
Towards a Pattern Language for Security Risk Analysis of
Web Applications
Yan Li, SINTEF ICT and University of Oslo
Ragnhild Kobro Runde, University of Oslo
Ketil Stølen, SINTEF ICT and University of Oslo

This article introduces a pattern language for security risk analysis of web applications in an example driven manner. The example patterns
presented include a composite pattern and three basic patterns, namely a security requirements pattern, a web application design pattern
and a risk analysis modelling pattern. The pattern language is intended to be used as a guideline to capture the security risk picture of a
web application, especially in the early phase of the software development life cycle. The overall aim is to support light weighted security risk
analysis for web applications.

Categories and Subject Descriptors: D.D.9 [Software Engineering]: Management—Software quality assurance (SQA); K.6.M [Management
of Computing and Information Systems]: Miscellaneous—Security; H.3.5 [Information Storage and Retrieval]: Online Information Ser-
vices—Web-based services

General Terms: Pattern language

Additional Key Words and Phrases: Security, Risk analysis, Web application

ACM Reference Format:

Li, Y.,Runde, R.K. and Stølen, K., 2013.Towards a Pattern Language for Security Risk Analysis of Web Application. jn 2, 3, Article 1 (October
2013), 17 pages.

1. INTRODUCTION

For the past decades or so, the web has become the main platform for business, social exchange, and gover-
nance, etc. It offers the relatively cheaper and easier way to communicate and exchange information with fast
growing usage of different web applications. A web application has the advantage that it can perform its functions
regardless of the operating system (e.g. Android, iOS, Windows) and user device (e.g. desktop, laptop, mobile
phone, watch, glasses). On the other hand, which is different from traditional software, the wide spread use of
web applications and relatively open environment give rise to potential known and unknown vulnerabilities. Secu-
rity risks could expose web users to threats and unwanted incidents caused by web-based crime. The incidents
occurring due to vulnerabilities of web applications could be very costly as well.

Risk analysis is a very efficient way to identify security risks in web applications. Security risk analysis is the
process of risk analysis specialized towards security [Li 2012], in which risk analysis is defined as a collective term
of the following steps: establishing the context, risk identification, risk estimation, risk evaluation and risk treatment
(adapted from ISO 31000 [International Standards Organization 2009a]). To deal with new security threats and

Author’s address: Yan Li, Department for Networked Systems and Services, SINTEF ICT P.O. Box 124 Blindern, N-0314 Oslo, Norway;
email:yan.li@sintef.no; Ragnhild Kobro Runde, Department of Informatics, University of Oslo P.O. Box 1080 Blindern, N-0316 Oslo, Norway ;
email: ragnhild.runde@ifi.uio.no; Ketil Stølen, Department for Networked Systems and Services, SINTEF ICT P.O. Box 124 Blindern, N-0314
Oslo, Norway; email: ketil.stolen@sintef.no
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 20th Conference on Pattern Languages of Programs (PLoP).
PLoP’13, October 23-26, Monticello, Illinois, USA. Copyright 2013 is held by the author(s). ACM 978-1-941652-00-8



increasing effort on quality assurance of web applications, it is wise to introduce a specialized methodology
for security risk analysis that can be carried out continuously as an integrated part of the business and the
development process, especially in the early phase of the software development life cycle. In addition, to ensure
that the risk picture can be updated regularly, there is need for system owners to do small risk analysis without
heavy involvement from other departments. All of these motivate the needs for a pattern language supporting
light weighted security risk analysis for web applications.

Patterns are generally referred to as a mean to address the essence of a recurring problem and define best
practices for that problem, with the possibility to derive context specific solutions [Buschmann et al. 1996][Gamma
et al. 1995]. A pattern language [Buschmann et al. 1996] is a structured method for describing good design
practices within a field of expertise. It may be expressed as a combination of patterns where each pattern offers
a solution for an isolated problem while the combined solutions from the application of several patterns can
successfully solve very large, complex problems.

The terms "pattern" and "pattern language" were initially introduced in [Alexander 1977] for the design of
buildings and towns. Later, the concept of pattern was adapted to many other domains, including the software de-
velopment domain. Software design patterns are used to enable software design in a more effective and efficient
way [Gamma et al. 1995] and some of them address security issues. A group of seven architectural patterns for
building application security was presented in [Yoder and Barcalow 1998]. Eight patterns in the form of architec-
tural and procedural guidelines was proposed in [Romanosky 2001] . Afterwards, a group of 29 security patterns
categorized as structural and procedural patterns for web application development was introduced in [Kienzle
and Elder 2002]. A book [Steel et al. 2006] about core security patterns proposes various patterns to support
building end-to-end security into J2EE enterprise applications. A list of security design patterns addressing the
architectural level, design level and implementation level of software is introduced in [Dougherty et al. 2009].
Recently, a book [Fernandez 2013] has been published about how to incorporate security into every phase of the
software life-cycle with a vast catalog of up-to-date security patterns as support.

