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Abstract

We are developing a pattern language to guide the programmer through the
entire process of developing a parallel application program. The pattern language
includes patterns that help find the concurrency in the problem, patterns that help
find the appropriate algorithm structure to exploit the concurrency in parallel ex-
ecution, and patterns describing lower-level implementation issues. Other pat-
terns in the pattern language can be seen at http://www.cise.ufl.edu/
research/ParallelPatterns.

In this paper, we briefly outline the overall structure of the pattern language
and present selected patterns from the group of patterns that represent different
strategies for exploiting concurrency once it has been identified.

1 Introduction

We are developing a pattern language for parallel application programs. The goal of
the pattern language is to lower the barrier to parallel programming by guiding the pro-
grammer through the entire process of developing a parallel program. In our vision of
parallel program development, the programmer brings into the process a good under-
standing of the actual problem to be solved, then works through the pattern language,
eventually obtaining a detailed design or even working code. The pattern language
is organized into three design spaces, each corresponding to one major phase in the
design-and-development process:

• The FindingConcurrency design space includes high-level patterns that help find
the concurrency in a problem and decompose it into a collection of tasks. These
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patterns, presented in [MMS00], help the designer determine (i) how to decom-
pose the problem into tasks that can execute concurrently, (ii) which data is local
to the tasks and which is shared among tasks, and (iii) what ordering and data-
dependency constraints exist among tasks.

• The AlgorithmStructure design space contains patterns that help find an algo-
rithm structure to exploit the concurrency that has been identified. These pat-
terns, most of which are presented in [MMS99] and [MMS02], capture recurring
solutions to the problem of turning problems into parallel algorithms; with one
exception, each pattern represents a high-level strategy for exploiting available
concurrency. (The exception is ChooseStructure, which helps the designer se-
lect an appropriate pattern from among the other patterns in this design space.)
Examples of patterns in this design space are EmbarrassinglyParallel [MMS99]
and DivideAndConquer [MMS02].

• The SupportingStructures design space includes patterns that represent an inter-
mediate stage between the problem-oriented patterns of the AlgorithmStructure
design space and the APIs needed to implement them. Examples of pattern in
this design space are ForkJoin [MMS02] and SharedQueue [MMS02].

The whole pattern language can be seen at http://www.cise.ufl.edu/
research/ParallelPatterns. It consists of a collection of extensively hyper-
linked documents, such that the designer can begin at the top level and work through
the pattern language by following links. In this paper, we present the complete text
of the AlgorithmStructure patterns not presented in [MMS99] and [MMS02]: Event-
BasedCoordination, InseparableDependencies, and RecursiveData (Sections 2, 3, and
4 respectively). Each of these sections represents one document in the collection of hy-
perlinked documents making up our pattern language; each document represents one
pattern. To make the paper self-contained, we replace hyperlinks with text formatted
like this and footnotes or citations. To make it easier to identify patterns and pattern
sections, we format pattern names as SomePattern and pattern section names as Some
Section. We also include an appendix (Appendix A) outlining the pattern language as
a whole and sketching an example of its use in developing an application.

2 The EventBasedCoordination Pattern

Problem

If your application can be decomposed into a collection of semi-independent tasks
interacting in an irregular fashion, how can you implement these tasks and their inter-
action?

Context

Some problems are most naturally represented as a collection of semi-independent en-
tities interacting in an irregular way. As a real-world analogy, consider a newsroom,
with reporters, editors, fact-checkers, and other employees collaborating on stories. As
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reporters finish stories, they send them to the appropriate editors; an editor can decide
to send the story to a fact-checker (who would then eventually send it back) or back to
the reporter for further revision. Each employee is a semi-independent entity, and their
interaction (e.g., a reporter sending a story to an editor) is irregular.

Many other examples can be found in the field of discrete-event simulation, i.e.,
simulation of a physical system consisting of a collection of objects whose interaction
is represented by a sequence of discrete “events”. An example of such a system is the
car-wash facility described in [Mis86]: The facility has two car-wash machines and an
attendant. Cars arrive at random times at the attendant. Each car is directed by the
attendant to a non-busy car-wash machine if one exists, or queued if both machines
are busy. Each car-wash machine processes one car at a time. The goal is to compute,
for a given distribution or arrival times, the average time a car spends in the system
(time being washed plus any time waiting for a non-busy machine) and the average
length of the queue that builds up at the attendant. The “events” in this system include
cars arriving at the attendant, cars being directed to the car-wash machines, and cars
leaving the machines. Figure 1 sketches this example. Notice that it includes “source”
and “sink” objects to make it easier to model cars arriving and leaving the facility.
Notice also that the attendant must be notified when cars leave the car-wash machines
so that it knows whether the machines are busy.

source attendant sink

car−wash

machine

car−wash

machine

Figure 1: Discrete-event simulation of a car-wash facility. Arrows indicate flow of
events.

For problems such as this, it often makes sense to base a parallel algorithm on
defining a task for each entity; interaction between these tasks is then based on ordering
constraints (e.g., “this calculation in task A must happen before that calculation in
task B”).

Indications

Use this pattern when:

• The most natural decomposition of your problem is into tasks whose interaction
is organized by ordering constraints.
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This pattern is particularly appropriate when:

• There are many fine-grained ordering constraints.

• The ordering constraints are irregular or dynamically generated.

Forces

• A good solution should make it simple to express the ordering constraints, which
may be numerous and irregular and even arise dynamically. It should also make
it possible for as many activities as possible to be performed concurrently.

• Ordering constraints can be expressed by encoding them into the program (e.g.,
via sequential composition) or using shared variables (e.g., semaphores or condi-
tion variables), but neither approach leads to solutions that are simple, capable of
expressing complex constraints, and easy to understand even with a high degree
of concurrency.

