
1

Patterns for Internet shops

Eduardo B. Fernandez, Yi Liu, and RouYi Pan
Dept. of Computer Science and Engineering.

Florida Atlantic University, Boca Raton, FL 33431
 ed | yliu | rpan@cse.fau.edu

Abstract
Shopping on the Internet has become common and any web site must provide convenient
user interfaces for this purpose. An appropriate infrastructure is needed to support a
variety of navigational views. We present two patterns that are part of the infrastructure
of web shops: the Catalog pattern and the Shopping Process pattern. The Catalog pattern
describes how to organize the information about products for a web shop, the Shopping
Process pattern describes the steps required to buy something in the Internet. We also
show the combination of these patterns in a web shop.

Introduction
Web shops have become a common activity because they bring many opportunities for
shop owners and customers. There are many patterns that can be discovered in this type
of applications. We can divide them into three types:
• Patterns for navigational views.
• Patterns for building interfaces.
• Patterns for infrastructure.

A variety of patterns of the first two types have been presented [Lya98, Lya99, Pal,
Ros00]. Good infrastructure can improve the response of the server and also provides
extensibility and flexibility for building good navigational views and interfaces. This type
of patterns should be clear, flexible, efficient, extensible, and independent of the other
two types.

We present in this paper two patterns for the infrastructure needed to build a web shop:
the Catalog pattern and the Shopping Process pattern. The Catalog pattern organizes
information about products in an efficient and flexible way. It also provides mechanisms
to help customers make decisions. The goal of the Shopping Process pattern is to simplify
the shopping process and to improve the efficiency and convenience of the buying
process.

Copyright 2001, Eduardo B. Fernandez
Permission is granted to copy for the PLoP 2001 Conference. All other rights reserved.

2

These patterns are examples of Semantic Analysis Patterns (SAPs) [Fer00a], a simple
semantic unit that applies to a variety of situations. They are also composite patterns,
where their components have value on their own right. The combination of these two
patterns can be used to define an Internet shopping framework.

Catalog Pattern
Intent
The catalog pattern organizes information about the products sold in a web site.

Context
Web shops where companies sell products of different types. There may be other
applications in the server to provide process structure, billing, inventory, and other
related functions.

Problem
Web shops sell a variety of products, sometimes totally unrelated, e.g., books and food.
An important problem is: How to organize product information, provide on-line guidance
to the users, and improve the attraction of the web site so that users are willing to visit
and return?

Forces
• There is a large variety of products that can be sold.
• Products and their descriptions change frequently.
• Without good support for product search and selection customers will not return to

the site, the infrastructure should support a variety of these functions.
• Related products should be indicated to the customer to entice him to buy more items.
• Catalogs are frequently built in an ad hoc manner and cannot be reused, which results

in duplications and waste of time and effort.

Solution
Define a catalog class as central point to collect products. Separate the different aspects
of interest such as detailed descriptions of products and related products in distinct
classes. Use an Observer pattern to look for changes and notify customers of changes.

Class Diagram
A Catalog is a collection of products. Each product belongs to at least one catalog. The
Product class defines the type of product being sold, buyers usually buy a typical
product, not an individual product. This class contains the basic attributes of each
product. In particular, a status attribute indicates special aspects, e.g., a new product. The
navigational views may place a special product in an outstanding position on the screen.
Also, new products may be separated from the regular products and made known to the
customers [Lya98].

The ProductInfo class provides more detailed information about a product. It may also
include comparison among different varieties of the same product, different brands, or

3

provide the best price/performance ratio. For example, for a TV set, it may provide
comparison information from several brands. For travel agencies, it may provide
additional choices for customers, such as letting them choose a nearby departure airport,
so that air tickets will be cheaper. Class SimilarProduct provides links to other similar
products.

Modifications to the products are notified to the customers by email to let them know
there is some new or interesting product. A class ProductObserver watches for changes
and notifies customers. Note that these classes are a type of Observer pattern. Class
Notification keeps records of notifications sent to users.

 Figure 1: Class diagram for Catalog pattern

Dynamic analysis
The sequence diagram of Figure 2 shows the collaborations triggered when products are
modified. This is very similar to the standard Observer pattern sequence.

Consequences
This pattern provides the following benefits:
• It provides the needed infrastructure to describe products conveniently. Navigational

classes can be added to show this information in attractive ways.
• It is reusable. The pattern is suitable for various kinds of web shops, from big malls to

personal stores.

Customer

Product Observer

init()

modify()

Notification

Catalog

topic

 create()

delete()

getProduct()

Product

productId

price

status

getStatus()

insertProduct()

deleteProduct()

updateProduct()

getCatalog()

ProductInfo

advantage

comparison

setAdvantage()

setComparison()

getAdvantage()

getComparison()

1

*

*

1

* *
Send

View

SimilarProduct

link

addLink
removeLink

*

4

• It can be combined easily with other patterns, such as Personalization patterns [Pal,
Ros01], our Shopping Process pattern shown later, or Inventory patterns [Fer00b].