From the above mentioned literature, we may conclude that many patterns have been proposed for web ap-
plications or software security from a development perspective. However, very little research has focused on
security risk analysis patterns that address different contexts of web applications in the early phase of design. In
addition, as pointed out in a security pattern survey [Yoshioka et al. 2008], there is a need for security risk pat-
terns in the design and implementation phases. Thus, this paper presents a first step towards a pattern language
and corresponding patterns for security risk analysis in the context of web applications, aiming to provide a light
weighted support for IT staff who needs to perform security risk analysis as early as possible when building web
applications.

An outline of our pattern language is given in Section 2. Section 3 shows the usage of the pattern language and
illustrates the pattern selection. Section 4 introduces a web application example for the patterns presented later.
Section 5 describes a composite pattern example that serves as the basis for selecting basic patterns. Section
6, Section 7 and Section 8 present examples of basic patterns for security requirement capture, web application
design and risk analysis modelling respectively. The work is concluded in Section 9.

2. OUTLINE OF SECURITY RISK ANALYSIS PATTERN LANGUAGE FOR WEB APPLICATIONS

A security risk analysis pattern language for web applications with its corresponding patterns should formalize
best practices that can be followed when analysing the security risk picture of web applications based on its con-
text (e.g. functionality, platform for development, environment for maintenance). A pattern here defines a reusable
and extendible solution for a specific problem or task occurring in security risk analysis for a web application; it
can either be a basic pattern or a composite pattern. A basic pattern is an element pattern addressing a partial
problem or sub task, while a composite pattern describes how to compose a set of basic patterns or composite
patterns in order to solve a specific task in the risk analysis process.

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 2



As shown in Figure 1, to address the most central notions within security risk analysis, we distinguish between
three kinds of basic patterns, which are basic pattern for security requirements, basic pattern for web application
design and basic pattern for risk analysis modelling. Each represents its own dimension, namely:

—Requirements with respect to basic principles of information security standardized in ISO 27000 [International
Standards Organization 2009b] (e.g. confidentiality, integrity, availability, authenticity and non-repudiation).

—Key features of web application (e.g. architecture design from business view, logical process view, deployment
view and data view).

—Risk analysis modelling (e.g. asset modelling, threat modelling, risk modelling, treatment modelling).

Fig. 1. Dimensions addressed by three different kinds of patterns

In security risk analysis for web applications, a composite pattern mainly addresses one particular phase in the
security risk analysis process (establishing the context, risk identification, risk estimation, risk evaluation and risk
treatment). A composite pattern is basically a kind of skeleton with place holders for its constituent patterns. A
composite pattern specifies an instantiation order for its element patterns, so it is a kind of process pattern. Each
composite pattern addresses a specific task in the risk analysis process, which is different from the composite
pattern defined in [Riehle 1997] where a composite pattern mainly address a concrete recurring solution for a
software design problem.

The documentation of a basic pattern follows a defined format, while composite patterns are expressed graph-
ically, as presented in Section 4. The documentation format of a basic pattern is organized and interpreted
according to Table I.

3. USAGE OF SECURITY RISK ANALYSIS PATTERN LANGUAGE FOR WEB APPLICATIONS

By defining the best practices and effective solutions addressing the essence of recurring problems in security
risk analysis for web applications, the pattern language facilitates a light weighted method for conducting risk
analysis based on the context of each specific web application to be analysed.

As shown in Figure 2, when using this pattern language, we first select a composite pattern from the pattern
library based on the phase of the risk analysis in which we are currently involved and the context of the analysis.
As already explained, a composite pattern is a kind of skeleton with place holders for its constituent patterns.
Based on selected composite pattern, the suitable constituent patterns can be selected and instantiated. For a
given pattern, the input parameter is defined based on the context of the web application to be analyzed, while the
output parameter results from its instantiations according to the proposed solution, inspired by SaCS [Hauge and

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 3



Table I. Documentation format for basic patterns
Notion Content
Pattern name The name of the pattern.
Classification The category of the pattern, i.e. security requirement.
Pattern signature The symbol, input and output parameters of the pattern.
Motivation The motivation for applying the pattern.
Context of use The situation for which the pattern could apply as well as the usage of the pattern.
Problem The problem that the pattern addresses.
Solution The solution presented by this pattern.
Instantiation rule The rule to instantiate the pattern.
Participants The relevant human stakeholders to be consulted when using this pattern.
Related patterns The relationship between this pattern and other patterns.
Known uses The known uses of the pattern, either in preliminary or modified form.

Stølen 2011]. A composite pattern can be instantiated following the instantiation rule of the relevant constituent
patterns.

