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Abstract. In this paper, we suggest a pattern language, a collection of
related design patterns, for the development of communication protocols
with an emphasis on an SDL (Specification and Description Language)
implementation. The patterns are grouped in two categories: structural
patterns and behavioral patterns. The structural patterns are focused
on the architectural aspects of communication protocols. The behavioral
patterns capture common behavior of protocols modeled in communicat-
ing extended finite state machines (CEFSM).

1 Introduction

Patterns offer a way to describe a solution to a commonly occurring problem
so that the solution can be reused. A pattern language is a collection of pat-
terns that work together to solve problems in a specific domain. Table 1 shows
a pattern language dedicated to communication protocols written in SDL. The
patterns are grouped in two categories: structural patterns and behavior pat-
terns.

Structural Patterns : The patterns in this category address the overall architec-
ture of a communication protocol. The architecture is composed of several blocks
along with communication paths between them. A block is an architectural build-
ing element of a developing system and can contain other blocks, resulting in
a tree structure. Thus, there are two kinds of blocks in the structural patterns:
a leaf block and non-leaf block. At this point, the blocks are considered to be
black boxes: the external interfaces such as communication paths and messages
are defined, but the internal details are not.
Behavioral Patterns : The behavioral patterns help the developer design the in-
ternal behavior of the leaf blocks identified in the structural patterns. Each block
instance has a state that may change to other state in response to events such
as a message input. The response to an event may also trigger additional events
such as the generation of output messages. We use communicating extended fi-
nite state machines (CEFSM) to formally describe this behavior. Predicates and
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timers may be used to describe conditional behavior and timing constraints. We
use the event, signal, and message interchangeably in this paper.

Table 1. Pattern language for communication protocols

Category Patterns Variants

Protocol Layer Split Protocol Layer
Structural Patterns Mux

Dynamic Handler Split Dynamic Handler

Predicate CEFSM
Predicate after Action

Basic CEFSM Source Merge
Target Merge
Sequential Merge

Timer
Behavioral Patterns Repeated Events Timed Repeated Events

Timed Repeated Trials
Simple Sender
Simple Receiver
Confirmed Sender
Confirmed Receiver
Timed Confirmed Sender

Message Transfer Repeated Sender
Repeated Receiver
Repeated Confirmed Sender
Repeated Confirmed Receiver
Timed Repeated Trial Receiver
Timed Repeated Trial Confirmed Sender
Timed Repeated Trial Confirmed Receiver
Message Transfer in Middle Layer

Design patterns have a particular form to present design problem and solu-
tion. Most forms have name, context, problem, and solution sections [4]. Our
patterns use the traditional pattern template as used in [4, 9], but emphasize the
SDL implementation. Table 2 shows our pattern format.

2 Structural Patterns

2.1 Protocol Layer

Context We need to design a complex system such as a communication proto-
col. Some parts of the system may already exist.

Problem How can we describe the structure of a communication protocol sys-
tem?
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Table 2. Pattern form to describe a pattern

Name of the pattern.
Name It must have a meaningful word or phrase to clearly

describe the main purpose of the pattern.

Context Situation in which the problem occurs.

Problem to be solved.
Problem It provides a general problem specification and identi-

fies the essence of the problem.

Various viewpoints of the problem.
Forces It provides requirements that the solution must take

into account, constraints to be considered, and desir-
able properties of the solution.

Solution A solution that solves the problem.

The implementation of the solution in SDL.
Implementation Generally, it is obtained by an one-to-one mapping

from the solution.

Example An example that uses the pattern.

Variants Variants or specializations of the pattern.

See also Usages of the pattern in other systems or similar pat-
terns.

Forces The system is too large and complex to be able to understand completely.
We need techniques to help manage the complexity.

– Decomposition: We decompose the system into several subsystems that can
be dealt with more-or-less independently.

– Abstraction: Each subsystem is treated as a black box and specifies the
interfaces with other subsystems. Internal details are left for later.

– Reuse: Some of the subsystems may already be available and thus do not
need to be designed.

Solution A communication protocol can be designed in layers. Each layer han-
dles problems at a particular level of abstraction. A layer offers services to the
higher layer and uses services from the next lower layer. This structure allows a
protocol developer to design external interfaces before internal functionality [2,
11].
First, we identify the blocks belonging to a layer and determine the com-

munication paths between the adjacent layers. The layers and communication
paths are logical objects that may or may not correspond directly to physical
components of network or communication links.
Second, we address the messages between layers and associate the messages

with the communication paths. The communication paths show the list of mes-
sage types that can be sent on the path and the direction of the message flow. Fig.
1 shows a protocol layer that includes one block, four communication paths, a
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Protocol Layer

upper layer

lower layer

messages =
msg1, 
msg2, 
msg3, 
msg4, 
…;

p1 p2

paths =
p1: msg1, …;
p2: msg2; …; 
p3: msg3; …;
p4: msg4; …;

p3 p4

Fig. 1. A structure of protocol layer

message list, and the adjacent layers. The internal behavior of the protocol layer
block can be designed using other patterns of this pattern language.

Variant: Split Protocol Layer Often, a communication layer can be con-
ceptually split into two related functions. For example, sending and receiving
for message transfer [3]. It may be helpful for the designer to consider the two
functions separately. Fig. 2 shows a structure of the pattern split protocol layer
where the Outgoing block initiates a communication requested from the upper
layer and the Incoming block handles messages coming from the lower layer.

messages =
msg1, 
msg2, 
msg3, 
… ;

paths =
p1: msg1, … ;
p2: msg2; … ; 
p3: msg3; … ;
… ;

Outgoing

upper layer

lower layer

p1 p2

p3 p4

Incoming

p5 p6

p7 p8

Fig. 2. A structure of split protocol layer

Implementation in SDL The SDL implementation can be obtained directly
from the design. SDL has two constructs to describe a system structure: SDL
blocks and SDL processes. SDL blocks are pure structuring mechanisms that may
contain other blocks and processes while SDL processes contain the specification
of behavior.
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Typically, the non-leaf blocks of the structural patterns are mapped to SDL
blocks and the communication paths between them are mapped to SDL chan-
nels. Two types of channels are possible in SDL. One is a delaying channel and
another is a non-delaying channel. The selection of the channel is dependent on
the situation. Leaf blocks may be mapped to SDL processes. In this case, the
communication paths are mapped to signal routes which connect processes to
other processes and to the channels of their containing block. Messages flowing
on communication paths that are mapped to channels or signal routes are called
signals in SDL.
Fig. 3 shows an implementation of the pattern protocol layer of Fig. 1. The

Protocol Layer of Fig. 1 is mapped to an SDL block Protocol Layer . Each com-
munication path is converted to a delaying channel such as c1, c2, c3, and c4.
The signals correspond to the messages flowing through the channel.

