Getting Ready to Work: Patterns for a Developer’s

Workspace
Steve Berczuk Brad Appleton Ralph Cabrera
Verbind, Inc. Motorola NSS AGCS

berczuk@acm.org
http://world.std.com/~berczuk

Contents Copyright © 2000 by Steve Berczuk
Permission granted to make copies for the purposes of the PLoP 2000 Conference

Abstract

The way software developers work day-to-day has a major impact on
the spead and qudity of product development. Workspace nanagement
and version control bridge the gap between architedure, process and
the mde. But these issues are often ignored.

This paper presents a pattern language for constructing a productive
developer workspace tying the workspace structures together with
architedure and configuration management. While organizational
support for developer productivity is always helpful, you can apply
these patterns, even if you are a devel oper working on your own.

Introdu ction

Much of the patternsliterature is devoted to patterns about code. The patternsin Design Patterns [1]
patterns addressbasic buil ding Hocks of Object-oriented systems; The patternsin Pattern-Oriented
Software Architedure — A System of Patterns [2] addresssystems architecture issues. Many of the papers
in the Pattern Languages of Program Design serieq] 3-6]are about the design elements of applications. This
is because the cde anbadies the ideas and functions of software systems, andisthus, more visible.
However, we neead to spend more time discussng the structures that enable usto buil d systems. In many
ways thisis the harder problem because it involves more than simply technicd details.

Writing code as an individual does not present the wordination chall enges that writing code as part of a
team does. For an individual coder, the problemsare dl about ohjeds, APIs, classs: technica detalsthat
developers are ammfortable with. When you add other peopl e to the project the task becomes compli cated.
In addition to solving atechnicd problem you must now also communicae with each other and coordinate
your work.

The bigger pictureisthat development involves Product Architecure, Version Control & Branching, and
Workspace Management.

A well thought out architecure can mitigate many of the tensions, such as coordination and dependency
isaues, caused by different people workingon the same problem. The issue is compounded when you have
different teams coll dborating. Configuration Management and integration plans prevent people from
interfering with each other’ swork by providing a mechanism and processfor communi cation and
coordination. Architedure, process and other parts of the devel opment environment all come together at
the point where the developer does his coding.

Page 1 of 22 © 2000 by Steve Berczuk September 23, 2000

Issues surround ng how you, asa developer set up yaur workspace ae often orphans, in that t hey are not
redly about high-level management (thereis an organization patterns language literature about that') nor
are they about low level coding. Version control issies arenat oftenwell understoad by developers, but are
rather treated as a procedure to foll ow. Version and configuration management are left for the “build”
people to handle. But given the impact that they have on your day-to-day work environment, itis
worthwhile for developersto have a better understanding o them.

Asadevel oper you can independently exercise limited control over the devel opment processand
architedure, but agood persona proces cangoalongway in helping an individua be dfedive,evenin
the absence of an establi shed group practice Thissmall pattern language presents an approach for building
aredm in which a developer can work effedively as part of ateam. Ideally, the whole organization should
consider this approach, but, if it isused incrementally, one developer at atime, or oneteam at atime,
improvementswil | be posshle.

This paper describes workspaces, and is based on configuration management and buil d patterns that have
appeaed dsewhere [8-12].

Roadmap to the Paper

The foll owing sedions describe the amncepts behind pattern languages, and how workspaces fit into the
larger picture of constructing software systems. The Pattern Language starts with the section A Pattern
Language for Workspaces on page 6. Theintroduction can be skipped if you are familiar with Pattern
Languages and the general isaues of workspace naragement. The edion Elements of a Workspace on
page 4 defineswhat we mean by workspace.

This paper briefly presents a scenario for buil ding a workspaceand points you to the patterns for
completing the detail s. The patterns cover areas such as:

e Branching Palicies and Techniques

e Version Control Policiesand Version Management T echniques
e Build Management Procedures

e Integration Palicies and Techniques.

Asadevel oper, you may not fed that you have antrol over each part of the system. Evenif thisisso, you
can till build part of the solution. The am of the patternsisto focus on theresult, not how you get there.
While spedfic tods may help you (for example, version control systems), you can till approach the goal
by other means.