Fig. 2. Usage of pattern language

The process captured by Figure 2 may be summarized as follows:

—Composite pattern
A composite pattern mainly addresses one of the main phases or sub-phases in the security risk analysis
process where the partial security risk picture is derived from combined use of security requirements patterns,
web application design patterns and risk analysis modelling patterns. In each phase of the risk analysis, as
shown in the leftmost part of the Figure 2, there may be one or more composite patterns that risk analysis staff
can follow to select proper consitituent patterns for its instantiation. A composite pattern may be instantiated
by basic patterns as well as other consitituent composite patterns. Combined usage of instantiated results
from basic patterns or composite patterns enables the instantiation of a composite pattern to get relevant risk
analysis results.

—Security requirement pattern
For a given web application, we address the expected security objective by selecting relevant security require-
ment patterns from the basic security requirement pattern library, for example, a pattern for data confidentiality
in the cloud environment, a pattern for service availability in Intranet, a pattern for data integrity of mobile de-
vices, etc. There may exist several security requirement patterns according to different security objectives, and

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 4



overlap may happen since many security features of web applications are related to each other. By instantiating
the selected patterns, we get concrete security requirements for the web application being analysed.

—Web application design pattern
A proper risk analysis usually requires in-depth understanding of the web application design. We can thus
use web application design patterns to describe the application to be analysed. They are usually selected and
instantiated based on the concrete security requirements instantiated from the selected security requirements
patterns. When using a selected web application design pattern from the library, we may consider the secu-
rity risks that arise from the architectural view of the business, the underlying logic, the deployment and the
data that are described in one or several basic web application design patterns. Various architecture design
specifications can be obtained after instantiating the selected design patterns.

—Risk analysis modelling pattern
Risk analysis models are defined according to the general risk analysis process presented in ISO 31000. They
can for example be described and visualized using the CORAS language [Lund et al. 2011]. One could choose
the relevant risk analysis modelling pattern and get the right risk model to use according to the risk analysis
phase of relevance. The corresponding risk analysis models for the relevant web application analysed can be
obtained after instantiation of the risk analysis modelling pattern.

There will be a library of composite patterns specialized for the different phases of the risk analysis process and
the various contexts of analysis. For each basic pattern type, there will be a pattern library consisting of different
patterns, which capture best practices. There are libraries of security requirement patterns, web application de-
sign patterns and risk analysis modelling patterns according to different security objectives, context of different
web applications (e.g. functionality, environment, and platform) and various risk analysis activities. The proper
patterns should be selected based on the risk analysis phase involved, security objectives and the context of the
web application.

This security risk analysis pattern language can be used for web applications that either already exist or is
in the process of being built. As long as one can extract the proper features of the application required by the
selected patterns, one can perform necessary security risk analysis in all stages of the software development
life cycle. Since it is usually of great importance to get the security risk picture right as early as possible, the
effectiveness and efficiency of using this security risk analysis pattern language is particularly needed in the
early phase of the software development life cycle.

4. AN ILLUSTRATION EXAMPLE FOR THE PATTERN LANGUAGE

To help readers to better understand the idea of our pattern language, we use a web application example to
illustrate some existing patterns and their usage.

As shown in Figure 31, we consider a health monitoring web application employed by smart glasses for col-
lecting and analysing health conditions based on data collected by a smart watch. The collected data can be
displayed to the user in smart glasses in real time and uploaded to a cloud environment through the web appli-
cation. The history of health data stored in the cloud environment is analysed periodically by a computing server
according to pre-defined algorithms and patterns. Once a hazard threshold is reached, the user will receive
warnings and suggestions in the smart glasses through this health monitoring web application.

The composite pattern as well as related basic patterns presented in the following sections are selected based
on features in this web application according to the usage of the pattern language described in Section 3.

1Photos are adapted from Clip Art in Microsoft Powerpoint 2010.

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 5



Fig. 3. A demonstration example

5. COMPOSITE PATTERN FOR RISK IDENTIFICATION OF WEB APPLICATIONS

A composite pattern is a kind of skeleton with place-holders for its constituent patterns, and it describes how the
instantiation of the patterns selected for the place-holders may be composed. Composite patterns are expressed
graphically and may refer to four different icons. Figure 4 presents these icons and their interpretations.

Fig. 4. Icons and their interpretations in pattern language

We have selected the composite pattern presented in Figure 5 for our example introduced in Section 4. From
the figure, we can seet hat a composite pattern is divided in two by a horizontal line. The signature is specified
above the horizontal line, while the body is specified below the horizontal line. The signature of the composite
pattern in Figure 5 specifies "WebApp" (short for web application) and SecObj (short for security objectives) to be
the external inputs and "Threat model" to be the external output. Moreoever, "Asset", "SecReq" (short for security
requirement), and "ArcDes" (short for architecture design) are internal inputs and outputs.