Solution

Overview

The best solution is based on expressing the ordering constraints as abstractions called
“events”, with each event having a task that generates it and a task that is to process it.
Computation within each task consists of processing events.

Key Elements

• Defining the tasks. The basic structure of each task consists of receiving an
event, processing it, and possibly generating events, as shown in Figure 2. The

initialize
while(not done)
{
receive event
process event
send events

}
finalize

Figure 2: Basic structure of task in EventBasedCoordination.

order in which tasks receive events must be consistent with the application’s
ordering constraints, as discussed below.

• Representing event flow. In order to allow communication and computation to
overlap, one generally needs a form of asynchronous communication of events
in which a task can create (send) an event and then continue without waiting
for the recipient to receive it. In a message-passing environment, an event can be
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represented by a message sent asynchronously from the task generating the event
to the task that is to process it. In a shared-memory environment, a queue can
be used to simulate message-passing. Since each such queue will be accessed
by more than one task, it must be implemented in a way that allows safe con-
current access, as described in the SharedQueue1 pattern. Other communication
abstractions such as tuple spaces2 can also be used effectively with this pattern.

• Enforcing event ordering. The enforcement of ordering constraints may make
it necessary for a task to process events in a different order from the order in
which they are sent, or to wait to process an event until some other event from a
given task has been received, so it is usually necessary to be able to look ahead
in the queue or message buffer and remove elements out of order. For example,
consider the situation in Figure 3. Task 1 generates an event and sends it to task 2,

1

3

2

Figure 3: Event-based communication among three tasks. Task 2 generates its event in
response to the event received from task 1. The two events sent to task 3 may arrive in
either order.

which will process it, and also sends it to task 3, which is recording information
about all events. Task 2 processes the event from task 1 and generates a new
event, a copy of which is also sent to task 3. Suppose that the vagaries of the
scheduling and underlying communication layer cause the event from task 2 to
arrive before the event from task 1. Depending on what task 3 is doing with
the events, this may or may not be problematic. If task 3 is simply tallying the
number of events that occur, then there is no problem. If task 3 is writing a log
entry that should reflect the order in which events are handled, however, simply
processing events in the order in which they arrive would in this case produce an
incorrect result. If task 3 is controlling a gate, and the event from task 1 results
in opening the gate and the event from task 2 in closing the gate, then the out-of-
order messages could cause significant problems, and task 3 should not process
the first event until after the event from task 1 has arrived and been processed.

In discrete-event simulations, a similar problem can occur because of the
semantics of the application domain. An event arrives at a station (task) along
with a simulation time when it should be scheduled. An event can arrive at a
station before other events with earlier times.

1A SupportingStructures pattern; see [MMS02].
2A tuple space is a conceptually shared repository for data containing objects called tuples that tasks

use for communication in a distributed system. A small number of primitives are defined on the space and
usually include primitives to insert tuples, remove tuples, and get a copy of a tuple. A pattern matching
approach is used to select tuples of interest, and if a matching tuple is not in the space when requested, a task
can wait until one arrives.
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The first step is to determine whether, in a particular situation, out-of-order
events can be a problem. There will be no problem if the “event” path is linear
so that no out of order events will occur, or if the application semantics “don’t
care”.

If out-of-order events may be a problem, then you can choose either an op-
timistic or pessimistic approach. An optimistic approach requires the ability to
roll back the effects of events that are mistakenly executed (including the effects
of any new events that have been created by the out of order execution). In the
area of distributed simulation, this approach is called time warp [Jef85]. Opti-
mistic approaches are usually not feasible if an event causes interaction with the
outside world. Pessimistic approaches ensure that the events are always executed
in order at the expense of increased latency and communication overhead. Pes-
simistic approaches do not execute events until it can be guaranteed “safe” to do
so. In the figure, for example, task 3 cannot process an event from task 2 until it
“knows” that no earlier event will arrive from task 1 and vice versa. Providing
task 3 with that knowledge may require introducing null events that contain no
information useful for anything except the event ordering and increased latency.
Many implementations of pessimistic approaches are based on time stamps that
are consistent with the causality in the system [Lam78].

Frameworks are available that take care of the details of event ordering in
discrete-event simulation for both optimistic [RMC+98] and pessimistic ap-
proaches [CLL+99]. Middleware is available that deals event ordering problems
in process groups caused by the communication system. An example is the En-
semble system developed at Cornell [vRBH+98].

• Avoiding deadlocks. It is possible for systems using this pattern to deadlock at
the application level — for some reason the system arrives in a state where no
task can proceed without first receiving an event from another task that will never
arrive. This can happen because of a programming error; in the case of a simu-
lation, it can also be caused by problems in the model that is being simulated. In
the latter case, the developer must rethink the solution.

If pessimistic techniques are used to control the order in which events are
processed, then deadlocks may occur when an event is available and actually
could be processed, but is not processed because the event is not yet known to
be safe. The deadlock can be broken by exchanging enough information that
the event can be safely processed. This is a very significant problem as the
overhead of dealing with deadlocks can cancel the benefits of parallelism and
make the parallel algorithms slower than a sequential simulation. Approaches
to dealing with this type of deadlock range from sending frequent enough “null
messages” to avoid deadlocks altogether (at the cost of many extra messages) to
using deadlock detection schemes to detect the presence of a deadlock and then
resolving it (at the cost of possible significant idle time before the deadlock is
detected and resolved.) The approach of choice will depend on the frequency of
deadlock, and this will generally need to be determined empirically. A middle
ground is to use timeouts instead of accurate deadlock detection, and is often the
best approach.
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• Scheduling and processor allocation. The most straightforward approach is
to allocate one task per processing element and allow all the tasks to execute
concurrently. If insufficient processing elements are available to do this, then
multiple tasks may be allocated to each processor. This should be done so as
to achieve a good load balance. Load balancing is a difficult problem in this
pattern due to its potentially irregular structure and possible dynamic nature.
Some middleware infrastructures that support this pattern support task migration
so that the load can be balanced dynamically at runtime.