Figure 2: Sequence diagram for update of a product

Other considerations include: While the basic pattern refers to product types, some sites
do sell individual products, e.g., a used-car site, an auction site. In this case the Product
class becomes a set of individual products and we need an additional class to indicate the
product type.

Known uses
The pattern can be applied to many applications, such as:
• On-line book stores. Each bookstore organizes books by catalog, such as computers,

medical, history, and literature. The products are books. Product-info will provide
reviews and descriptions of each book. The status attribute could indicate special
deal, new book, or a best selling book. If some customers are interested in some kind
of books, whenever such books appear or some special deal is available, an email will
notify them.

• Music stores, shoe stores, wine stores…

Most Web Application servers , e.g., IBM’s WebSphere Commerce Suite, incorporate
catalogs [ibm].

Related patterns
The Catalog pattern includes the Container/context pattern [Coa97]. The Stock manager
pattern complements this pattern by keeping track of the quantities of products in stock

<< actor >>

:Web Clerk :Product :Product Observer

updateProduct

init

modify

<< actor >>

:Customer

notify

getState
notify

5

[Fer00b]. Other patterns usually found together with the catalog are the Search patterns
[Lya99].

Shopping Process Pattern
Intent
Models the structure needed for selecting and buying a product from a web shop.

Context
Web shops contain many products. Customers can select and purchase different products
in the same session. A customer looks for the product he is interested, chooses
something he wants to buy and adds it to his list of purchases. He can inspect and modify
his purchases at any time. Some customers may be known to the shop and treated
differently. The web shop will also include catalogs, billing, shipping, and other
applications.

Problem
The shopping process must have well defined steps. This is necessary because we need to
show the customer where he is in the process. The problem is now: How to describe the
shopping process in a precise way?

Forces
• Customers may get disoriented through the steps of the shopping process. We want to

keep the shopping process as convenient and clear for the user as possible. Clearly,
this will depend on the specific web pages shown to the user, here we worry about the
underlying structure to make this job convenient.

• We need to show to the customer where he is in the buying process.
• The steps of the process may need to be changed for new products or new business

models. This may imply new entities as well as new steps.
• Customers like to have several ways of paying.
• Some customers must be treated differently.
• If the shopping structure is not secure, customers will not return.

Solution
The most common metaphor for the shopping process is based on the concept of
shopping cart, analogous to the carts used in supermarkets. A customer may have several
shopping carts and each shopping cart will contain his selections. An order is produced
when the customer decides to buy (checkout) his cart selections. An invoice is produced
for each order.

Class Diagram
A class ShoppingProcess is a single entry point for the complete process. The
ShoppingCart class collects information about all the products a customer has selected.
A CartItem object indicates the quantity and the product selected by a customer. A

6

customer can query the products in his cart and remove products from the cart. The
Customer class indicates the customer responsible for a shopping cart. This class also
provides operations to allow the customer to modify his information. Several forms of
payment are provided by the system, such as credit card and e-check. When the shopping
cart is checked out, an Order and an Invoice will be generated.

 Figure 3: Class diagram for Shopping Process pattern

Dynamic aspects
The following interactions can be found in this pattern (Figure 4):
• Selection : When a customer performs a selection operation on some kind of product,

a new cartItem object is created and added to the cart.
• Checkout : When a customer checks out a product, the prices of all products selected

are calculated, the customer billing and shipping information is retrieved, and an
invoice is created.

ShoppingCart

cartId

cartQuantity

cartPrice

showItem()

addItem()

removeItem()

checkout()

calcTotalPrice()

Shopping Process

Order

Invoice

amount

date

specification

status

Payment

date

getPaymentInfo()

CreditCard ECheck

Customer

name

address

setProfile()

getProfile()

updateProfile()

Customer Profile

name

address

phoneNumber

e_mail

creditInfo

shippingInfo

Member

account

setAccount()

getAccount()

addMember()

removeMember()

CartItem

quantity

unitprice

calcPrice()

*
0..*

* *

* 1Owns

*

Product

productId

status

price

getStatus()

getState()

notify()

insertProduct()

deleteProduct()

getCatalog()

*
*

Selections

1 1Has

1..* 1Select

7

Figure 4: Sequence diagram for buying and checking out a product

Consequences
The following benefits can be found from use of this pattern:
• The pattern describes an abstract shopping process. It can be applied to various web

shops from those selling shoes to those selling software.
• The pattern provides common elements for building shops in the Internet.
• The pattern should help reduce the complexity of the shopping process in the Internet.

All or some of the process steps can be displayed to the user for his guidance.
Customer information need not be reentered for member customers.

• It is easy to add authorization to the conceptual structure; for example, access to the
process is restricted only to some process managers.