The selection of constituent patterns and the instantiation order of this composite pattern as well as the relation-
ships of each basic pattern are illustrated in the body below the straight line. By following the composition order
represented by the solid arrow lines, we first select an appropriate security requirement pattern based on the
current web application and the security objectives. Then web application design specifications can be derived
with the aim to satisfy the obtained security requirements. The last pattern to be instantiated is the risk analysis

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 6



Fig. 5. Selected composite pattern

modelling pattern, which will use the outputs from both the security requirements and the web application design.
The final result will then be an instantiated threat model for our specific web application.

6. SECURITY REQUIREMENT PATTERN FOR CONFIDENTIALITY OF DATA IN A CLOUD ENVIRONMENT

By considering a data-centric web application in a cloud environment, one basic security requirement pattern is
confidentiality of data. It is desired that all confidential data collected, generated, transmitted to the web applica-
tion and cloud environment, as well as stored on various devices should be secured and kept confidential. The
confidential data should not be exposed by any means. A basic pattern for confidentiality of information in a cloud
environment is given below.
Pattern name :
Confidentiality of data in a cloud environment
Classification :
Security requirement
Pattern signature :
"WebApp" (short for web application) is an input parameter representing the web application’s features to be

analyzed.
"SecObj" (Short for security objectives) is an input parameter representing the security objectives need to be
fullfilled in the risk analysis.
"SecReq" (short for security requirement) and "Asset" are output parameters representing security requirement
for data confidentiality in a cloud environment and security assets to be protected.
Motivation :
The intent of this pattern is to address the basic security problem domains regarding data confidentiality in a
cloud environment and to specify the relevant requirements as a basis for secured application engineering and
risk analysis.
Context of use :
This pattern should normally be used to address the confidentiality of sensitive data affiliated to a web application
in a cloud environment with functionality to collect, generate, display, communicate or use of sensitive and critical
information. It is suitable to apply in the following situations:

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 7



—when it is assumed that the main functionalities of the web application require extensive and multiple ways
of sensitive information usage, and the information is mostly personal or other confidential information which
requires high-level of security assurance.

—when it is assumed that a web application is designed following the three-layered architecture design principle
[Microsoft 2008] in a cloud environment.

—when it is assumed that one can structure the web application’s requirements following the three-layered archi-
tecture design.

Problem :
How to derive and structure security requirements for confidentiality of data in a cloud environment for a web
application?
Solution :

For the three-layered web application architecture [Patterns and Team 2009], the main problems relevant for
establishing security requirements for a web applications are:

—Possible security threats and vulnerabilities in the presentation layer.
—Possible security threats and vulnerabilities in the business layer in the cloud.
—Possible security threats and vulnerabilities in the database layer in the cloud.
—Possible security threats and vulnerabilities that exist in the communication of information within each layer.
—Possible security threats and vulnerabilities that exist in the communication of information among different

layers.

The problem frame [Jackson 2001], inspired diagram in Figure 6 illustrates the relationships between the web
application, its different layers, the security objective, the security requirement and asset.

Fig. 6. Problem diagram for Confidentiality of data

The different diagram entities above are defined according to the problem frames notation [Jackson 2001] and
are interpreted in Table II.

The generic requirements corresponding to the output parameter "SecReq" for confidentiality of data in a cloud
environment for web application are described in Table III. The asset corresponding to the output parameter "As-
set" is confidentiality of data.

Instantiation rule :

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 8



Table II. Interpretation of notions in the problem diagram in Figure 6
Notion Interpretation
WebApp Input parameter that represents the web application in the cloud to be analysed.
SecObj Input parameter that represents the security objectives to be fullfilled.
SecReq Output parameter that represents the set of security requirements that are derived by instantiating the

pattern according to a specific context of a web application in the cloud.
Asset Output parameter that represents the asset that one would like to protect.
Web application in a cloud
environment

The web application that represents the target of analysis.

Presentation layer The user interfaces and the interactions with the user of the application.
Business layer in the cloud An abstract layer that controls the application’s functionality by performing detailed processing according

to internet protocols.
Database layer in the cloud The layer that hosts the database in the cloud environment for the application.
Communication within each
layer

The information flows exchanged within each layer.

Communication among dif-
ferent layers

The information flows exchanged among different layers.

Data is confidential The main problem that forms the basis to derive security requirements.

Table III. Security requirements with respect to data confidentiality in a cloud environment
ID Requirement Description
R.1 The access to the web application should be secure on the client

side, namely in the presentation layer.
Access to the application should be restricted in such a way
that non-authorized people should not obtain access.

R.2 The business logic of the web application should work properly
and handle confidential information in a secure way. This applies
to both the business layer locally and the business layer in the
cloud.

The dataflow through the web application server should be
controlled in such a way that confidential data cannot be ex-
posed to un-authorized people.