BLOCK Layer

Protocol_Layer

SIGNAL 
msg1, msg2, 
msg3, msg4,
… ;

[msg1, … ]
c1 c2

[msg2, … ]

[msg3, … ]
c3

c4
[msg4, … ]

Fig. 3. SDL implementation of Fig. 1

Examples The example shows a part of the Service Specific Coordination Func-
tion (SSCF) for the User-Network Interface (UNI) in the ATM signaling system
[16]. The SSCF UNI layer provides a mapping function between ATM Signaling
layer and Service Specific Connection Oriented Protocol (SSCOP) layer. The
basic structure of SSCF UNI is an example of the pattern protocol layer as Fig.
4.
Three kinds of messages such as AAL EST, AAL REL, and AAL DATA

are exchanged with the upper layer through the communication paths UNI2-
SSCF and SSCF2UNI. AAL EST is used to establish a connection from the UNI
signaling layer in the form of a request and a confirmation such as AAL EST.req
and AAL EST.conf. It also informs the upper layer that an incoming connection
has been established by an indication message AAL EST.ind. AAL REL is used
to release the connection established. AAL DATA is used by the upper layer
to send a data packet in a request form AAL DATA.req and SSCF UNI hands
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SSCF_UNI

MESSAGES = AAL_EST.req, AAL_EST.ind, AAL_EST.conf, 
AAL_REL.req, AAL_REL.ind, AAL_REL.conf, 
AAL_DATA.req, AAL_DATA.ind, 
AA_EST.req, AA_EST.resp, AA_EST.ind, AA_EST.conf,
AA_REL.req, AA_REL.ind, AA_REL.conf, 
AA_DATA.req, AA_DATA.ind
AA_RESYNC.req, AA_RESYNC.resp, AA_RESYNC.ind, 
AA_RESYNC.conf,;

SSCOP2SSCFSSCF2SSCOP

UNI2SSCF SSCF2UNI

UNI Signaling

SSCOP

PATHS = 
UNII2SSCF: AAL_EST.req, AAL_REL.req, AAL_DATA.req;
SSCF2UNI: AAL_EST.ind, AAL_EST.conf, AAL_REL.ind,    

AAL_REL.conf, AAL_DATA.ind;
SSCF2SSCOP: AA_EST.req, AA_EST.resp, AA_REL.req, AA_DATA.req,

AA_RESYNC.req, AA_RESYNC.resp;
SSCOP2SSCF: AA_EST.ind, AA_EST.conf,  AA_REL.ind, AA_REL.conf, 

AA_DATA.ind, AA_ RESYNC.ind, AA_ RESYNC.conf;

Fig. 4. Example of protocol layer for SSCF at UNI

out a received packet to its user in an indication form such as AAL DATA.ind.
The lower interface has similar messages which uses the communication paths
SSCF2SSCOP and SSCOP2SSCF.

As an example of the pattern split protocol layer, we demonstrates a variation
of alternating bit protocol (ABP) [14] which provides simple but reliable message
transfer on a lossy lower layer. Fig. 5 illustrates the architecture of the protocol.
The upper interface uses two messages put and get for a reliable data transmis-
sion. The lower interface uses messages data req, data ind, ack req, and ack ind
to send and acknowledge messages, allowing for retransmission if necessary to
deal with message loss.

messages =
put, get,                     
data_req, data_ind,
ack_req, ack_ind;

paths =
up2snd : put;
rcv2up : get;
snd2lo : data_req;
lo2rcv : data_ind;
rcv2lo : ack_req;
lo2snd : ack_ind;

sender

upper layer

lower layer

up2snd

snd2lo lo2snd

receiver

rcv2up

rcv2lo lo2rcv

Fig. 5. Structure of ABP using split protocol layer
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See Also protocol conduit [13], layers [4], SDL and layered systems [1], Pattern
Half Object + Protocol [15]

2.2 Mux

Context In a layered design, there may be multiple blocks in an adjacent layer
and resolving the destination or source of the messages is required.

Problem How can we resolve the destination or source of a message?

Solution Use a table to map an instance of a block to its address. Fig. 6
describes the structure of a mux layer where the upper layer has several blocks,
while the lower layer has one block. Similarly, the pattern is applicable to the
reverse situation.

Mux Block

upper block2

lower block

messages =
msg1, msg2, 
msg3, msg4,
… ;p3 p4

paths =
p1 : msg1, … ;
p2 : msg2, … ; 
p3 : msg3, … ;
…

p5 p6

upper block1

p1 p2

…

…

name instance address

Fig. 6. A structure of mux layer

Implementation in SDL Fig. 7 shows an implementation of the pattern mux
where theMux Block is an SDL process, and communication paths such as r1, r2,
r3 are signal routes. The process array,Mux Table shows a trivial implementation
of the address resolution. It stores every instance identifier, PID , with the key
name. The signals enumerate the messages flowing through the signal routes.
Note that the signal routes of the upper interface are joined in one point to be
connected with outside channel.

See Also mux conduit [13]
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BLOCK 
Mux_Layer

Mux_Block

[msg1, … ]
r1

r2
[msg2, … ]

[msg5, … ]
r5 r6

[msg6, … ]

NEWTYPE Mux_Table
ARRAY (name, PID)

ENDNEWTYPE;
SYNTYPE name charstrings;

[msg3, … ]
r3

r4
[msg4, … ]

SIGNAL 
msg1, msg2, 
msg3, msg4,
… ;

…

Fig. 7. An SDL implementation of mux layer

2.3 Dynamic Handler

Context A block needs to handle multiple communications at the same time.
The expected load will be variable and the system is appropriately sized to
handle it.

