Choosing the right type of validation is one of the hard parts of developing AOM’s. Design is always
about tradeoffs and it is important to let the requirements and user scenarios drive the design. One size does
not fit all and it is often the case where a couple of the above mentioned validation techniques might be needed
in combination.
 When simple type validations only need simple rules, then consider the basic validation techniques
mentioned above. If the rules become more complex and are definitely evolving based upon the product or
client, then consider techniques mentioned in Extended Validation Framework. If the rules really need to be
flexible because you change them often, then using advanced techniques such as dynamic hooks or evolving to
a domain specific language are good solutions for consideration.

2.5 Implementation

Figure 3 outlines the class diagram for two types of validators. EntityValidator is associated with

EntityType and is responsible for validating an Entity instance. It performs cross-property validations and

other specific business logic validations. Adding a new validator for an Entity is accomplished by sub-

classing EntityValidator and attaching the validator to the domain classes, e.g. a PersonValidator

validates that every Person entity with a driving license is above 17 years old. A PropertyValidator is

associated by PropertyType and is responsible for validating a specific property value. Figure 4 exemplifies

how more specific types (StringPropertyType, NumericPropertyType) can be created with additional

metadata (e.g., a regExp, or a minValue and maxValue) by subclassing PropertyType. The

corresponding validators (StringPropertyValidator, NumericPropertyValidator) use this
additional metadata to validate the property’s value.
 As illustrated in Figure 5, validations are invoked upon saving an entity instance. This sequence shows
how, basic, extended and advanced validations can be invoked in succession. To start a validation sequence,
the method validate is called on the entity type, passing in the entity instance itself. The following outlines the
interactions during the validation process:

Figure 3 – Class Diagram of Type-Square with Validators

AOM Domain-Specific Validations: Page - 6

1. The EntityType iterates over its properties and invokes the PropertyType validator. The

PropertyType invokes the PropertyValidator attached to it passing the original entity instance

(the root validation context), the actual property value, and the PropertyType itself.

2. The PropertyValidator first checks if the relation is a composition type. In that case it invokes

the PropertyValue’s validate() method and so on... If a relation is a reference to another entity
(rather than a composition), validation doesn’t proceed to that referenced entity.

3. The EntityType invokes the EntityValidator to perform Entity level validations. Domain-

specific entity level validations are implemented in subclasses of PropertyValidator and

EntityValidator.

4. The EntityType then iterates over its custom validations, if any are present, and invokes them

ValidationHook.

5. The EntityType then iterates over its validation hooks, if any are present, and invokes them.
6. All errors are gathered in a shared context and returned to the application layer to process according

to the error handling policy. The application can require the user to correct the errors before the save
proceeds or provide other means to manage entity inconsistencies [HNS10].

Figure 4 – Class diagram of PropertyType class hierarchy and validators

AOM Domain-Specific Validations: Page - 7

Figure 5 – Sequence diagram of Validators execution flow

 Figure 5 shows one example of where validations are performed, upon saving objects. But there are
several places where validation may be performed: on object creation, whenever a dynamic object changes
state or relationships. There are even other well-known techniques that can be used to validate domain objects
such as constraint languages such as OCL, or via XSLTs during object loading, importing or exporting.
 Ultimately, it is important to provide a means for an AOM engineer to configure and extend any built-
in validations when defining new entity types. One alternative is to evolve the validators into a little DSL that
can be used express domain specific validations using declarative composition. A second alternative is to use a
rule-engine which through composition and simple formulas supports the definition of complex, domain
specific validations. When the domain is narrow enough and validators can be reused across EntityType
definitions then a small DSL solution will probably be the preferred choice since it provides a more robust and
domain-specific solution. A rule engine provides more generic solution which is appropriate when a variety of
validations is needed.