Pattern Languag es

Patterns are about structures that solve problems by balancing many, often conflicting, forces[13]. A
Pattern language shows how structures relate, whil e showing you how to huil d those structures. To use the
pattern language, look for the pattern that describes the structure you would like to set up, and then try to
set up the ones that support it. This paper discusses how to use patternsto creae aworkspacethat resolves
issuesin team development by buil ding the supporting structures.

Why a pattern language, and not simply a list of guidelines? The detail s of what to doina given
environment often vary depending on the situation; guidelines often hide that detail.

The patterns cover many of theissuesin detail, leaving yau to explore whether the pattern is a structure that
you need, and if it is, how you implement it.

! Asan example: [7] James O. Coplien, "A Generative Devel opment Process Pattern Language,” in
Pattern Languages of Program Design. Reading, MA: Addison-Wedley, 1995.

Page 2 of 22 © 2000 by Steve Berczuk September 23, 2000

Workspace

This paper talks about the virtual place where you as a devel oper spend most of your day when
programming: the devel oppment workspace

Y our work on a software projed has many aspeds, including:
* The achitedure
e Theorganization's structure
e Version control and change management poli cies and tods
e Your working style.

Bass[14] for example, discusses how organization has an impact on the module structure. These aspeds al
have an effed on:

» Workspace Management: How you set up your local devel opment environment and how your
workspacereated to ahers.

e Version Control and identification: how you usesource ontrol tods and other meansto
coordinate changes with others, publish your changes, and reproduce eavironments, such aswhen
you nead to fix abugin an ealier release. Thisincludesisaues such asbranching and labeling,
which are often faced with much congternation.

e Coardination: How you work together with other teams and developers.

e |dentification: How you know what you built.

W Version Control &

Configuration Management

Architecture

Organization Structure J W orkspace

Figure 1. Influences between Structures

Why Care about Workspaces?

Even the most advanced, high-concept, digtributed systemsrely on low level processes working corredly.
Effedively deploying a product plan or development process depends on the way you manage your
workspace The workspaceiswhere software development happens. Consider the foll owing scenarios.

A company has a cmplicated huild scheme where the latest versions are always built nightly, and
developers use the shared dbjedsto do their own devel opment. Thisletsthem save disk space You start
working an a problem with the latest build. Y ou spend the whole day setting up areliable test scenario, but

Page 3 of 22 © 2000 by Steve Berczuk September 23, 2000

then nedl to leave becuse of a personal engagement. The next morning, your test set up no longer

compil es. Someone changed something in one of the user interfaceli braries (which do notimpact the bug)
and you implicitly got the latest code. Y ou now need to spend the next day getting back to where you were
last night.

In another scenario, you are making complicated changes to a bady of code. It takes a couple of days, and
you chedk in the cde. When the nightly build runs your code appeas to have broken the build. Y ou track
the problem down to changes by another person made before you chedked in your change.

These scenarios are based on red problemsin companies that thought they had a pretty good system going
sincethey had automated builds. All could have been avoided by structuring devel oper’ s workspaces
appropriately. Unlessyour organization puts significant roadblocks in your path, you can structure your
workspaceto avoid these problems almost entirely on your own.

Elements of a Workspace

A workspaceis conneded to the workspaces of other devel opers, aswell asthe surrounding infrastructure
of the organization that the devel oper worksin. As a devel oper, you can do alot onyour own to help a
processgo smoothly; idedly there ae structures around the developer’s “ream” that support make it
easier. Figure 2 showstherelationship between these dements.

Project
1 +Project
1.* +W orkspace
Sandbo x * 1 Works pace
L 4
+TaskW S +Owner

Developer Workspace Integration Workspace| [ReleaseWorkspace

Figure 2 Elements of a Workspace
The workspaceincludes (but is not limited to):
« Any sourcefiles (or their equivalent).
e The proceduresthat you use to interact with other developer’ s workspaces.

e Thetodsused to manage devel opment and change, including interfaces to the Version Control
system.

A workspace has the foll owing properties:

e Someinitial state. Y ou populate the workspacefrom sourcefilesin version control, or from a
system buil d.