Problem How can a block be organized internally to service multiple commu-
nication requests?

Forces

– Concurrent processing : To provide a good response time, requests should be
processed concurrently.

– Capacity : Handling concurrent requests imposes overhead for context switches,
resource contention, etc. If too many requests are handled at the same time,
the overhead will dominate the computation and the system performance
will degrade unacceptably. Therefore the amount of concurrency should be
bounded. Finding the optimal bound may be difficult to determine.

– Static vs dynamic handler creation: A communication request is serviced by
a handler, an instance of a block servicing the request. An important design
decision considers when the handler instances should be created. The static
approach creates all handlers at the system start-up time and their lifetime
extends until the system is shut down. When not servicing a request, the
handlers are idle, but still utilizing system resources. On the other hand, an
idle handler may be quickly deployed to handle a new request with little
overhead.
The dynamic approach creates a handler upon a request and its lifetime
spans only as long as necessary to service the request. This approach incurs
overhead for handler creation and termination, but there are no idle han-
dlers to unnecessarily consume system resources. Thus the resources used by
request handling adapt to the load.
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A static approach is useful when the system load is uniformly high. A dy-
namic approach is better when the system is appropriately sized and the
load is variable.
Hybrid approaches combining aspects of static and dynamic handling are
also possible.

Solution The context of this pattern leads us to choose a dynamic approach.
The solution utilizes a single instance of a static block, Admin, (an example

of the Singleton Pattern [7]) which is created at system startup time. The in-
stance waits for a communication request message from adjacent layers. Upon
arrival of the request message, Admin serves as a factory [7] and dynamically
creates an instance of a Handler block. The Handler instance then services that
communication. After the communication has been serviced, the instance is ter-
minated. The maximal number of instances of Handler that can be created is
bounded by a fixed number N . If there are more requests than N , Admin must
either queue the message, or more typically reject the request. N is determined
empirically, or by performance analysis using the expected load on the system.

Handler (0,N)Admin (1,1)

p1 p3

p4

p5

p6

p7

p8

p9

messages =
msg1, msg2, 
msg3, msg4,
msg5, … ;

paths =
p1 : msg1, … ;
p2 : msg2, … ;
p3 : msg3, … ; 
p4 : msg4, … ;
p5 : msg5, … ;
…

p2

Fig. 8. A structure of dynamic handler

Fig. 8 shows a structure of the pattern. First, the entity Admin waits for
a request through the communication paths either p2 or p6. Upon receiving
a message, for instance msg2 through p2, the Admin creates an instance of
Handler block giving the necessary information for communication, for instance,
the address of the requester. The dotted line from Admin to Handler means the
creation of an instance. After being created, the instance starts communication
through the paths p3, p4, p8, and p9.
When the communication ends, the Handler instance informs the Admin of

termination of service by sending, for example, a message msg5 and ceases to
exist.

Variant: Split Dynamic Handler The pattern dynamic handler considers
only one type of handler. In communication systems, however, it is common to
have handlers in pairs such as the pattern split protocol layer.
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Incoming
Handler (0,N)

Outgoing
Handler (0,N)

messages =
msg1, msg2, 
msg3, msg4,
msg5, … ;

paths =
p1 : msg1, … ;
p2 : msg2, … ;
p3 : msg3, … ; 
p4 : msg4, … ;
p5 : msg5, … ;
… ;

Admin (1,1)

p1

p2

p3 p5

p4
p6

p8

p9

p10

p7

p11

p12

p13

p14

Fig. 9. A structure of split dynamic handler

Fig. 9 describes a dynamic creation of two type handlers, Outgoing Handler
and Incoming Handler. The block Admin creates one of them depending on the
type of a request. All other behavior is similar to the pattern dynamic handler.
Note that the two handlers may need internal communication between them.

Implementation in SDL For the implementation of pattern dynamic handler,
developers must consider both the structure and the behavior of the blocks in
the pattern. Fig. 10 shows the structure of the pattern where two processes,
Admin and Handler, exist with the initial and maximum number of instances.
The process Admin has one instance during its life span, while the process type
Handler has no instance at startup time and can have the maximum N instances.
The processes are connected to the boundary of the block with signal routes
which will interact with outside channels. The behavior of the pattern needs the
creation and termination of an SDL process instance.

BLOCK 
Dynamic_
Handler

[… ]

Admin (1,1) Handler (0,N)
[… ]

r1

r5

SIGNAL 
msg1, msg2, 
msg3, msg4,
… ;

[… ]
r2

[… ]
r3

[… ]
r4

[… ]
r6

[… ]
r8

[… ]
r7

[… ]
r9

Fig. 10. SDL implementation of Fig. 8
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Examples Fig. 11 shows a simplified file transfer server using the pattern dy-
namic handler. In this example, we do not present the interface with the lower
layer for simplicity. The server is composed of a block FTP Admin and a block
FTP Handler. When a user tries to download a file, an event FTP connect goes
to the block FTP Admin indicating a file transfer trial. The block creates an
instance of FTP Handler to make it possible for the user to download a file
from the server. The instance sends a message FTP connect ok to mean that it
is ready to receive a command. For the command get with a file name wanted,
the FTP Handler provides the requested file with the message success. After
getting the file, the user sends a disconnect message which makes the instance
stop after sending the message terminate to the FTP Admin.

messages =
FTP_connect, FTP_connect_ok, 
terminate, disconnect,
get (filename), success (file); 

paths =
p1 : FTP_connect;
p2 : terminate;
p3 : FTP_connect_ok, success (file);
p4 : get (filename), disconnect;    

FTP_Handler (0,N)FTP_Admin (1,1)

p3

p4

p2

p1

Fig. 11. A file transfer server using dynamic handler

As an example of split dynamic handler, Fig. 12 shows a simplified version
of call control block composed of Call Admin, Outgoing Handler , and Incom-
ing Handler in a switching system. When a calling party tries a call, a message
H init goes to the block Call Admin indicating there is a call request from a
calling party. The block creates an instance of the block Outgoing Handler in
order to make the instance manage the calling party. After generating a message
L init, the instance waits for a call connection from a called party.