2.6 Examples

For an AOM system developed for the Illinois Department of Public Health, the Refactory implemented a
variation of the OBSERVATION pattern [Fow97]. Ultimately for the model to handle basic validations, the model
was extended so that ObservationTypes were responsible for validations. The model described the
validation rules. The architecture allowed for different types of observations, “measurements” and “traits” to
describe their structure and relevant validation rules. The subject of each observation was defined by one
particular instance of the class ObservationType. It was possible to extend each type and describe the set
of possible valid values associated with them. Some validation values were shared between different types of
observations, e.g. any observation quantifying the presence of an illness had three possible values such as YES,

AOM Domain-Specific Validations: Page - 8

NO, and UNKNOWN. A greatly simplified representation of the Validator class hierarchy that was
implemented is shown in Figure 6.
 When a new ObservationType is created, it is associated with its appropriate Validator. After

an Observation is created, it calls isValid() which delegates to its corresponding ObservationType

which delegates to its Validator passing in the appropriate value type. Validators implement

isValid()for built in primitive types as well as Quantity objects (Figure 7). Validator

isValid()methods decide if the value is valid or not, returning a boolean.

 There is a DefaultValidator that always returns true (Figure 8). This is an implementation of the

NullObject pattern [WOO98], which was provided for those types of Observations that are always valid. For
example, consider when a doctor observes you look shaky. Clearly any value entered as free-form text for the
personal observation is valid, so that is why a DefaultValidator is associated with this property.

Figure 6 - Architecture for Observation Validation

public abstract class Validator {

 String name;

 public Validator(String name) {

 this.name = name;

 }

 public abstract boolean isValid(String value);

 public abstract boolean isValid(Double value);

 public abstract boolean isValid(Quantity value);

}

Figure 7– Validator

AOM Domain-Specific Validations: Page - 9

A DiscreteValidator validates whether the value is included in a set of known values (Figure 9).

Code for a Range class is also shown (Figure 10). A RangeValidator (Figure 11) ensures that a Quantity
is within a range of valid values.

public class DefaultValidator extends Validator {

 public DefaultValidator() {

 super("DefaultValidator");

 }

 @Override

 public boolean isValid(String value) {

 return true;

 }

 @Override

 public boolean isValid(Double value) {

 return true;

 }

 @Override

 public boolean isValid(Quantity value) {

 return true;

 }

}

Figure 8 – DefaultValidator

public class DiscreteValidator extends Validator {

 Set<String> legalValues;

 public DiscreteValidator(String name, Set<String> values) {

 super(name);

 legalValues = values;

 }

 public DiscreteValidator(String name, String... values) {

 this(name, new HashSet<String>(Arrays.asList(values)));

 }

 public DiscreteValidator(String name, String commaSeparatedValues) {

 this(name, parse(commaSeparatedValues));

 }

 @Override

 public boolean isValid(String value) {

 return legalValues.contains(value);

 }

}
Figure 9 – DiscreteValidator

AOM Domain-Specific Validations: Page - 10

2.7 Consequences

 System Robustness: applying this pattern when developing an AOM system provides a safer and
more robust framework for changing application model and behavior by AOM engineers; hence
minimizing regression and stability issues.

 Increased flexibility: It is possible to choose on a per-case basis whether to provide a basic
validation on pre-defined types and entities, extensible validation framework which can be
programmatically extended to handle domain specific concerns or a declarative, rule-based
framework which support defining validations using domain terminology.

public class Range {

 Quantity lowerLimit;

 Quantity upperLimit;

 public Range(Quantity lowerLimit, Quantity upperLimit) {

 if (lowerLimit.units != upperLimit.units)

 throw new RuntimeException("Range limits must use same units");

 this.lowerLimit = lowerLimit;

 this.upperLimit = upperLimit;

 }

 public Range(Double lowerLimit, Double upperLimit, Units units) {

 this(new Quantity(lowerLimit, units), new Quantity(upperLimit, units));

 }

 public boolean includes(Quantity value) {

 return value.units == lowerLimit.units

 && lowerLimit.compareTo(value) <= 0

 && value.compareTo(upperLimit) <= 0;

 }

}

Figure 10 – Range Class

public class RangeValidator extends Validator {

 List<Range> ranges = new ArrayList<Range>();

 public RangeValidator(String name, List<Range> ranges) {

 super(name);

 this.ranges.addAll(ranges);

 }

 public RangeValidator(String name, Range... ranges) {

 this(name, Arrays.asList(ranges));

 }

 @Override

 public boolean isValid(Quantity value) {

 for (Range each : ranges)

 if (each.includes(value))

 return true;

 return false;

 }

}

Figure 11 – RangeValidator

AOM Domain-Specific Validations: Page - 11

 Framework Evolution – separating the validation logic a different class hierarchy and plugging it
to the framework as suggested in this pattern supports developing the framework progressively
and adapting it per domain.