Page 4 of 22 © 2000 by Steve Berczuk September 23, 2000

e The arrent gate of the source mde. Thisincludes any changes you have made.

e The arrent gate of the built (exeatable) program that you are working on. This means any
binaries that are affected by your sourcechanges must be re-built. For example, when using C++,
a change to aheader file means (at least) a need to recompile any clients of that projed. If you are
developing interfaces, you may discover that certain clientswill not compil e unlesstheir codeis

changed.

Whileit is possble to insulateyourself from changesby appropriate use of interfaces, deweloping an
evolving system means cooperating with other people. You need to integate their changes, and you need to
publish your changes. With the appropriate structures in place you can do this painlessy.

Page 5 of 22 © 2000 by Steve Berczuk September 23, 2000

A Pattern Langua ge for Worksp aces
This sedion details the patterns. The patterns come from many sources (as cited in the references sedion).

Oncethe architedure and basic structure of the calelines andresponsibilities are establi shed, you need to
consider how to huil d and structure the workspaces. Figure 3 shows the structure of the language. An arrow
from one pattern to another means that the first pattern is completed by the pattern that it points to.

Development Line

:

Private W orkspace

Shared Object Shared Source
Cache Cache

~

Named Stable Bases

/

Integration Build

Private System Build

Private Versioning

Task Branch

Reproducible
Build

Sandbox

Smoke Test

Legend:

A Pattern In This Paper
Pattern AneedsB - + ,,,,,,

implemeted to be complete.

One of a class of patterns
sets the context for B .

o -— >

B Other Pattern

Figure 3: Overview of the Language

Thislooks more mmplicated than it is. The key to understanding the pattern language isto think in terms
of structure instead of process The language will show you how to buil d aworkspace by adding on
additional supporting, structures.

Page 6 of 22 © 2000 by Steve Berczuk September 23, 2000

Using the Language to Control Change

Software product devel opment involves devel opment on many time scaes:
e Rdeases. (There may be more than onerelease available to customers.)

e Builds. You many have a processfor preparing complete packages in aintermediate state. These
packages may be for pre-release QA testing ar simply for devel opment testing,

e Changelists. Every time you makes a change,, the state of the system changes.
Set up your workspaceto help the devel oper ded with the rate of change. Consider the following goals:

e Ensurethat your changeswill not break therest of the system when they are chedked in
(publi shed).

« Ensurethat you know your current state of the system in your workspace. Youdo not want files
changing aut from under you.

Y ou want an integration workspace where you can make changes, incorporate other changes, and publish
theresultsat your own pace An integration workspaceis built out of the foll owing other components:

« A Private Workspace Thisiswhere the work gets done. The workspace by itself is asmple
structure and it needs anumber of supporting elements.

e A Codeline (mainline) to get the source from which you will use to start work. If you are working
on an older build you can get the mde for that version. The Codeline @mntainsthe
SharedSourceCache.

e Sincesome mmponents are quite stable, and perhaps expensive to huil d, you may want to start
with a SharedObjectCache to populate your environment. This cacheis populated by a system
build. If the cdeif truly immutable, you can point to ashared resource, but youdo not want these
objeds changing without your knowledge after a subsequent buil d.

e Any changes you make wuld affed many partsof the system. Y ouwant to beableto build the
entire system using a procedure similar to the one that generates released oljects. A
PrivateSystemBuil d enables you to do this.

e Asyou work on changes, you many want to make an experimental major changein the @wde,and
want to chedpoint part of your changes. Cheding in the code to aversion control system often
makes the ade avail able to ahers. PrivateVersioning provides a way to handle thisusing
Branching petterns or other medhanisms supported by your tools.

The Patterns detail the tradeoffsinvolved in setting up aworkspace

Page 7 of 22 © 2000 by Steve Berczuk September 23, 2000

Private Workspace

When you are working an a problem on an active Development Line (for example, Mainling) people will be
making frequent changes. But people don’t work well with uncontrolled change. This pattern describes
how you can reancil e the tens on between always devel oping with a current code base, and the redity that
people @nnot work effedively when their environment isin constant flux.

@

Asadeveloper, you must have a way to maintain local stability in the midst of global change. Thisis
the only way to get changes made efficiently and quickly.