R.3 The confidential data stored in the database should be secure.
This applies to both information security and physical security.

Data should be stored in a secure way and in a secure loca-
tion.

R.4 The dataflow within each layer should be secure. This applies to
both communication locally and communication in the cloud.

Dataflow within each layer should be encrypted and commu-
nicated in a secure way.

R.5 The dataflow between each layer should be secure. This applies
to both communication locally and communication in the cloud.

Dataflow between different layers should be encrypted and
communicated in a secure way.

Every requirement instantiating "SecReq" should be an instance of an abstract requirement defined in Table III.
An asset instantiating "Asset" should be a data asset one would like to keep confidential.
Participants :
Decision maker
Related pattern :
A security pattern format usable within software development life cycle and specified security requirement pat-
terns for accounting, access control, identification, and authentication are developed in [Schumacher 2006].
In [Withall 2007], we can also find some requirement patterns that are related to security including access control
(registration, authentication, authorization), audit (chronicle), and some aspects of privacy (archiving,comply-with-
standard).
Known uses :
There are no known uses of this pattern entirely, but the benefits of the pattern are partly presented in some
pattern examples. Problem frames are used in a pattern based security engineering process for requirement
analysis of a secure remote display system [Hatebur et al. 2007b] [Hatebur et al. 2007a]. Three-Tier Architec-
ture pattern is also mentioned and used in [Aarsten et al. 1996] [Kircher and Jain 2001] [Microsoft patterns &
practices developer center 2013], which offers significant advantages for application analysis and design.

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 9



7. WEB APPLICATION DESIGN PATTERN OF WEB APPLICATIONS FOR DATA COLLECTION AND ANALY-
SIS IN A CLOUD ENVIRONMENT

By considering a type of web application for data collection and analysis that uses a server and a database in the
cloud, one basic web application architecture design pattern is the one following below.
Pattern name :
Architecture design of web applications for data collection and analysis in a cloud environment
Classification :
Web application design
Pattern signature :
"SecReq"(short for security requirement) is an input parameter representing security requirement for the web

application to be analyzed, which is usually provided as the output from a security requirement pattern.
"ArcDes"(short for architecture design) is an output parameter representing architecture design of web applica-
tions for data collection and analysis.
Motivation :
The intent of this pattern is to show the architecture design views of a web application for data collection and anal-
ysis in a cloud environment from a structural and behavioral perspective. It also serves as a basis for secured
web application engineering and risk analysis.
Context of use :
The pattern should normally be used to show abstract views of the web application architecture in a cloud envi-
ronment. It is suitable to be used in the following context:

—when there is a need to design abstract architecture for a web application in a cloud environment to satisfy
security requirements.

—when a web application architecture view serves as a basis for security risk analysis in the early design or
development phase.

—when the main functionality of a web application includes data collection and data analysis.

Problem :
What are security architecture design views of web applications for data collection and analysis in a cloud envi-
ronment?
Solution :
Based on the relevant security requirements as input, we may address behavioural parts and structural parts
of the web application architecture design. Considering the design from a behavioural perspective, use case
diagrams and activity diagrams can be used to illustrate the web application architecture from business and logi-
cal process point of view. Considering the design from a structural perspective, deployment diagrams and class
diagrams can be used to illustrate design from deployment and data point of view.

—Use case diagram from a business point of view.
The use case diagram in Figure 7 shows the basic functionality that a user would like to use, e.g. collect data,
upload data to the cloud and download data from cloud through a smart device (e.g. PC, mobile, pad, glasses)
that holds the web application. They are tagged by a fish symbol representing the sub-function level. The
main function of such a type of web application is determined by the ways of using the results from the data

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 10



analysis, which is tagged with cloud symbol representing high level functionality. Each use case will further
help with identifying proper risk elements in a certain risk analysis activity, such as threats, threat scenarios,
and vulnerabilities and so on.

Fig. 7. Use case diagram - Business point of view

—Activity diagram from logical process point of view.
The activity diagram in Figure 8 illustrates the logical process of a user using a type of web application for data
collection and analysis through a data collection device and smart device in a cloud environment to serve a
specific purpose. The dashed line illustrates how an instantiation of this activity diagram should be adjusted
according to the context of the specific web application to be analysed.

Fig. 8. Activity diagram - Logical process point of view

—Deployment diagram from deployment point of view.
The deployment diagram in Figure 9 shows how this web application in the cloud should be deployed follow-
ing the three-layered web architecture design principle [Patterns and Team 2009]. The smart devices for data

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 11



collection and web application hosting will be linked together to conduct information communication through
Internet or Bluetooth. The data communicated between the the smart devices should be kept secrect. Com-
munications between the smart device and application server in the cloud use internet with a firewall link. The
database in the cloud and application servers in the cloud are linked through an internet network link based on
LAN where the data is required to be highly secure.