 Ease of use: Definition of complex domain-specific validations usually requires programmatic
skills. Developing a DSL or rule engine is usually a time consuming task which requires few
iterations.

2.8 Related Patterns

Several AOM patterns are related to the VALIDATION PATTERN:The DYNAMIC HOOK [AHS11] can be used to allow

the AOM user to express complex validation logic in scripts. EVOLUTION RESILIENT SCRIPTS [HNS10] enhance the

DYNAMIC HOOK by providing type-safety for scripting. DYNAMIC MODEL EVOLUTION [HLN10] relies on AOM

validations to diagnose model inconsistencies when upgrading the core AOM application. Specifically, BREAK AND

CORRECT allows the AOM team to fix the inconsistencies between Entities reported by the validation framework.

2.9 Known Uses

A medical-based AOM system developed by The Refactory for the Illinois Department of Public Health [YJ02] is
an example of a system that extensively uses the observation validation framework described above. In
addition to extensive use of the TYPESQUARE pattern for basic validations, reflection is also used to dynamically
bind hook points. Custom behavior can be described as a dynamic method or a STRATEGY associated with new
types of objects. Thus a new class can be created, and by using reflection, the new behavior can be dynamically
associated with new types of diseases and invoked using stored descriptive information. Ultimately there were
also validation rules that ensured constraints across multiple entities and properties.
 This system also integrated follow-on workflow, implemented by an AOM micro-workflow system
[MAN00] that was triggered when certain medical findings were detected during validation. For example,
certain medical finding could trigger events for follow-up workflow such as medical treatment for an infant.
Ultimately this system evolved and was re-implemented in the Java programming language where a rules
engine (JRules) was used to define cross-entity validation rules.
 Two adaptive systems for Invoicing and Import developed by The Refactory in C#/.NET use a simple
rule language for describing rules for invoice calculation or data import to the system. Additionally, for rules
outside the core DSL provided for the domain experts to express rules, a means to add new rules was provided
by using dynamic hook points that defined known places where new behavior could be added. One dynamic
hook point in the Import system allowed for adding new rules. New rules can be added by creating a DLL,
which contains a subclass of ValidationRule. This class will be tagged with the name of the validation rule

and have a Validate() method which is invoked during the validation process. By including the DLL in the
configuration file that specifies what will dynamically loaded, new rules could be added. The following code
example, shown in Figure 12, is a simplified definition for the InvalidIdValidationRule class, which
ensures that invalid Ids are not accepted during the import of orders.

[ValidationRule("Invalid Id")]

public class InvalidIdValidationRule : ValidationRule{

 public InvalidIdValidationRule() : base() { }

 public override void Validate(ImportContext context)

…}

Figure 12 -- An example of a validation rule

 Pontis Ltd. is a provider of Online Marketing solutions for Communication Service Providers. Pontis’
Marketing Delivery Platform (MDP) allows for on-site customization and model evolution by non-
programmers. The system is developed using ModelTalk [HLP09] based on AOM patterns. Pontis’ MDP system
is deployed in over 20 customer sites including Tier I Telcos. A typical customer system handles tens of
millions of transactions a day exhibiting Telco-Grade performance and robustness. Pontis’ MDP system
aggregates data received from the Communication Service Provider’s systems, such as information about a
subscriber’s usage patterns, and grants various benefits to subscribers based on the subscriber’s data and the
currently active promotions (e.g., a subscriber that sent 100 text messages receives a promotional coupon).

AOM Domain-Specific Validations: Page - 12

Pontis MDP is using AOM for customizing the generic product by non-programmers, using the system GUI. In
the Pontis AOM, the validation is implemented by the various EntityTypes. It currently provides two types
of validations:

1. PropertyType validation – min/max length, mandatory,
2. Script validation hooks – based on the Dynamic Hook and the Evolution Resilient Scripts patterns.

 An AOM architecture is used in a channel marketing platform [Gu12] developed by e-Dialog (now part
of eBay Enterprise). It delivers relevant and targeted engagement to consumer on various devices/screen
through continuous optimization of recommendations. User-supplied JSON objects are validated to make sure
they match the correct version of the object type. This is accomplished through a set of validating classes
registered by type and version.