Correctness Considerations

• Out-of-order events. If out-of-order events can be a problem for the application,
be sure your design includes a way to process them correctly, as discussed in
Enforcing event ordering above.

• Deadlock. Be sure your design either avoids deadlocks or includes a mechanism
for detecting and breaking them, as discussed in Avoiding deadlock above.

Efficiency Considerations

• Load balance. Try to allocate tasks to processing elements in a way that makes
for good load balance, as discussed in Scheduling and processor allocation
above.

• Efficient communication of events. Be sure the mechanism used to commu-
nicate events is as efficient as is feasible. In a shared-memory environment,
this means making sure the mechanism does not have the potential to become a
bottleneck. In a message-passing environment, there are several efficiency con-
siderations, for example whether it makes sense to send many short messages
between tasks or try to combine them. [YWC+95] and [WY95] describe some
considerations and solutions.

Examples

Known Uses

• The CSWEB application described in [YWC+95]: This application simulates
the voltage output of combinational digital circuits (i.e., circuits without feed-
back paths). The circuit is partitioned into subcircuits; associated with each are
input signal ports and output voltage ports, which are connected to form a rep-
resentation of the whole circuit. The simulation of each subcircuit proceeds in a
timestepped fashion; at each time step, the subcircuit’s behavior depends on its
previous state and the values read at its input ports (which correspond to values at
the corresponding output ports of other subcircuits at previous time steps). Sim-
ulation of these subcircuits can proceed concurrently, with ordering constraints
imposed by the relationship between values generated for output ports and val-
ues read on input ports. The solution described in [YWC+95] fits EventBased-



The InseparableDependencies Pattern 8

Coordination, defining a task for each subcircuit and representing the ordering
constraints as events.

• Other discrete-event simulation applications, such as the following:

– The DPAT simulation used to analyze air traffic control systems [Wie01]:
This is a successful simulation that uses optimistic techniques. It is im-
plemented using the GTW (Georgia Tech Time Warp) System [DFP+94].
The paper ([Wie01]) describes application-specific tuning and several gen-
eral techniques that allow the simulation to work well without excessive
overhead for the optimistic synchronization.

– The Synchronous Parallel Environment for Emulation and Discrete-Event
Simulation (SPEEDES) [Met]: This is another optimistic simulation engine
that has been used for large scale war gaming exercises.

– The Scalable Simulation Framework (SSF) [CLL+99]: This is a simulation
framework with pessimistic synchronization. It has been used for large-
scale modeling of the Internet.

Related Patterns

This pattern is similar to PipelineProcessing3 in that both patterns apply to problems in
which it is natural to decompose the computation into a collection of semi-independent
entities. There are two key differences. First, in PipelineProcessing the interaction
among entities is fairly regular, with all “stages” of the pipeline proceeding in a loosely
synchronous way, whereas in EventBasedCoordination there is no such requirement,
and the entities can interact in very irregular and asynchronous ways. Second, in
PipelineProcessing the overall structure (number of tasks and their interaction) is usu-
ally fixed, whereas in EventBasedCoordination the problem structure can be more dy-
namic.

3 The InseparableDependencies Pattern

Problem

If the decomposition of your application into tasks generates data dependencies that
cannot be managed with the techniques inherent in any of the other AlgorithmStructure
patterns, how do you manage these dependencies?

Context

Inherent in each of the other AlgorithmStructure patterns is some technique for manag-
ing data dependencies among tasks, from the trivial to the complex: no dependen-
cies and hence nothing to manage in EmbarrassinglyParallel4); dependencies that
can be managed by replicating data in SeparableDependencies5; dependencies that

3Another AlgorithmStructure pattern; see [MMS02].
4Another AlgorithmStructure pattern; see [MMS99].
5Another AlgorithmStructure pattern; see [MMS99].
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can be managed by alternating computation and nearest-neighbor communication in
GeometricDecomposition6; and so forth. For many algorithms, these techniques are
sufficient to manage all data dependencies among tasks. For some algorithms, how-
ever, there are data dependencies that cannot be managed with one of the other Algo-
rithmStructure patterns.

For example, consider the phylogeny problem from molecular biology, as described
in [YWC+95]. Omitting most of the details, in this application the computation con-
sists of examining all members of a power set and rejecting those that do not meet a
consistency criterion. Different sets can be examined concurrently, so one can think
of defining a task for each set and partitioning them among units of execution7 (UEs).
However, not all sets must necessarily be examined — if a set S is rejected, all super-
sets of S can also be rejected. Thus, it makes sense to keep track not only of which
sets have not yet been examined (as one does for dynamic scheduling of tasks) but also
which sets have been rejected. This problem could be readily solved using Embar-
rassinglyParallel if it were not for the fact that all tasks need access to whatever data
structure is used to keep track of the solution so far (which tracks which sets have been
rejected), and they may need both read and write access. Replicating this data struc-
ture before beginning the parallel computation will not solve the problem because it
changes during the computation, so SeparableDependencies is not a complete solution
either. Partitioning the data structure and basing a solution on this data decomposition
is likely to lead to poor load balance because the way in which the elements are rejected
is unpredictable, so GeometricDecomposition8 is not a good choice. The best solution,
therefore, would probably be to start with EmbarrassinglyParallel and add something
to explicit manage the data dependencies (access to the shared data structure).