Fig. 9. Deployment diagram - Deployment point of view

—Class diagram from data point of view.
The class diagram in Figure 10 shows the data types related to the usage of this type of web application and
the relationships among data and relevant components. This type of application has a set of databases in the
cloud, and the databases in the cloud support the applications by storing data, transmitting data, and analysing
data, etc. There can be different types of data, such as health data, personal data or other types of data with
requirements for confidentiality.

Fig. 10. Class diagram - Data point of view

Instantiation rule :
An artefact "ArcDes" is a set of architecture design views instantiating the business, the logical process, the
deployment and the data point of view given in Figure 6, 7, 8 and 9.
For a web application under analysis, the sub functions and main functions are instances of the functions in the
business process point of view in Figure 6. The internal logical process is an instance of the logical process point
of view in Figure 7. The smart device to collect data and to use the web application are instances of smart devices
in the deployment point of view in Figure 8. The data need to be protected is an instance of data type in the data

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 12



point of view in Figure 9.
Participants :
System architect
Related patterns :
There is no known architecture design patterns directly related to data collection and analysis web application
as presented here. But architectural patterns in [Taylor et al. 2007], security architectures in SEPP (Security
Engineering Process with Patterns) [Schmidt et al. 2011], S&D patterns in SERENITY [Gallego-Nicasio et al.
2009] and security design patterns in [Fernandez 2004] can also be considered when making architecture design
with respect to security.
Known uses :
The 4+1 view model of architecture [Kruchten 1995], the viewpoints presented in [Garland and Anthony 2003]
and experiences using viewpoints for information system in [Woods 2004] partly presents the usefulness and
acceptance of architecture design in terms of different views in this pattern.

8. RISK ANALYSIS MODELLING PATTERN OF WEB APPLICATIONS FOR DATA COLLECTION AND ANALY-
SIS IN A CLOUD ENVIRONMENT

Pattern Name :
Security threat model of web applications for data collection and analysis in a cloud environment
Classification :
Risk analysis modelling
Pattern signature :
"ConDat"(short for confidentiality of data) is an input parameter representing the asset to be protected and is

therefore a special case of an "asset" parameter, which is usually provided as the output from a security require-
ment pattern.
"SecReq"(short for security requirement) is an input parameter representing security requirements for data confi-
dentiality in a cloud environment, which is usually provided as the output from a security requirement pattern.
"ArcDes"(short for architecture design) is an input parameter representing an architecture design of web applica-
tions for data collection and analysis in a cloud environment, which is usually provided as the output from a web
application design pattern.
"Threat model" is an output parameter for this pattern that describes the basis for modelling identified risks in
terms of unwanted incidents of "ConDat", threat scenarios, threats and vulnerabilities according to "SecReq" and
"ArcDes".
Motivation :
To identify, recognize and describe risks related elements that form the basis of threat modelling.
Context of use :
This pattern should normally be used to identify risk related unwanted incidents, threat scenarios, threats and
vulnerabilities of targeted assets that one would like to protect. It is suitable to be used in the following situations:

—when one would like to identify security risks of web applications for data collection and analysis in a cloud
environment.

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 13



—when one would like to design a secure web application starting from risk identification following a risk-based
approach.

—when the results of the risk identification can serve different other purposes (e.g. eliciting security require-
ments [Braz et al. 2008], assisting with security testing [Li 2012]).

Problem :
How to identify risks with respect to confidentiality of data for a type of web application for data collection and
analysis in a cloud environment? What are risks related elements, including unwanted incidents, threat scenarios,
threats and vulnerabilities?
Solution :
As shown in Figure 11, OWASP2 or CVE3 is used to identify risks for a web application according to asset

Fig. 11. Risk identification

of data confidentiality, security requirements and architecture design of a web application. By matching among
CVE/OWASP and these input parameters, one can derive unwanted incidents, threat scenarios, threats, and
vulnerabilities accordingly.

Various threats are presented in Table IV, including accidental human threats(AHT), deliberate human threats

Table IV. Threat codes of web application for data collection and analysis in the cloud
Threat User Employee of

cloud
provider

Malicious cus-
tomer

Attacker Hacker Insider
of cloud
provider

Business
management
of cloud
provider

Threat code AHT1 AHT2 DHT1 DHT2 DHT3 DHT4 NHT1

Table V. Vulnerability codes of web application for data collection and analysis in the cloud
Vulnerability Insufficient

security
aware-
ness

Lack of
compe-
tence

Insufficient
security
patch for
virtualiza-
tion from
cloud
provider

Insufficient
physical
protection

Work
progress
is not
aligned
with
policy

Insufficient
access
control

Poor en-
cryption

Insufficient
virus pro-
tection

Poor
multiple
identity
manage-
ment
of one
employee

Vulnerability
code

V1 V2 V3 V4 V5 V6 V7 V8 V9

2www.owasp.org
3cve.mitre.org

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 14



Table VI. Security vulnerability and threat scenario matrix of web application for data collection and analysis in the cloud
ASSET Condat (Confidentiality of data)
UWANTED
INCIDENT

Confidential data is exposed

THREAT
SCENARIO

Data collec-
tion device is
lost.