3. ACKWOLEDGEMENTS

We thank our shepherd Eduardo Guerra for his valuable comments and feedback during the PLoP 2013
shepherding process. We also thank our 2013 PLoP Writers Workshop Group led by Peter Sommerlad and
participated in by Michael John, Youngsu Son, Jiwon Kim, Hyunchul Yang, Mihaela Cardei, Roland Bijvank,
Wiebe Wiersema,Leo Pruijt, and Brahim Hamid, for their valuable feedback, suggestions, and comments.

AOM Domain-Specific Validations: Page - 13

4. REFERENCES

[AHS11] Acherkan, E.; Hen-Tov, A.; Schachter, Lior.; Lorenz, D.H.; Yoder. J.; Wirfs-Brock, R.;
Dynamic Hook Points, 2nd Annual Asian PLoP Conference, Tokyo, Japan. October 2011.

[AOM] Adaptive Object-Models. http://www.adaptiveobjectmodel.com
[Fow97] Fowler, M.; Analysis patterns - reusable object models. Addison-Wesley series in

object-oriented software engineering, Addison-Wesley-Longman 1997, ISBN 978-0-
201-89542-1, pp. I-XXI, 1-357

[Fow10] Fowler, M.; Domain Specific Languages (1st ed.). Addison-Wesley Professional. 2010.
[FY98] Foote B, J. Yoder. Metadata and Active Object Models. Proceedings of Plop98. Technical

Report #wucs-98-25, Dept. of Computer Science, Washington University Department
of Computer Science, October 1998.

[Gu12] Lei Gu, Building an Adaptive Object Model,
http://2rdscreenretargeting.blogspot.co.il/2012/07/building-adaptive-object-
model.html

[GHJ95] Gamma, E., R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object Oriented Software. Addison-Wesley. 1995.

[HLN10] Hen-Tov, A.; Lorenz, D. H.; Nikolaev, L.; Schachter, L.; Wirfs-Brock, R.; and Yoder, J. W.;
Dynamic Model Evolution. In Proceedings of the 17th Conference on Pattern
Languages of Programs (Reno/Tahoe, Nevada, October 17 - 21, 2010).
SPLASH/OOPSLA 2010. ACM, New York, NY.

[HNS10] Hen-Tov, A.; Nikolaev, L.; Schachter, Lior.; Yoder. J.; Wirfs-Brock, R.; Adaptive Object-
Model Evolution Patterns, SugarLoafPLoP 2010.

[HLP09] Hen-Tov, A.; Lorenz, D.H.; Pinhasi, A.; Schachter, L.; ModelTalk: When Everything Is a
Domain-Specific Language, IEEE Software, vol. 26, no. 4, pp. 39-46, July/Aug. 2009.

[Jon99] Jones, S.; A Framework Recipe. Building Application Frameworks: Object-Oriented
Foundations of Framework Design.Edited by Fayed, M., Johnson, R., Schmidt,.D. John
Wiley & Sons. 1999.

[MAN00] Manolescu, D.; Micro-Workflow: A Workflow Architecture Supporting Compositional
Object-Oriented Software Development. PhD thesis, Computer Science Technical
Report UIUCDCS-R-2000-2186. University of Illinois at Urbana-Champaign, October
2000, Urbana, Illinois.

[WOO98] Woolf, B.; "Null Object", Pattern Languages of Program Design 3, edited by Robert
Martin, Dirk Riehle, and Frank Buschmann, Addison-Wesley, 1998.

[YBJ01] Yoder, J.; Balaguer, F.; Johnson, R.; Architecture and Design of Adaptive Object-Models.
Proceedings of the ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA 2001), Tampa, Florida, USA, 2001.

[YJ02] Yoder, J.; Johnson, R.; The Adaptive Object-Model Architectural Style. IFIP 17th World
Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software
Architecture: System Design, Development and Maintenance (WICSA 2002), Montréal,
Québec, Canada, 2002.

[YJR02] Yoder, J.; Johnson, R,; “Implementing Business Rules with Adaptive ObjectModels”.
Business Rules Approach. Prentice Hall. 2002.

http://2rdscreenretargeting.blogspot.co.il/2012/07/building-adaptive-object-model.html
http://2rdscreenretargeting.blogspot.co.il/2012/07/building-adaptive-object-model.html
http://openu.ac.il/home/lorenz/papers/modeltalk/index.html
http://openu.ac.il/home/lorenz/papers/modeltalk/index.html