On the other hand, if the block Call Admin receives a message L alert imply-
ing there is an incoming call, it creates an instance of the block Incoming Handler
to setup a call connection with the called party. A message H alert is used to
indicate a new call is coming. When the called party answers, the messages such
as H answer, L answer, L complete, and H complete are transferred.

See also DynamicEntitySet [8], ConduitFactory [13], Pattern Half Object +
Protocol [15]



12 Y. Byun et al.

messages =
H_init, L_init, 
L_alert, H_alert,
H_answer, L_answer, 
L_complete, H_complete;

paths =
p1: H_init;          p2 : L_init; 
p3 : L_alert; p4 : H_alert;
p5 : H_answer; p6 : L_answer;
p7 : L_complete;p8 : H_complete;

Incoming
Handler (0,N)

Outgoing
Handler (0,N)

Call_Admin (1,1)

p8
p4

p1
p5

p7

p2

p3

p6

Fig. 12. A call control block using split dynamic handler

3 Behavioral Patterns

3.1 Communicating Extended Finite State Machine

Context Many communication systems react to events coming from outside
environments. The systems can be modeled by distinct states and transitions.
When a system receives an event, it moves from its current state to a new state
while performing some actions and providing output signals.

Problem How can we describe the behavior of a communication system?

Forces

– Understandability : The notation should capture the most important aspects
of the behavior of a system in a way that is convenient to express and can
be easily understood by a reader.

– Completeness : The notation should be able to express all the important
aspects of a design.

– Definedness : The notation should be well defined, preferably standardized. A
formally defined notation allows the possibility of tool support for analysis,
simulation, verification, code generation, etc.

– Scalability : The notation should remain tractable for systems with large
numbers of states.

– Ease of implementation: The formalism should represent the system’s be-
havior in a way that can be easily mapped into an implementation language.

Solution The behavior of a communication system can be described using a
communicating extended finite state machine (CEFSM). CEFSMs are finite state
machines extended with local variables and parameterized communication events
indicating communication with another CEFSM [6, 12]. These state machines are
very familiar to computer scientists and engineers and meet the criteria discussed
in the forces section. In particular, the local variables help with the scalability
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problem by allowing, for example, an 8-bit counter to be represented by one
variable instead of 256 states. Other state based formalisms [10] may provide
better support for modularizing large designs at the expense of a more complex
notation. A survey of other formalisms that can be used for telecommunication
systems design can be found in [5].
When an event is initiated by the environment, the system updates local

variables, emits output events and transitions to a new state.

Definition 1 (CEFSM) A CEFSM is a 5-tuple (S, s0, E, f, V ) where

– S is a set of states
– s0 is an initial state
– E is a set of events with their parameter lists
– f is a state transition relation
– V is a set of local variables along with their types and initial values, if any.

For a state, an input event, and a predicate composed of a subset of V , the state
transition relation f has a next state, a set of output events and their parameters,
and an action list describing how the local variables are updated.

As an example, see the following CEFSM:

CEFSM = ({S1, S2, S3, S4}, S1, {init, e1(p1), e2, o1, o2(p2, p3)}, f, {x}),

where f has the four elements

{< S1, init, S2, (x := 0), {o1} >,

< S2, e1(p1), S3, (x := x+ p1), {o2(x, p1)} >,

< S2, e2, S4, (“encoding e2”), {} >,

< S3, e2[x == 8], S4, (−), {} >}

This CEFSM has four states, five events, and one integer variable. The input
event e1 has a parameter p1, and the output event o2 has two parameters, p2 and
p3. In addition, there are four transitions among the states which are represented
by the relation f . For simplicity, we do not give the types of variables and
parameters.
As an internal event, we assume an init event to indicate the start-up signal

of the CEFSM. The tuple element < S1, init, S2, (x := 0), {o1} > of relation
f denotes a transition that moves from S1 to S2 while assigning zero to the
variable x and generating the event o1 after the initial signal init. The action
list can include the brief activities during the transition in plain English as well
as a variable update. For example, ”encoding e2” implies that the machine will
encode the e2 received. The actions may be refined in the later develop phases.
As a precondition of a transition, we introduce predicates, boolean valued

expressions of the local variables [6]. Upon receiving an event, the CEFSM eval-
uates a predicate. If the predicate holds, the CEFSM executes the transition.
However, if the predicate does not hold, the CEFSM ignores the event and stays
at the current state. An empty predicate is defined to be shorthand for true. In
the previous example, the transition from S3 to S4 has a predicate x == 8.
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In this pattern language, we usually represent a CEFSM with a state tran-
sition diagram (STD), a directed graph whose vertices correspond to states and
whose edges correspond to transitions. Fig. 13 shows an STD of the previous
example. Each state is represented by a circle, and the initial state has a double
circle. Each transition is labeled with an event, action list, and output events. It
is denoted by event(parameters)[predicate]/actions/outputs(parameters). For ev-
ery transition, the event field is mandatory while predicate, actions and outputs
are optional. The ‘–’ symbol in a transition indicates that there is no correspond-
ing field. Transitions that do not alter the state are represented by an arc that
points to itself.

S2

S3

e1(p1) / x:=x+ p1 / 
o2(x, p1)

init / x:=0 / o1

S1

S4

e2 / “encoding e2” / 
−

e2 [x == 8]/ − / −

Fig. 13. STD of the example CEFSM

Typically, a complex communication system is designed with a large number
of states and transitions. A CEFSM can be expanded by merging with other
CEFSMs.

Definition 2 (Merge of CEFSMs) Let M1 = (S1, s1, E1, f1, O1, V1) and
M2 = (S2, s2, E2, f2, O2, V2) be two CEFSMs. M1 ⊕ M2, merge of the two
CEFSMs, creates a new CEFSM (S, s0, E, f , O, V ) such that

– S = S1 ∪ S2. S is a union of S1 and S2.
– s0 = s1, the initial state of M1.
– E = E1 ∪ E2
– f = f1 ∪ f2
– O = O1 ∪O2
– V = V1 ∪ V2

The merge is formed by using the union operation between sets.