Smart device
is lost.

Resources of
different cloud
customers are
not well isolated
logically.

Access to server
and database in
the cloud is com-
promised.

Access to server
and database in
the cloud is mis-
used.

An employee’s ac-
cess cannot be
shut off automati-
cally, following ter-
mination of an em-
ployee.

Vulnerability V1,V6 V1,V6 V1,V2,V5,V7 V2,V3,V4,V5,V7 V3,V4,V6,V7,V8 V1,V5,V6,V9
Threat AHT1 AHT1 AHT2,DHT1 DHT3 DHT2,DHT4 NHT1

(DHT) and non-human threats (NHT). Each threat is assigned a threat code. Various vulnerabilities are presented
in Table V, where a vulnerability code is assigned to each vulnerability. By exploiting vulnerabilities, a threat
can initiate a threat scenario, and one threat scenario may also initiate another threat scenario. When a threat
scenario happens, an unwanted incident may occur that harms the protected asset. Table VI presents a matrix
relating unwanted incidents, threat scenarios, threat and vulnerabilities, which address confidentiality risks of web
applications for data collection and analysis in a cloud environment.

One may interpret the relation corresponding to DHT3 and V3 in Table VI in this way: " The Hacker threat
could cause the threat scenario Access to server and database in the cloud is compromised to occur due to
the vulnerability of Insufficient security patch for virtualization from cloud provider. When the unwanted incident
Confidential data is exposed happens, the asset Confidentiality of data is harmed.".
Instantiation rule :
An artefact instantiating Threat model can be structured according to Table VI.
Participants :
Risk analyst, security engineer, software architect, software developer, project manager, etc.
Related pattern :
Some risk patterns are used in [Miler and Gorski 2004] to help with risk identification, where a set of classes of
risk events are defined and the different risk events are combined into risk patterns.
Known uses :
There are no known uses of this pattern in its entirety, but the essential solution presented here has been partly
applied in several examples. For example, model driven risk analysis method CORAS applied in an evolving
critical infrastructures in [Solhaug and Seehusen 2013], fault trees for secure system design and analysis [Brooke
and Paige 2003], attack tree risk analysis method applied in power system control networks [Ten et al. 2007] and
so on.

9. CONCLUSION AND FUTURE WORK

The pattern language presented in this paper aims to provide the basis for a light weighted method for security
risk analysis for web applications, especially in the early phase of software development life cycle. We have
illustrated the usage of the pattern language and provided examples of various kinds of patterns. More specific,
we have presented a composite pattern, a basic security requirement pattern, a basic web application design
pattern and a basic risk analysis modelling pattern.

Future work would be to expand the libraries of patterns according to different types of web applications and
to define a formal syntax for it. In addition, the work will be evaluated in proper cases.

Acknowledgments:
This work has been conducted as a part of the DIAMONDS (201579/S10) project funded by the Research Coun-
cil of Norway, the NESSoS(256980) network of excellence funded by the European Commission within the 7th

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 15



Framework Programme, as well as a part of the RASEN (316853) project funded by the European Commis-
sion within the 7th Framework Programme. The authors also acknowledge the shepherding process by Eduardo
Fernandez.

REFERENCES

AARSTEN, A., BRUGALI, D., AND MENGA, G. 1996. Patterns for three-tier client/server applications. Pattern Languages of Programs (PloP
’96).

ALEXANDER, C. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press.
BRAZ, F. A., FERNANDEZ, E. B., AND VANHILST, M. 2008. Eliciting security requirements through misuse activities. In International Workshop

on Database and Expert Systems Application (DEXA ’08). 328–333.
BROOKE, P. J. AND PAIGE, R. F. 2003. Fault trees for security system design and analysis. Computers & Security 22, 3, 256–264.
BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. 1996. Pattern-oriented software architecture volume 1: A

system of patterns. Wiley.
DOUGHERTY, C., SAYRE, K., SEACORD, C., SVOBODA, D., AND TOGASHIO, K. 2009. Secure design patterns. Tech. Rep. CMU/SEI-2009-

TR-010, Software Engineering Institute, Carnegie Mellon.
FERNANDEZ, E. 2013. Security Patterns in Practice: Designing Secure Architectures Using Software Patterns. Wiley.
FERNANDEZ, E. B. 2004. A methodology for secure software design. In Software Engineering Research and Practice (SERP ’04). 21–24.
GALLEGO-NICASIO, B., MUNOZ, A., MANA, A., AND SERRANO, D. 2009. Security patterns, towards a further level. International Conference

on Security and Cryptography (SECRYPT 2009), 349–356.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design patterns: elements of reusable object-oriented software. Addison-