Indications

Use this pattern when:

• The problem can be solved with one of the other AlgorithmStructure patterns,
except that there are data dependencies among tasks that are not addressed by the
selected pattern. (Generally, this will be the case when there is at least one data
structure that must be accessed by multiple tasks in the course of the program’s
execution, and either at least one task must modify the data structure or there is
no practical way to either share the data structure among tasks (e.g., the target
platform does not provide shared memory) or give each task a copy (e.g., the
data structure is too large to make copying it practical).)

Forces

• There is inherent lack of structure in the problem, and we would like to design
abstractions that impose some structure.

6Another AlgorithmStructure pattern; see [MMS99].
7Generic term for a collection of concurrently-executing entities, usually either processes or threads.
8Another AlgorithmStructure pattern; see [MMS99].
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• Well-chosen abstractions make for simplicity of understanding, but this may
come at the expense of inadequate concurrency.

• Simple ways to manage the “inseparable dependencies” of this pattern are easier
to implement and more likely to be correct, but they may reduce concurrency.

• More complex ways to manage the dependencies may allow more concurrency
but be more difficult to implement and more prone to error.

Solution

Overview

As suggested in Indications, this pattern describes modifications to another Algorithm-
Structure pattern (which we will call the base pattern) to explicitly manage data depen-
dencies not addressed by the base pattern, such as the access to a shared data structure
in the example in Context. We therefore do not discuss the overall structure of the so-
lution (which will be that of the base pattern), only the additions necessary to manage
the otherwise-problematical data dependencies. The overall approach is to start with a
simple solution and try more complex solutions if necessary to obtain acceptable per-
formance. For this pattern, therefore, Key elements lists the steps you should follow
to achieve this goal.

Key Elements

• Be sure you want this pattern. The first step is to make really sure this is the
right pattern to use; it may be worthwhile to revisit decisions made earlier in
the design process (the decomposition into tasks, for example) to see whether
different decisions might lead to a solution that fits one of the other Algorithm-
Structure patterns. In particular, if the base pattern is EmbarrassinglyParallel, it
may be worthwhile to consider again whether it is possible to instead use Sepa-
rableDependencies.

• Define an abstract data type. The best way to approach a solution is to view the
shared data as an abstract data type (ADT) with a fixed set of (possibly complex)
operations on the data. For example, if the shared data structure is a queue,
these operations would include put (enqueue), take (dequeue), and possibly other
operations such as a test for an empty queue or a test to see if a specified element
is present. Each task will typically be performing a sequence of these operations.
These operations should have the property that if they are executed serially (i.e.,
one at a time, without interference from other tasks), each operation will leave
the data in a consistent state. (Another way to say this is that these operations
are “atomic”.)

• Implement an appropriate concurrency-control protocol. Once these opera-
tions are identified, the objective is to implement a concurrency-control protocol
to ensure that these operations give the same results as if they were executed seri-
ally. There are several ways to do this; application designers should start with the
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first method, which is the simplest, and then try the other more complex meth-
ods if it does not yield acceptable performance. Notice that these more complex
methods can be combined if more than one is applicable.

– One-at-a-time execution. The easiest solution is to ensure that the opera-
tions are indeed executed serially.

In a shared-memory environment, the most straightforward way to do
this is to treat each operation as part of a single critical section and use a
mutual-exclusion protocol to ensure that only one UE at a time is executing
its critical section. This means that all of the operations on the data are
mutually exclusive. Exactly how this is implemented will depend on the
facilities of the target programming environment. Typical choices include
mutex locks, synchronized blocks, and semaphores. If the programming
language naturally supports the implementation of abstract data types, we
recommend implementing each operation as a procedure or method, with
the mutual-exclusion protocol implemented in the method itself.

In a message-passing environment, the most straightforward way to
ensure serial execution involves assigning the shared data structure to a
processing element. Each operation should correspond to a message type;
other processes request operations by sending messages to the process man-
aging the data structure, which processes them serially.

In either environment, this approach is usually not difficult to imple-
ment, but it may be overly conservative (i.e., it may disallow concurrent
execution of operations that would be safe to execute simultaneously), and
it may produce a bottleneck that negatively affects the performance of the
program. If this is the case, the remaining approaches described in this sec-
tion should be reviewed to see whether one of them can reduce or eliminate
this bottleneck and give better performance.

– Noninterfering sets of operations. One approach to improving perfor-
mance begins by analyzing the interference between the operations. We
say that operation A interferes with operation B if A writes a variable that B
reads. Notice that an operation may interfere with itself and that this would
be a concern if more than one task executes the same operation (e.g., more
than one task executes “take” operations on a shared queue). You may find,
for example, that the operations fall into two disjoint sets, where the opera-
tions in different sets do not interfere with each other. In this case, you can
increase the amount of concurrency by treating each of the sets as different
critical sections. That is, within each set operations execute one a time, but
operations in different sets can proceed concurrently.

– Readers/writers. If there is no obvious way to partition the operations into
disjoint sets, consider the type of interference. You may find that some of
the operations modify the data, but others only read it. For example, you
might have operation A that both reads and writes the data and operation B
that only reads the data (i.e., A interferes with itself and with B, but B does
not interfere with itself). Thus, if one task is performing operation A, no
other task should be able to execute either A or B, but any number of tasks
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should be able to execute B concurrently. If this is the case, it may be
worthwhile to implement a readers/writers protocol that will allow this to
happen.

– Reducing the size of the critical section. Another approach to improving
performance begins with analyzing the implementations of the operations
in more detail. You may find that only part of the operation involves actions
that interfere with other operations. If so, you can reduce the size of the
critical section to that smaller part. Notice that this sort of optimization
is very easy to get wrong, so it should be attempted only if it will give
significant performance improvements over simpler approaches.