The following liabilities can be identified:
• The pattern does not provide mechanism to prevent errors, such as wrong credit card

number, errors in billing address or shipping address. They should be included in a
practical model.

• This is a general model for a web shop; it may need to be adapted for the
characteristics of specific web shops.

• For efficiency the pattern needs support from a lower infrastructure, such as a
database management system.

• The security constraints defined in the pattern must be enforced by lower-level
mechanisms, such as database authorization, file permissions, cryptography, and
others [Fer99a].

<< actor >>

:Customer :Product :CartItem

select

:Customer:ShoppingCart :Invoice

create
calcPrice

addItem

checkout
getProfile

calcTotalPrice

generate

8

Known uses
Most web shops use the concept of shopping cart with an infrastructure similar to this
pattern. Specific models or code for similar patterns can be found in [Bar96], [Bol00],
and [Kob01].

Related patterns
This pattern can be used to support two patterns for web customers:
• The Dynamic Configuration pattern [Lya98], which helps the customers select from a

variety of options and validate their selections.
• The Explicit process pattern [Ros00], which helps the users understand the buying

process.

Navigational patterns, such as News [Lya98] and Advising [Ross00], can utilize these
two patterns as part of their infrastructure.

The order and shipment pattern [Fer00] can complement this pattern to add details of
shipment. A more detailed treatment of payments can be found in [Fow97] and [Hay96].
The Shopping Cart itself, the customer-related classes, and the payment classes are
atomic patterns that can be used on their own right. Combination of the abstract versions
of the two patterns presented here could be the basis of a shopping framework.

Acknowledgements
We thank our shepherd Gustavo Rossi for his insightful suggestions that made this paper
considerably better.

References

[Bar96] C. Baron and B. Weil, “Implementing a web shopping cart”, Dr. Dobbs Journal,
September 1996, 64-69 and 83-85.

[Bol00] G. Bollinger and B. Natarajan, “Build an e-commerce shopping cart”, Java Pro,
June 2000, 38-50.

[Coa97] P.Coad, "Object models: Strategies, patterns, and applications" (2nd Edition),
Yourdon Press, 1997.

[Con99] J. Conallen, Building Web Applications with UML, Addison-Wesley,1999.

[Fer99] E.B.Fernandez and X.Yuan, “An analysis pattern for reservation and use of
entities”, Procs. of Pattern Languages of Programs Conf. (PLoP’99),
http://jerry.cs.uiuc.edu/~plop/plop99

[Fer99a] E.B.Fernandez, "Coordination of security levels for Internet architectures",
Procs. 10th Intl. Workshop on Database and Expert Systems Applications, 1999, 837-
841.

9

[Fer00] E.B.Fernandez, X.Yuan, and S.Brey, “An analysis pattern for the order and
shipment of a product”, Procs.of Pattern Languages of Programs Conf. (PLoP’2000),
http://jerry.cs.uiuc.edu/~plop/plop2k

[Fer00a] E.B. Fernandez and X. Yuan, “Semantic Analysis patterns”, Procs. of
19th Int. Conf. on Conceptual Modeling, ER2000, 183-195.

[Fer00b] E.B. Fernandez, “Stock Manager: An analysis pattern for inventories”, Procs. of
PLoP 2000, http://jerry.cs.uiuc.edu/~plop/plop2k

[Fow97] M. Fowler, Analysis patterns -- Reusable object models, Addison- Wesley,
1997

[Hay96] D.Hay, Data model patterns-- Conventions of thought , Dorset House Publ.,
1996.

[ibm] IBM Corp., Web Sphere Commerce Suite,
http://www-4.ibm.com/software/webservers/commerce

[Kob01] C. Kobryn, Modeling components, patterns, and frameworks with UML,
Notes for tutorial, Software Development 2001 West, April 2001.

[Lya98] F. Lyardet, and G. Rossi, “Patterns for dynamic websites”, Procs. PloP’98,
http://jerry.cs.uiuc.edu/~plop/

[Lya99] F. Lyardet, G. Rossi, and D. Schwabe: “Patterns for adding search capabilities
to web information systems”, Procedings of EuroPloP’99,
http://www.argo.be/europlop/index.html

 [Pal] M. Palmer, “A Personalization design pattern for dynamic websites”,
http://objectdesign.com

[Ros00] G. Rossi , F. Lyardet, and D. Schwabe, “Patterns for e-commerce applications”,
Procs. EuroPLoP’2000, http://www.coldewey.com/europlop2000/

[Ros01] G. Rossi, D. Schwabe, J. Danculovic, and L. Miaton, “Patterns for personalized
web applications”, Procs. EuroPLoP’2001, http://www.hillside.net/patterns/EuroPLoP/

[Sch98] D. Schwabe, and G.Rossi: “An object-oriented approach to web-based
application design”, Theory and Practice of Object Systems (TAPOS), October 1998.