When you dewvelop software you need accessto the ade for the dement that you are working on. The ade
base for this may be changing because other tean members are working on relaked parts of the omponent.
Y ou also neal accessto the aomponents that your e ement interfaces with so that you can do testing. The
external components are also undergoing evolution.

One way to run adevelopment projed is to work off the latest system build all of the time,and receave
automatic updates. Thisisthe most economical in terms of space and time. Y ou only need to change and
buil d your components. The system gets built once perhaps daily, and everyone references the new
binariesand source. In acomplex system (which most systems are) this meansthat many things are
changing. Most of the timethiswon’t be aproblem, sincethe anges you areimporting may not have a
direa effed on what you are doing. But software systems are complex, and it is diff icult to determine
ahead of time whether a change will have @mnsequences for your work.

At any point in time some of these dhanges may be buggy, or at least, inconsistent with the changes that
you are working on. Trying to work with these latest components will slow you down.

Thissituation can cause problemsif the shared repository changes while you arein the midd e of atask.
The benefits of saving disk space ae evaporated by the st of having the developer try to reproduce a test
scenario, or try to get his componentsto hbuil d in the presence of interface diangesin the newest code. A
change that can have substantial effed on the part of the system you are working on can cause you hours of
eff ort by forcing you to resolve new problemsthat are unrelated to yaur current work.

Therefore,

To develop code, you need to have a Private Workspace wher e you control what you are working on.
Y ou have total control over when your environment changes.

Every team member should be able to set up an environment where they have total control of what they are
working with. Y ou control when systems are updated. Ideally, you want to be as up to date as possble, but

Page 8 of 22 © 2000 by Steve Berczuk September 23, 2000

you only want to update your workspace ketween tasks, and you want to guararteethat you are able to
obtain particular versions of other components so that you can be sure that you can build and test.

Onerisk with al owing this contral isthat devel opers will work with old “known” releasestoolong, and
they will be working with outdated code. Y ou can proted yourself from this by doing periodic Private
System Builds and making sure that changes do not bredk the build o fail the Smoke Test.

Y ou can populate the environment either by copying the filesfrom aknown good huild (one of the Named
Sable Bases) or from the Mainline or by referencing fil es from the Shared Object Cache for components
that you will not change. If disk spaceisata premium, use filesfrom a Shared Source Cache(RC) if you
will not be changingthefiles. You can also get the dl of the sourcefrom the crred code lineand build the
system from scratch if that is not too time consuming. Figure 4 shows the structure between the workspace
source @ntrol, and the starting point for your workspace

Source Control

File Source
Local Copy
Developer Workspace| *File Copies +File Source Latest Build
* *
1 +0riginal Files

Develop er Changes

+Edits

Figure 4 Structure of a Private Workspace

In addition, a Private Workspace can include tod s that facil itate your work, aslong asthetodsare
compatible with thework style of the team.

To be sure that you have built all dependercies, do a Private System Build. Chedk that the dangesintegrate
successfully with the work others have done in the meantime by getting the latest code from the Mainline
(exclusive of changes you have made). If you are working on multiple tasks at one time, your workspace
should have many Sandboxes.

Having a Private Workspace does take more space than working with shared source, but the smplicity that
it adds to yaur work isworth it. An automated build processshould also have its own workspace, but this
workspacewould always get all the updates, if you are doing a “latest” build.

Example

The Widget Editor team uses components from the “Shared Component Team.” The Shared Component
Teamisin themidst of adding a compli cated feature, and the last couple of build have flaws. Y ou know
that the interfaces that you are using are not changing. The Widget Editor team sets up their build
environment so that they use a known good buil d of the Shared Components. As the quality of thetip o the
source @ntrol line works, some of the Widget Editor Team nembers start buil ding againg the latest Shared
Components.

Page 9 of 22 © 2000 by Steve Berczuk September 23, 2000

References

Thisisa gructure that that some find so obvious, that some fed that it isn’t worth documenting. Others
never stumble upon it, but a Private Workspace is the first step in controlling your environment. Whitgift
[15] briefly mentions the role of workspaces as a place “where an itemevolves through many temporary
and inconsistent states until ischeckead into the library.”