– Application-specific optimizations. Another approach is to consider
application-specific optimizations. For example, you might notice that put
and take in a queue do not interfere if the queue has at least two elements.
It is therefore possible to implement concurrency-control protocols that
would allow put and take to execute concurrently when safe to do so and
serially otherwise. Notice that this sort of optimization, like reducing the
size of the critical section, is very easy to get wrong, so it should only be
attempted if it seems likely to yield a significant performance improvement
(and you are sure you know what you are doing!).

– Application-specific semantic relaxation. Yet another approach is to con-
sider partially replicating shared data (the “software caching” described in
[YWC+95]) and perhaps even allowing the copies to be inconsistent if this
can be done without affecting the results of the computation. For example,
a distributed-memory solution to the phylogeny problem described earlier
might give each UE its own copy of the set of sets already rejected and
allow these copies to be out of synch; tasks may do extra work (in rejecting
a set that has already been rejected by a task assigned to a different UE),
but this extra work will not affect the result of the computation, and it may
overall be more efficient than the communication cost of keeping all copies
in synch.

Correctness Considerations

• Correctness considerations of base pattern. Review the correctness consider-
ations for the base pattern.

• Access to shared data. Ensure that access to shared data is “safe” — in the terms
of the preceding discussion, tasks can only execute operations concurrently if the
operations do not interfere with each other.

• Memory synchronization. Make sure memory is synchronized as required:
Caching and compiler optimizations may result in unexpected behavior of shared
variables. For example, a stale value of a variable may be read from a cache or
register instead of the newest value written by another task, or the latest value
from another task may not have been flushed to memory and thus is not visible to
other tasks. Unfortunately, techniques to avoid such problems are very platform-
specific. In OpenMP the flush directive can be used to synchronize memory
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explicitly; it is implicitly invoked by several other directives. In Java, memory is
implicitly synchronized when entering and leaving a synchronized block.

Efficiency Considerations

• Efficiency considerations of base pattern. Review the efficiency considera-
tions for the base pattern.

• Task scheduling. Consider whether the explicitly-managed data dependencies
addressed by this pattern affect task scheduling. A key goal in deciding how to
schedule tasks is good load balance; in addition to the considerations described
in the base pattern, the application designer should also take into account that
tasks may be suspended waiting for access to shared data. It may therefore make
sense to try to assign tasks in way that minimizes such waiting, or to assign
multiple tasks to each UE in the hope that there will always be one task per UE
that is not waiting for access to shared data.

• Efficient access to shared data. Make sure the mechanism used to ensure safe
access to shared data does not unnecessarily restrict concurrency, as described in
the preceding section.

Examples

Known Uses

• The phylogeny problem described in Context above: The solution described
in [YWC+95] fits EmbarrassinglyParallel plus explicit management of the re-
quired shared data structure using replication and periodic updates to reestablish
consistency among copies.

• The Gröbner basis program [YWC+95]: Omitting most of the details, in this ap-
plication the computation consists of using pairs of polynomials to generate new
polynomials, which are then compared against a master set of polynomials, and
those that are not linear combinations of elements of the master set are added to
it and used to generate new pairs. Different pairs can be processed concurrently,
so one can think of defining a task for each pair and partitioning them among
UEs. The solution described in [YWC+95] fits EmbarrassinglyParallel (with
a “task queue” consisting of pairs of polynomials) plus explicit management of
the master set using an application-specific protocol the authors call “software
caching”.

Related Patterns

As noted, this pattern really represents a way of extending or modifying one of the
other AlgorithmStructure patterns. If the base pattern is EmbarrassinglyParallel, this
pattern can be thought of as a “pattern of last resort” for task-based decompositions
— a pattern that tells you how to manage data dependencies when none of the other
task-based patterns will work. Other anticipated uses are to provide safe access to a
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shared data structure not described as part of the base pattern (for example, the shared
task queue sometimes used to implement EmbarrassinglyParallel, or the neighboring
sections of a distributed-among-tasks data structure in GeometricDecomposition).

4 The RecursiveData Pattern

Problem

Your problem involves an operation on a recursive data structure (such as a list, tree, or
graph) that appears to require sequential processing. How can you perform operations
on these data structures in parallel?

Context

Many problems with recursive data structures naturally use the divide and conquer
strategy described in DivideAndConquer9. In other situations, we often find that most
operations on recursive data structures such as lists and trees seem to have little ex-
ploitable concurrency, since one must follow the links that make up the data structure
sequentially. Surprisingly, however, it is sometimes possible to reshape such algorithms
in a way that a program can operate concurrently on all elements of the data structure.

For example, suppose we have a forest of rooted directed trees (defined by speci-
fying, for each node, its immediate ancestor, with a root node’s ancestor being itself)
and want to compute, for each node in the forest, the root of the tree containing that
node. To do this in a sequential program, we would probably trace depth-first through
each tree from its root to its leaf nodes; as we visit each node, we have the needed
information about the corresponding root. Total running time of such a program for a
forest of N nodes would be O(N).

A parallel version can be created as described in [JáJá92]: Let each node’s “succes-
sor” initially be defined to be its parent. For each step, we calculate for every node its
“successor’s successor”. For a node whose successor is the desired result (the root of
the tree to which the node belongs), the successor and the successor’s successor are the
same (since a root’s ancestor is itself), so we must continue the “for each step” process
until it converges, i.e., until the values produced by one step are the same as the values
produced by the preceding step. Figure 4 shows an example requiring three steps to
converge.

Notice that at each step we can operate on all N nodes in the tree concurrently and
that the algorithm converges in at most logN steps.