Pattern: Basic CEFSM This is useful in the pattern language and is com-
posed of a source state and a target state. The transition relation f has only one
element such as

basic CEFSM = {< Ss, e, St, A,O >}
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Note that the source state Ss and target state St could be the same state. Fig.
14 shows the STD of a basic CEFSM.

(b)

St

e/A /O

(a)

e/A /O

Ss
Ss

Fig. 14. STD of pattern basic CEFSM

Variant: Predicate CEFSM As we mentioned at the definition CEFSM, a
CEFSM can have predicates to control the behavior of the CEFSM [6]. By
adding a predicate to the pattern basic CEFSM, we can get the variant predicate
CEFSM simply. However, an event usually has several predicates as a decision
point. We, therefore, define the pattern having several predicates.

predicate CEFSM = { < Ss, e[predicate1], St1, A1, O1 >

< Ss, e[predicate2], St2, A2, O2 >

...

< Ss, e[predicaten], Stn, An, On >}

Note that the source state Ss and target states could be the same state. If the
predicates are mutually exclusive, then the CEFSM is deterministic. Fig. 15
shows the STD of a predicate CEFSM.

St1
…

e [predicate1] /
A1 / O1

Stn

e [predicaten] /
An / On

Ss

Fig. 15. STD of pattern predicate CEFSM
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Variant: Predicate after Action At the pattern predicate CEFSM, an event
is followed by predicates to decide the next transition. However, in some cases
decisions need to be made after performing some actions. In other words, after
performing a sequence of actions for an events, an instance decides its next tran-
sition based on the result of the actions. The instance therefore needs predicates
after the actions.

predicate after action = { < Ss, e, S
′

s
, As, Os >

< S′
s
,−[predicate1], St1, A1, O1 >

< S′
s
,−[predicate2], St2, A2, O2 >

...

< S′
s
,−[predicaten], Stn, An, On >}

Ss′

e / As / Os

St1
…

− [predicate1] /
A1 / O1

Stn

−[predicaten] /
An / On

Ss

Fig. 16. STD of pattern predicate after action

Note that the transitions from S ′
1
do not have event fields. At previous definition,

we said that the event is a mandatory for a transition. This is exception of the
rule. Fig. 16 shows an STD for this type of CEFSM. In fact, this pattern is
a sequential merge between the transition from Ss to to S

′

s
and the predicate

CEFSM. Refer to the pattern sequential merge.

Variant: Sequential Merge Typically, a complex communication protocol is
made by composing several CEFSMs to fulfill the required functionality. There
are three common types of merge: sequential merge, source merge, and target
merge. To introduce these patterns, we classifies a state in a CEFSM into either
a terminal state or a nonterminal state. A state is called a terminal state if it
is not used as a source state in a transition of the CEFSM. Otherwise, it is a
nonterminal state.
A sequential merge is a merging of a terminal state of a CEFSM with a

nonterminal state of another CEFSM. Fig. 17 shows the merging of state S2.
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The combined CEFSM goes to state S2 through the state S1. This situation is
common when a system handles a sequential inputs from environment.

S2

e1/ A1 / O1

S3

e2 / A2 / O2 ≡+ S2

e1/ A1 / O1

S3

e2 / A2 / O2

S1 S2

S1

Fig. 17. Sequential merge of two CEFSMs

Variant: Source Merge Two CEFSMs can be merged by combining each
nonterminal state, which is called source merge. In Fig. 18, the initial state, S1,
is combined, and the resulting CEFSM has three states and two transitions. This
commonly occurs in a state receiving several potential input events.

S2

e1/ A1 / O1

S3

e2 / A2 / O2 ≡+
S2

e1/ A1 / O1

S3

e2 / A2 / O2

S1 S1
S1

Fig. 18. Source merge of two CEFSMs

Variant: Target Merge The pattern target merge is obtained by combining
each terminal state of a CEFSM. This is usual when two transitions want to
stay at the same state after each transition. Fig. 19 shows a typical example.

Implementation in SDL The basic CEFSM is implemented in SDL by a
mechanical one-to-one mapping from its STD. Fig. 20 shows an SDL diagram
fragment for the basic CEFSM of Fig. 14 (a). Each state of the CEFSM is
converted to the corresponding SDL state. A transition is represented by an
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S1

S3

e1/ A1 / O1

S2

S3

e2 / A2 / O2 ≡+

S3

S1

e1/ A1 / O1

S2

e2 / A2 / O2

Fig. 19. Target merge of a CEFSM

input signal, a task, and an output signal of SDL. When an instance of the
pattern receives an input event e with its parameters in the state Ss, it performs
the task A and generates output signal O. Note that if the transition expresses
an initialization with the init internal event, the source state has to be translated
to a start symbol. The internal event is not shown at the SDL implementation.

e

Ss

A

St

O

St

e/A /O ⇒

Ss

Fig. 20. SDL fragment for pattern basic CEFSM

The implementation of pattern predicate CEFSM leads to an SDL decision
symbol. Fig. 21 shows an SDL diagram fragment for Fig. 15 where there are n
predicates for an event e. Upon receiving an event e, the CEFSM checks the
predicates and then performs actions for a true predicate. The pattern predicate
after action are similarly implemented as Fig. 21 with a decision symbol after
the actions. It it important to note that the state S ′

s
of Fig. 16 is not shown in

the SDL diagram.
The implementation of merge patterns can be obtained by straightforward

mapping of the resulting STDs. We omit the SDL implementation of the pat-
terns.

Examples Fig. 22 shows an error detection method using a checksum procedure
checksum() in which if the result of the procedure, rst, has zero, it means there
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(predicate1)

Ss

A1

St1

O1

e

(predicaten)

An

Stn

On
…

St1
…

e [predicate1] /
A1 / O1

Stn

e [predicaten] /
An / On ⇒

Ss

Fig. 21. SDL fragment for pattern predicate CEFSM

is no error in the received message. Otherwise, the message has an error, and an
error notification message nok is sent. Note that the predicates rst == 0 and
rst != 0 are evaluated based on the previous action checksum().