Wesley.
GARLAND, J. AND ANTHONY, R. 2003. Large Scale Software Architecture. John Wiley.
HATEBUR, D., HEISEL, M., AND SCHMIDT, H. 2007a. A pattern system for security requirements engineering. Seventh International Confer-

ence on Availability, Reliability and Security (ARES ’07), 356–365.
HATEBUR, D., HEISEL, M., AND SCHMIDT, H. 2007b. A security engineering process based on patterns. In 18th International Workshop on

Database and Expert Systems Applications (DEXA ’07). 734–738.
HAUGE, A. AND STØLEN, K. 2011. SACS-A pattern language for safe adaptive control software. In 18th Conference on Pattern Languages

of Programs (PLOP’11).
International Standards Organization 2009a. ISO31000:2009(E), Risk management – Principles and guidelines. International Standards

Organization.
International Standards Organization 2009b. ISO/IEC 27000:2009(E), Information technology – Security techniques – Information security

management systems – Overview and vocabulary. International Standards Organization.
JACKSON, M. 2001. Problem Frames: Analyzing and Structuring Software Development Problems. Addison-Wesley.
KIENZLE, D. M. AND ELDER, M. C. 2002. Final technical report: Security patterns for web application development. DARPA, Washington

DC.
KIRCHER, M. AND JAIN, P. 2001. The three-tier architecture pattern language design fest. In European Conference on Pattern Languages of

Programs (EuroPLoP ’01). 575–580.
KRUCHTEN, P. 1995. The 4+1 view model of architecture. Software, IEEE 12, 6, 42–50.
LI, Y. 2012. Conceptual framework for security testing, security risk analysis and their combinations. In 9th Workshop on Systems Testing

and Validation (STV’12). Fraunhofer, 17–21.
LUND, M., SOLHAUG, B., AND STØLEN, K. 2011. Model-Driven Risk Analysis: The CORAS Approach. Springer.
MICROSOFT PATTERNS & PRACTICES DEVELOPER CENTER. 2013. Tiered distribution. http://msdn.microsoft.com/en-us/library/

ff647195.aspx. Accessed on 02.05.2013.
MILER, J. AND GORSKI, J. 2004. Risk identification patterns for software projects. Foundations of Computing and Decision Sciences 29, 1-2,

115–132.
PATTERNS, M. AND TEAM, P. 2009. Microsoft Application Architecture Guide. Microsoft Press Series. Microsoft Press.
RIEHLE, D. 1997. Composite design patterns. ACM SIGPLAN Notices 32, 10, 218–228.
ROMANOSKY, S. 2001. Security Design Patterns Part 1. Carnegie Mellon.
SCHMIDT, H., HATEBUR, D., AND HEISEL, M. 2011. A pattern-based method to develop secure software. In Software Engineering for Secure

Systems: Industrial and Research Perspectives. IGI Global, 32–74.
SCHUMACHER, M. 2006. Security patterns : integrating security and systems engineering. John Wiley & Sons.
SOLHAUG, B. AND SEEHUSEN, F. 2013. Model-driven risk analysis of evolving critical infrastructures. Journal of Ambient Intelligence and

Humanized Computing, 1–18.

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 16



STEEL, C., NAGAPPAN, R., AND LAI, R. 2006. Core Security Patterns: Best Practices and Strategies for J2EE,Web Services, and Identity
Management. Prentice Hall core series. Upper Saddle River, N. J. Prentice Hall PTR.

TAYLOR, R. N., MEDVIDOVIC, N., AND DASHOFY, E. M. 2007. Software Architecture: Foundations, Theory and Practice. Addison-Wesley.
TEN, C.-W., LIU, C.-C., AND GOVINDARASU, M. 2007. Vulnerability assessment of cybersecurity for scada systems using attack trees. In

Power Engineering Society General Meeting, 2007. IEEE. 1–8.
WITHALL, S. 2007. Software Requirement Patterns. Microsoft Press.
WOODS, E. 2004. Experiences using viewpoints for information systems architecture: An industrial experience report. In Software Architec-

ture. Springer, 182–193.
YODER, J. AND BARCALOW, J. 1998. Architectural patterns for enabling application security. Urbana 51, 61801.
YOSHIOKA, N., WASHIZAKI, H., AND MARUYAMA, K. 2008. A survey on security patterns. In Progress in Informatics No.5. 35–47.

PLoP’13, October 23-26, Monticello, Illinois, USA. Copyright 2013 is held by the author(s). ACM 978-1-941652-00-8

Towards a Pattern Language for Security Risk Analysis of Web Applications — Page 17