An interesting aspect of this restructuring is that the new algorithm involves sub-
stantially more total work than the original sequential one (O(NlogN) versus O(N)),
but the restructured algorithm contains potential concurrency that if fully exploited re-
duces total running time to O(logN) (versus O(N)).

Most strategies and algorithms based on this pattern similarly trade off an increase
in total work for a potential decrease in execution time. Notice also that the exploitable

9Another AlgorithmStructure pattern; see [MMS02].
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Figure 4: Finding roots in a forest. Solid lines represent the original parent-child rela-
tionships among nodes; dashed lines point from nodes to their successors.

concurrency can be extremely fine-grained (as in the example above), making this pat-
tern an impractical choice for many current programming environments. If the pat-
tern is not effective in practice, however, it may still serve as an inspiration for lateral
thinking about how to parallelize problems that at first glance appear to be inherently
sequential.

The technique is sometimes referred to as pointer jumping or recursive doubling.

Indications

Use this pattern when:

• The original problem involves a recursive data structure.

• The problem does not fit DivideAndConquer.

This pattern can be particularly effective when:

• The target platform supports efficient execution of very fine-grained concur-
rency.

Forces

• The strategies represented by this pattern offer significant potential speedups.

• Applying these strategies requires significant cleverness on the part of the de-
signer.

• The resulting concurrency may be too fine-grained to be practical on some plat-
forms.

Solution

In contrast to the high degree of cleverness involved in the restructuring of the al-
gorithm (usually in terms of a simultaneous update of all elements of the key data
structure), the implementation of the pattern is usually fairly straightforward.
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Key Elements

• Data decomposition. You need a way of assigning each element of the recursive
data structure to a unit of execution (UE)10. Typically this pattern will be imple-
mented on a platform that allows unit of execution and hence each element to be
assigned to a different processing element (for example, a SIMD machine such
as one of the early Connection Machines). If there are not enough processing
elements to do this, it is also possible to assign more than one element to each
UE. Ideally, this is done in a way that permits unit-time access to each element
of the data structure.

• Structure. The basic structure of one of these algorithms is a sequential compo-
sition in the form of a loop, in which each iteration can be described as “perform
this operation simultaneously on all (or selected) elements of the recursive data
structure”. Typical operations include “replace each element’s successor with its
successor’s successor” (as in the example in the Context section) and “replace a
value held at this element with the sum of the current value and the value of the
predecessor’s element.”

• Synchronization. Algorithms that fit this pattern are described in terms of si-
multaneously updating all elements of the data structure. Some target platforms
(e.g., SIMD) may make this trivial to accomplish since instructions are executed
in a lockstep fashion at each processing element and each data element will gen-
erally be assigned to a separate processing element.

If the target platform is less synchronized, it will generally be necessary to
introduce the synchronization explicitly. For example, if the operation performed
during a loop iteration contains the assignment

next[k] = next[next[k]]

then you must ensure that next[k] is not updated before other UEs that need
its value for their computation have received it. One common technique is to
introduce a new variable, say next2, at each element. Even-numbered iterations
then read next but update next2, while odd-numbered iterations read next2
and update next. The necessary synchronization is accomplished by placing a
barrier between each successive pair of iterations.

If there are fewer processing elements than data elements, you must decide
whether to assign each data element to a UE and assign multiple UEs to each
processing element (thereby simulating some of the parallelism) or whether to
assign multiple data elements to each UE and process them serially. The latter is
less straightforward but may be more efficient.

Correctness Considerations

• Initial design. Be careful that in rethinking the problem to expose concurrency
you do not introduce errors.

10Generic term for one of a collection of concurrently-executing entities, usually either processes or
threads.
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• Simultaneous updates. If the redesigned algorithm involves simultaneous up-
dates of all elements of the data structure, be sure such updates are performed
correctly. On a SIMD platform with one processing element per data element,
this will happen automatically; on other platforms, it may be necessary to use
barrier synchronization or data-copying.

Efficiency Considerations

• Granularity. Be sure the target platform allows efficient execution of pro-
grams with whatever granularity of concurrency is required (sometimes very
fine-grained for this pattern). For example, if frequent barrier synchronization is
needed, the cost of these barrier operations could overwhelm the speedup gained
by updating all parts of the data structure in parallel.

Examples

Partial Sums of a Linked List

This example is adopted from Hillis and Steele [HS86]. Each element in a linked list
contains a value x. The problem is to compute the prefix sums of all the elements in the
list. In other words, after the computation is complete, the first element will contain x0,
the second will contain x0 + x1, the third x0 + x1 + x2, etc.

Figure 5 shows pseudocode for the basic algorithm. Figure 6 shows the evolution

for all k in parallel
{

temp[k] = next[k];
while temp[k] != null
{

x[temp[k]] = x[k] + x[temp[k]];
temp[k] = temp[temp[k]];

}
}

Figure 5: Pseudocode for finding partial sums of a list.

of the computation where xi is the initial value of the (i−1)th element in the list.
This example can be generalized by replacing addition with any associative oper-

ator and is sometime known as a prefix scan. It can be used in a variety of situations,
including solving various types of recurrence relations.