− [rst == 0] / “decoding” /
msg (ok)

wait_data

msg (data) /
rst:=checksum(data)/ −

− [rst != 0] / − /   
msg (nok) 

wait_data′

proceederror

Fig. 22. Example of predicate after action for error detection

Suppose we are designing a system that uses connection oriented commu-
nication with other systems. The system handles connection establishment and
release requests to setup a connection with a peer system and to release the con-
nection. Fig. 23 (a) shows the connection setup scenario in basic CEFSM. After
receiving a connection request EST.req, the CEFSM performs action “connect”.
Then, it notifies the peer that the connection is set up by using the message
EST.conf. Similarly, the disconnection step is also achieved in the pattern basic
CEFSM as Fig. 23 (b).
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In fact, it is possible to handle the two requests at one state. Note that
the CEFSMs for connection setup and release have different state names. Be-
fore merging the CEFSMs, we rename both wait establish and wait release to
wait msg. The merged CEFSM is described in Fig. 23 (c), and it is an example
of pattern source merge.

established

wait_
establish

EST.req/connect/ 
EST.conf

(a)

wait_
release

released

REL.req/disconnect/ 
REL.conf

(b)

established

EST.req/connect/ 
EST.conf

released

REL.req/disconnect/ 
REL.conf

established

wait_msg

released

(c)
(d)

EST.req/connect/ 
EST.conf

REL.req/disconnect/ 
REL.conf

wait_
establish

Fig. 23. Example of merge patterns

On the other hand, a connection can be disconnected only after the con-
nection is setup. Fig. 23 (d) show that the connection CEFSM is sequentially
merged with the disconnection CEFSM. The state wait release was renamed to
established before the merging. The state released can be reached through the
state established.

See also To describe the CEFSM, we use STD with transitions labeling with an
event, predicates, actions, and outputs where the event is mandatory and other
fields are optional. The similar notation is used at Statecharts [10], a visual
formalism for the specification of reactive systems, where a transition is labeled
with an event, a condition, and an action: all of them are optional. Statecharts
are an extension of STD to enhance the descriptive power using hierarchy of
states, orthogonality, and history connectors.
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3.2 Timer

Context In an event-driven system such as a communications system, an event
may occur later than it is expected, or not happen at all because of transmission
delay, lost message, etc. Many event-driven systems employ timing constraints
where some action is taken if an expected event does not occur in a given amount
of time. We are modeling the system with CEFSMs and SDL.

Problem How can we model the timing constraints to avoid unbounded waiting
for an event?

Solution A CEFSM can be supplemented with a timer and timer-related op-
erations to manipulate the timing constraints [6].

A timer T is an element of variable set V with an associated timeout value.
The unit of the timeout depends on the context of the application. There are two
timer operations, set and reset, which are the elements of action list A. set(t, T )
associates a timing value t with a timer T , and reset(T ) cancels the timer T .
During a transition, a CEFSM can set a timer with a time value. Unless the
timer is cancelled by the CEFSM, the timer will generate a timer expiration
signal when the time duration is passed.

Generally, a CEFSM handles the timer expiration by either sending an error
notification or requesting a resubmission of the event. When an event wanted
by an CEFSM occurs before the timer expiration, the CEFSM cancels the timer
and proceeds normally. Note that all these time concepts come from SDL [6].

S1

T/A2 /O2

S2

e /reset(T),
A3/O3

init / set(t, T), 
A1 / O1

S3

S0

Fig. 24. A pattern timer with an expected event e

Fig. 24 shows an STD of the pattern timer. First, a timer T should be set
before using it. In the diagram, the transition happens upon the internal event
init. On timeout for the timer T , the CEFSM moves to the state S2. If the
CEFSM receives the expected event e, it resets the timer and performs the
remaining transition.
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Implementation in SDL A timer variable in the CEFSM maps to an SDL
Timer object. The Timer object must be declared like any other variable in SDL.
In addition, the timeout value is given as part of the declaration. The operations
on the Timer object are set(Timer) and reset(Timer). Since the timeout value is
given in the declaration, it is not specified in the set operation. Figure 25 shows
the implementation of the typical timer pattern discussed above in SDL.

e

S1

A3

S3

S1

A1

O1

O3

Timer T := t;

set(T) T

A2

S2

O2

reset(T)

⇒
S1

T/A2 /O2

S2

e /reset(T),
A3/O3

init / set(t, T), 
A1 / O1

S3

S0

Fig. 25. SDL implementation of pattern timer

3.3 Repeated Events

Context In an event-driven system, a single event may not be sufficient to
initiate a reaction: an event must occur several times. For example, if a message
is transmitted in several packets, all packets containing message fragments must
arrive before the message is encoded and handled further.

Problem How does a communication system handle repeated events?

Forces

– Timing constraints : It is necessary to impose timing constraints for the re-
peated events. There are two kinds of timing constraints: a timing constraint
for each event, and a timing constraint for all events.

– Number of repetitions : In some cases, the number of repetitions is known in
advance. In other cases, it is not. Even when the number is not known in
advance, there still may be an upper bound on the number of repetitions.
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Solution This pattern is a specialization of the pattern predicate CEFSM. First,
the CEFSM has an integer variable c, which is initialized to one, to count the
number of occurrences of an event. Predicates c < N and c == N , where N is
the number of times the event should be repeated, determine the next transition.
If c < N then c is incremented and the state unchanged. Otherwise, the state
changes and any specified output events are generated. Fig. 26 shows the solution
and its SDL implementation.

S1

e[c == N]/A2/O2

S2

e[c < N]/
c:=c+1,A1/O1

(< N)

S1

A1

−

O1

e

(== N)

A2

S2

O2⇒

DCL
c integer:=1;
N integer:=MAX;

c

c:=c+1

Fig. 26. STD of pattern repeated events and its SDL implementation

Variant: Timed Repeated Events In this variant, we add timers to enforce
timing constraints. This pattern can thus be considered a combination of the
repeated events and timers patterns. Two timers are used. Timer T1 is used
for the individual occurrences of event e, while T2 is used for all of the events
together.
Fig. 27 shows the resulting CEFSM and its SDL implementation. At the

state S1, the CEFSM receives the event e until it has all events needed. If the
number of events is less than N, the machine increases the c and sets the timer
T1 again. If the timer T1 or T2 expires, the machine moves to a state to handle
this exceptional case. Note that either timer could be omitted. Then only the
total time or single time would be checked.

Variant: Timed Repeated Trials In the previous patterns, the number of
repetitions of an event before the system moved to a different state was known
in advance. This variant considers the case where the number of repetitions is
not known in advance (and may be 0), but the maximum number is bounded.
A typical scenario would be where the repeated event is the expiration of

a timer set. For example, a message is transmitted and the timer is set. If an
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init/set(t1,T1), 
set(t2,T2), A1/O1

e[c == N]/reset(T1),
reset(T2), A3/O3

e [c < N]/c:=c+1, 
set(t1, T1),A2 /O2

T1/A4/O4
T2/A5/O5

S1

S3 S4S2

(< N)

S1

A2

−

O2

e

(== N)

A3

S2

O3

DCL   c integer:=1;
N integer:=MAX;

Timer T1 := t1; T2 := t2;

c

c:=c+1,
set(T1)

S1

A1

O1

set(T1)

set(T2)

T1

A4

S3

O4

T2

A5

S4

O5
reset(T1),
reset(T2)

S0

Fig. 27. STD and SDL implementation of pattern timed repeated events

S1

S3S2

init/set(t,T), 
A1/O1

T [c==N]/A4/O4

T[c<N]/
c:=c+1, 
set(t, T),
A2 /O2

e/reset(T), 
A3/O3

(< N)

S1

A2

−

O2

T

(== N)

A4

S3

O4

DCL   c integer:=1;
N integer:=MAX;

Timer T := t;

c

c:=c+1,
set(T)

S1

A1

O1

set(T) e

A3

S2

O3

reset(T)S0

Fig. 28. STD and SDL implementation of pattern timed repeated trials
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acknowledgment is not received before the timer expires, the message is retrans-
mitted. The message will be transmitted a maximum of N times before the
system moves to an error state.

Fig. 28 shows the solution where the repeated event is the expiration of the
timer.

Example Fig. 29 describes a part of a call setup software with an STD and its
SDL implementation. The software reads a telephone number of nine digits from
a calling party. The CEFSM initializes its local variable c to one and generates
dialing tone to initiate a dialing tone. In the state dialing, it receives an event
dial with a parameter digit, which means that the digit is pushed by a caller.
The machine receives eight digits at the state. After receiving the ninth digit, it
moves to the next state connecting. Moving to the state, the machine generates
an output c req to request a call connection with the callee.

dialing

dial(digit)[c==9]/−
/c_req (digits)

connecting

dial(digit)[c<9]/ 
“store digit”, c:=c+1;/−

init/c:=1/dialing_tone (< 9)

(== 9)
dialing

c := 1

dialing_tone

dial (digit)

dialing

‘store digit’

− connecting

c_req (digits)

c

c:= c+1;

DCL c integer;
DCL digit character;
DCL digits charstring;
SIGNAL dialing_tone,

dial(character),
c_req(charstring);

S0

Fig. 29. Nine-digit dialing using repeated events

The example can be expanded with a timer T to avoid unlimited waiting. If
a caller does not push a digit in a given time bound, the machine notifies the
caller that time is over by giving a special beep. This case is implemented by
adding a transition for the timer expiration.

See also Pattern TimerControlledRepeat [8] repeats a message transmission to
avoid message loss during data transfer. If a sender entity does not receive an
expected acknowledgment in the given expiration time from a receiver entity, the
message is repeated by the sender. This pattern is considered as an instantiation
of the pattern timed repeated trials.
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3.4 Message Transfer

Context In a communication network with a layered protocol, two peers want
to exchange messages.

Problem How do two peers communicate in a layered protocol?

Solution Conceptually, a layer provides a set of services to its users. Thus,
the users consider the lower layer as a service provider [2, 17]. They communi-
cate with the service provider through service access point (SAP). The service
provider coordinates and manages communications between users by using four
types of primitives, request, indication, response, and confirm as shown in Fig.
30.

USER A

confirmrequest

Service Provider (or Layer)

indicationresponse

Logical
Communications

SAP SAP

messages

USER B

Fig. 30. Protocol layer as a service provider

A user A sends a request message to a peer by invoking the primitive re-
quest to a lower layer. The peer of the requester is informed by the lower layer
using the primitive indication. The peer responds to the indication by invoking
the primitive response to the lower layer. The lower layer notifies the original
requester of the reply from the peer using the primitive confirm.
In general, there are two kinds of communication between peers : confirmed

transfer and unconfirmed transfer. If a requester needs an acknowledgment from
a peer, it uses a confirmed transfer with the four primitives. But if this is not
the case, the requester sends a message without expecting an acknowledgment.
For example, a connection setup phase always uses a confirmed transfer because
a peer must agree to establish a connection with its requester. A data transfer
phase, on the other hand, uses either confirmed or unconfirmed transfer depend-
ing on the protocol [17].

Variant: Simple Sender/Receiver Two primitives request and indication are
used for simple but unconfirmed communication. Depending on the protocol, the
names of the primitives might be different. Fig. 31 shows two CEFSMs for an
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unconfirmed message transfer: one is to send a message in request form and
another is to receive a message in indication form. It is important to consider
the two CEFSMs together because they are used at the same time. As the figure
indicates, the two CEFSMs are the specialization of the pattern basic CEFSM.
The sender has a transition with a primitive request after performing an action
A1. The CEFSM may have other output messages such as O1. For the primitive
request, the receiver is notified by a corresponding event indication.

S4

receiver

indication/A2 /O2

S2

sender

e/A1/request,O1

S1 S3

Fig. 31. Pattern for unconfirmed simple message transfer

Variant: Confirmed Sender/Receiver For a confirmed message transfer, two
peers use four primitives, request, indication, response, and confirm. As Fig. 32
shows, the requester asks a confirmed message transfer with a primitive request,
and then waits for a confirmation from its peer replier. When the replier knows
that there is a request from a peer through an event indication, it performs a3
for the event and replies with the primitive response. The CEFSM requester is
a specialization of the pattern sequential merge of the two basic CEFSM s.