Known Uses

• Data-parallel algorithms: This pattern is an example of a style of programming
sometimes referred to as data parallel and used for SIMD platforms such as the
Connection Machine. These platforms support the fine-grained concurrency re-
quired for the pattern and handle synchronization automatically since every com-
putation step occurs in lockstep on all the processors. Hillis and Steele [HS86]
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x0 x3 x5 x6 x7x1 x2 x4

sum(x0:x0) sum(x2:x3) sum(x4:x5) sum(x5:x6) sum(x6:x7)sum(x0:x1) sum(x1:x2) sum(x3:x4)

sum(x0:x0) sum(x3:x3) sum(x5:x5) sum(x6:x6) sum(x7:x7)sum(x1:x1) sum(x2:x2) sum(x4:x4)

sum(x0:x0) sum(x0:x3) sum(x2:x5) sum(x3:x6) sum(x4:x7)sum(x0:x1) sum(x0:x2) sum(x1:x4)

sum(x0:x0) sum(x0:x3) sum(x0:x5) sum(x0:x6) sum(x0:x7)sum(x0:x1) sum(x0:x2) sum(x0:x4)

Figure 6: Steps in finding partial sums of a list: Straight arrows represent links between
elements; curved arrows indicate additions.
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describe several interesting applications of this pattern, including finding the end
of a linked list, computing all partial sums of a linked list, region labelling in two
dimensional images, and parsing.

• Combinatorial optimization: In combinatorial optimization, problems involving
traversing all nodes in a graph or tree can often be solved handled with this
pattern by first finding an ordering on the nodes to create a list. Euler tours and
ear decomposition [EG88] are well-known techniques to compute this ordering.

Related Patterns

With respect to the actual concurrency, this pattern is very much like
GeometricDecomposition11, a difference being that in this pattern the data structure
containing the elements to be operated on concurrently is recursive (at least concep-
tually). What makes it different is the emphasis on fundamental rethinking to expose
unexpected fine-grained concurrency.
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A Overview of the Pattern Language

As mentioned in Section 1, our pattern language is organized into three design spaces,
each corresponding to one major phase in the design-and-development process. In this
appendix we describe these design spaces and sketch an example of using the pattern
language to develop an application.

A.1 The FindingConcurrency Design Space

The patterns in this space (presented in [MMS00]) are used early in the design pro-
cess, once the problem and its key computations and data structures are understood.
They help programmers understand how to expose the exploitable concurrency in their
problems. More specifically, these patterns help the programmer

• Identify the entities into which the problem will be decomposed.

• Determine how the entities depend on each other.

• Construct a coordination framework to manage the parallel execution of the en-
tities.

These patterns collaborate closely with the AlgorithmStructure patterns, and one
of their main functions is to help the programmer select an appropriate pattern in the
AlgorithmStructure design space. Experienced designers might know how to do this
immediately, in which case they could move directly to the patterns in the Algorithm-
Structure design space.

The patterns in this design space are organized as illustrated in Figure 7. The main
pathway through the patterns proceeds through three major patterns:

• DecompositionStrategy: This pattern helps the programmer decide whether the
problem should be decomposed based on a data decomposition, a task decompo-
sition, or a combination of the two.

• DependencyAnalysis: Once the entities into which the problem will be decom-
posed have been identified, this pattern helps the programmer understand how
they depend on each other.

• DesignEvaluation: This pattern is a consolidation pattern. It is used to evaluate
the results of the other patterns in this design space and prepare the programmer
for the next design space, the AlgorithmStructure design space.
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Figure 7: Organization of the FindingConcurrency design space.

Branching off from the DecompositionStrategy and DependencyAnalysis patterns
are groups of patterns that help with problem decomposition and dependency analysis.
We use double-headed arrows for most of the pathways in the figure to indicate that
one may need to move back and forth between the patterns repeatedly as the analysis
proceeds. For example, in a dependency analysis, the programmer may group the tasks
one way and then determine how this grouping affects the data that must be shared
between the groups. This sharing may imply a different way to group the tasks, lead-
ing the programmer to revisit the tasks grouping. In general, one can expect working
through these patterns to be an iterative process. As part of this process it is usually
necessary to at least consider the platform or platforms on which the final program
is to run. The need for portability encourages postponing decisions about target plat-
form as much as possible. There are times, however, when delaying consideration of
platform-dependent issues can result in choosing a poor algorithm.

Example analysis

As an example of the analysis performed by the patterns in this design space, consider
the following problem taken from the field of medical imaging. (This example is pre-
sented in more detail in [MMS00].) We can decompose this problem in two ways —
in terms of tasks and in terms of data.

An important diagnostic tool is to give a patient a radioactive substance and then
watch how that substance propagates through the body by looking at the distribution
of emitted radiation. Unfortunately, the images are of low resolution, due in part to the
scattering of the radiation as it passes through the body. It is also difficult to reason from
the absolute radiation intensities, since different pathways through the body attenuate
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the radiation differently.
To solve this problem, medical imaging specialists build models of how radiation

propagates through the body and use these models to correct the images. A common
approach is to build a Monte Carlo model. Randomly selected points within the body
are assumed to emit radiation (usually a gamma ray), and the trajectory of each ray
is followed. As a particle (ray) passes through the body, it is attenuated by the differ-
ent organs it traverses, continuing until the particle leaves the body and hits a camera
model, thereby defining a full trajectory. To create a statistically significant simulation,
thousands if not millions of trajectories are followed.

The problem can be parallelized in two ways. Since each trajectory is independent,
it would be possible to parallelize the application by associating each trajectory with a
task. Another approach would be to partition the body into sections and assign different
sections to different processing elements.

As in many ray-tracing codes, there are no dependencies between trajectories, mak-
ing the task-based decomposition the natural choice. By eliminating the need to man-
age dependencies, the task-based algorithm also gives the programmer plenty of flexi-
bility later in the design process, when how to schedule the work on different process-
ing elements becomes important.

The data decomposition, however, is much more effective at managing memory
utilization. This is frequently the case with a data decomposition as compared to a task
decomposition. Since memory is decomposed, data-decomposition algorithms also
tend to be more scalable. These issues are important and point to the need to at least
consider the types of platforms that will be supported by the final program. The need
for portability drives one to make decisions about target platforms as late as possible.
There are times, however, when delaying consideration of platform-dependent issues
can lead one to choose a poor algorithm.

A.2 The AlgorithmStructure Design Space

This design space is concerned with structuring the algorithm to take advantage of
potential concurrency. That is, the designer working at this level reasons about how
to use the concurrency exposed in the previous level. Patterns in this space describe
overall strategies for exploiting concurrency.

Patterns in this design space can be divided into three groups as shown in Fig-
ure 8, plus ChooseStructure [MMS02], which addresses the question of how to use the
analysis performed by using the FindingConcurrency patterns to select an appropriate
pattern from those in this space.

“Organize by ordering” patterns

These patterns are used when the ordering of groups of tasks is the major organizing
principle for the parallel algorithm. This group has two members, reflecting two ways
task groups can be ordered. One choice represents “regular” orderings that do not
change during the algorithm; the other represents “irregular” orderings that are more
dynamic and unpredictable.
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Figure 8: Organization of the AlgorithmStructure design space.

• PipelineProcessing [MMS02]: The problem is decomposed into ordered groups
of tasks connected by data dependencies.

• EventBasedCoordination (Section 2 of this paper): The problem is decomposed
into groups of tasks that interact through asynchronous events.

“Organize by tasks” patterns

These patterns are those for which the tasks themselves are the best organizing princi-
ple. There are many ways to work with such “task-parallel” problems, making this the
largest pattern group.

• EmbarrassinglyParallel [MMS99]: The problem is decomposed into a set of
independent tasks. Most algorithms based on task queues and random sampling
are instances of this pattern.

• SeparableDependencies [MMS99]): The parallelism is expressed by splitting up
tasks among units of execution (threads or processes). Any dependencies be-
tween tasks can be pulled outside the concurrent execution by replicating data
prior to the concurrent execution and then combining the replicated data after
the concurrent execution. This pattern applies when variables involved in data
dependencies are written but not subsequently read during the concurrent execu-
tion.
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• InseparableDependencies (Section 3 of this paper): The parallelism is usually
expressed by splitting up tasks among units of execution. In this case, how-
ever, variables involved in data dependencies are both read and written during
the concurrent execution in a way that is not addressed by any of the other Al-
gorithmStructure patterns and therefore must be explicitly managed as the tasks
execute.

• DivideAndConquer [MMS02]: The problem is solved by recursively dividing it
into subproblems, solving each subproblem independently, and then recombin-
ing the subsolutions into a solution to the original problem.

“Organize by data” patterns

These patterns are those for which the decomposition of the data is the major organiz-
ing principle in understanding the concurrency. There are two patterns in this group,
differing in how the decomposition is structured (linearly in each dimension or recur-
sively).

• GeometricDecomposition [MMS99]: The problem space is decomposed into dis-
crete subspaces; the problem is then solved by computing solutions for the sub-
spaces, with the solution for each subspace typically requiring data from a small
number of other subspaces. Many instances of this pattern can be found in scien-
tific computing, where it is useful in parallelizing grid-based computations, for
example.

• RecursiveData (Section 4 of this paper): The problem involves an operation on
a recursive data structure that appears inherently sequential but can be rethought
in a way that exposes exploitable concurrency.

A.3 The SupportingStructures Design Space

The patterns of the AlgorithmStructure design space capture recurring solutions to the
problem of turning problems into parallel algorithms. But these patterns in turn con-
tain recurring solutions to the problem of mapping high-level parallel algorithms into
programs using a particular parallel language or library. Those solutions are what the
patterns in the SupportingStructures design space capture. Patterns in this space fall
into three main groups: patterns for structuring concurrent execution, patterns that
represent commonly-occurring computations, and patterns that represent commonly-
occurring data structures.

Patterns for structuring concurrent execution

Patterns in this group describe ways of structuring concurrent execution, with particu-
lar attention to whether processes or threads are created statically or dynamically and
whether concurrently-executing processes or threads all perform the same work. These
patterns include the following:
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• SPMD (single program, multiple data) [MMS02]: The computation consists of
N processes or threads running concurrently. All N processes or threads execute
the same program code, but each operates on its own set of data. A key feature
of the program code is a parameter that differentiates among the copies.

• ForkJoin [MMS02]: A main process or thread forks off some number of other
processes or threads that then continue in parallel to accomplish some portion of
the overall work before rejoining the main process or thread.

Patterns representing computational structures

Patterns in this group describe commonly-used computational structures; they include
the following:

• Reduction [MMS02]: A number of concurrently-executing processes or threads
cooperate to perform a reduction operation, in which a collection of data items
is reduced to a single item by repeatedly combining them pairwise with a binary
operator.

• MasterWorker: A master process or thread sets up a pool of worker processes or
threads and a task queue. The workers execute concurrently, with each worker
repeatedly removing a task from the task queue and processing it, until all tasks
have been processed or some other termination condition has been reached. In
some implementations no explicit master is present.

Patterns representing data structures

Patterns in this group describe commonly-used shared data structures; they include the
following:

• SharedQueue [MMS02]: This pattern represents a “thread-safe” implementa-
tion of the familiar queue abstract data type (ADT), that is, an implementa-
tion of the queue ADT that maintains the correct semantics even when used by
concurrently-executing processes or threads.

• SharedCounter: This pattern, like the previous one, represents a “thread-safe”
implementation of a familiar abstract data type, in this case a counter with an
integer value and increment and decrement operations.

• DistributedArray: This pattern represents a class of data structures often found in
parallel scientific computing, namely arrays of one or more dimensions that have
been decomposed into subarrays and distributed among processes or threads.