S5

replier

indication/A3/
response, O3

requester

S2

e1/A1/request, O1

S3

confirm/A2/O2

S1

S4

Fig. 32. Pattern for confirmed message transfer
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It is not always necessary to have the four primitives for confirmed transfer.
For example, in locally confirmed transfer, the primitive confirm is provided by
the lower layer, not by a peer [2]. Thus we do not need the primitive response
from the replier.
Based on the patterns simple sender, simple receiver, confirmed sender, and

confirmed receiver, it is possible to extend the patterns by combining them with
the previous patterns predicate CEFSM, timer, repeated events, etc. For exam-
ple, in some situations the pattern confirmed sender might wait for the primitive
confirm for a longer time than it expected or indefinitely because of message loss,
transmission delay, heavy traffic, etc. To restrict the waiting time for the prim-
itive confirm, the pattern confirmed sender can be improved with the pattern
timer. The resulting pattern timed confirmed sender shown in Fig. 33 adds tim-
ing constraints to the pattern confirmed sender. Similarly, we can make new
patterns such as repeated sender, repeated receiver, repeated confirmed sender,
repeated confirmed receiver, timed repeated trial receiver, timed repeated trial con-
firmed sender, and timed repeated trial confirmed receiver from the combination
of patterns.

T1/A2/O2

S3

confirm /reset(T1), 
A3/O3

e1/set(v, T1), A1 / 
request, O1

timed_confirmed_sender

S4

S2

S1

Fig. 33. STD of pattern timed confirmed sender

Variant: Message Transfer in Middle Layer The previous message transfer
patterns such as simple sender, simple receiver, confirmed sender, etc. describe
the interface between a layer and its lower layer. In a layered protocol, a layer
may also be a service provider of the next upper layer. In other words, if a
layer is between two layers, it must provide a set of services to the upper layer.
From the middle layer’s point of view, the services of the layer are initiated
from the upper layer entity, and they are achieved by using the services of the
lower layer. The pattern message transfer in middle layer presents the message
transfer for the two interfaces. Fig. 34 shows one case of the pattern where the
upper interface uses the pattern simple sender/receiver, while the lower interface
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uses the pattern confirmed sender/receiver. It is important to note that the figure
is only one instance of several potential combinations between upper and lower
interfaces.

S5

receiver

HL.request /a1/
LL.request, o1

LL.confirm/a2/o2

LL.indication/a3/
HL.indication, 
LL.response,o3

S2

sender

sender

LL.confirmLL.request

HL.request

lower layer

LL.indication

LL.response

HL.indication

receiver

upper user A upper user B

S3

(b) CEFSMs(a) message flow

S1

S4

Fig. 34. An instance of pattern message transfer in middle layer

Implementation in SDL The patterns presented in this subsection are the
combination of the basic CEFSM, predicate CEFSM, timer, and repeated events.
We can get the SDL implementation of each pattern from these patterns.

Example In this example, we present a connection setup phase for Signaling
ATM Adaptation Layer (SAAL). The SSCF for the UNI shown in Fig. 4 is almost
null layer and provides a simple mapping between SSCOP and UNI signaling
layer 3. Fig. 35 (a) shows a signal flow for an SAAL connection establishment
[3].

On the side where the SSCF user requests the establishment of the connec-
tion, the AAL EST.req is directly mapped to an AA EST.req. The confirmation
from SSCOP is mapped accordingly. On the incoming side, the SSCF answers
directly with an AA EST.resp to SSCOP for the AA EST.ind. Note that the
user receives only an indication. The connection setup can be achieved by the
pattern message transfer in middle layer where both the upper interface and
lower interface use the pattern confirmed sender/receiver. Fig. 35 (b) shows the
STDs of the CEFSMs.

See also SimpleSend, BlockingRequestReply, TimerControlledRepeat [8]
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SSCF

AA_EST.conf
AA_EST.req

AAL_EST.req
AAL_EST.conf

SSCOP

AA_EST.ind
AA_EST.resp

AAL_EST.ind

SSCF

AAL_EST.req/
“encapsulate”/
AA_EST.req

WAIT_EST

SAAL_EST_REQUESTER

AA_EST.conf/
“decapsulate”/
AAL_EST.conf

ESTABLISHED

SAA_EST_REPLIER

AA_EST.ind/
“decapsulate”/
AAL_EST.ind, 
AA_EST.resp

ESTABLISHED

RELEASED

(a) (b)

UNI Signaling

RELEASED

Fig. 35. SAAL connection setup using message transfer in middle layer

4 Conclusion

A pattern is powerful artifact for design reuse. It describes a solution to a problem
that recurs in the design and implementation of a software system. It helps
to document an experience, capture well-proven design discipline, and promote
design practice. The solution is able to provide higher-level abstractions to be
used several times in similar situations.

The main contribution of this paper is to present a pattern language for the
development of communication protocols. In addition, we used CEFSM and its
STD to describe the behavior of patterns and presented the SDL implementation
of each pattern. We expect that the implementation in a specific language will
be helpful for direct usage in applications written in the language.

The pattern language is composed of structural and behavioral patterns. The
structural patterns describe the common architectural aspects of communication
systems. The structures are represented by communicating bodies (boxes) and
communication paths (lines). It also shows the dynamic creation of the commu-
nicating instances. The behavioral patterns describe the recurring behavior of a
protocol system. The CEFSM represented in STD is easy to understand because
it clearly describes states, events, and actions in a diagram.

The patterns are a set of building blocks. They can be stored in a pattern
repository so that a new system could be composed with them as [9]. Traditional
software development has several phases. When a system engineer develops a sys-
tem, the pattern repository can be used for the higher-level description of the
system. The engineer can devise an architecture of the system with structural
patterns, and then the execution of the system can be obtained with the behav-
ioral patterns. It is easy to get an SDL skeleton code from the pattern-based
system. The designer can refine the design from the SDL skeleton.
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As a further research, the language could be supplemented with more pat-
terns. The patterns presented in the pattern language are not complete set.
We can extend the language by either composing the patterns or specializing
the existing ones as well as developing new ones. However, we believe that the
categories will be still useful for further patterns.
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