Page 10 of 22 © 2000 by Steve Berczuk September 23, 2000

A Private Workspace allows you, as a developer, to insulate yourself from external changesto your
environment. But you are making changes to the global environment too. This pattern explainshow to
make a goad effort a knowing that your code will still be mnsigtent with thelatest publi shed code base
when you submit your changes.

SO @
Y ou need away to ensure that the impact of your changes can be evaluated effectively before a

system build.

In a development team with liberal code line policieschanges happen very fast. The only true test of
whether changes aretruly compatible is the system buil d. Often organizations have very well establi shed
formal build procedures, but they don’t scale down to the devel opers. To be able to do a reasonable test of
the dfect of the changes, you must be able to huild all partsof the system that your code has an effed on.

Therefore,
Before making a submission to sour ce control do a Private System Build.

Make sure that your code worksin your current environment. Then update your Sandbox with the latest
code from the Codeline that you are working on, and do a buil d. A complete (full) build is best, but if your
dependencies are set up corredly, an incremental oneis sufficient.

The private system buil d should have the foll owing attributes:

» Belikethe Integration and product buil ds as much as posshble, though some detailsthat arerelated
to release and packaging can beomitted. It should &t least use the same compiler, versions of
external components, and diredory structure.

* Include dl dependencies.

* Include dl of the mmponentsthat are dependent on the change. (For example, various appli cation
exeatables.)

The build can differ from the product build in the foll owing ways:

* Itcanbedoneinan IDE or other development environment, aslong asyou know that the compiler
is compati ble with the one used in the Product Build process

Page 11 of 22 © 2000 by Steve Berczuk September 23, 2000

e |t can skip stepsthat insert identifying information into the final product, for example, updating
VErsion resources.

A Private System Build does take time, but this is time spent by only one person rather than each member
of theteam should there be a problem. If buil ding the entire system is prohibitive, build the smdlest
number of componentsthat your changes effed.

Example

You havejust fixed abugthat took 3 days to fix. After verifying that the bugisfixed, you synchronize your
workspaceto thetip o the cde ling, and then do a Private System Buil d using abuild procedure that
builds all of the mmponents of the system. This procedure can omit items such asincrementing release
numbers, etc, that may be present in the product build. If the build works, and passes aminimal smoke test,
you chedk your changesin.

References
Steve McConnell mentionsthe need to do abuild before chedking in code in Rapid Development [16].

Page 12 of 22 © 2000 by Steve Berczuk September 23, 2000

Sandbox

Within a Private Workspace, you may need to work on different tasks a the sametime. These projects may
not even be compatible. Whil e working on the tasks, you want to be able to have free eign without
adversely impacting ahers. This pattern addresses the issues that arise when you need to work
independently on anumber of projeds, in anumber of environments.

@

Sometimes you need to work on mor e than one task simultaneously where you ar e fr ee to experiment
independently with the code for each one.

Software development isinterrupt driven. Versions of the ade ae produced and some of these versions
comprise the code base of therelease. There aetasksfor thereease that is currently being devel oped and
tasksto fix bugsin the latest release. Within each of these rel eases there are tasks that have different time
scales. Each task may require adifferent version of the mde base, with diff erent supporting tools and
libraries. The different versions may not work well together.

Page 13 of 22 © 2000 by Steve Berczuk September 23, 2000

Private W orkspace

Current Release W ork Bug Fix W ork

Mainline Private Branch Release Line

Figure5: Tasksin aworkspace
Therefore,

Allow for a number of sandboxeswithin each workspace. A Sandbox isan independent copy of all
the code needed to perform atask. Create a sandbox for each task that works off of a different code
base.

Populate the sandbox from the appropriate branch. Share or copy fil es and binaries as appropriate, being
surethat you can re-buil d any objects that are dependent on objects that you change. The sandbax should
also include the wrred versions of third party code, aswell asall local system components.

Some component environments, such as COM, define ertain items on a machine wide basis, so be sureto
have a processto switch between workspaces by un-registering and registering the appropriate servers.

Developer Workspace

0

Sandbo x For Task 2

Sandbo x for Task 1

Populated From

Populated From

Repository /Main Branch Repository

Figure 6: Relationship between Sandbox and Wor kspace

This structure can be used in combination with a Task Branch when you are performing a compli cated
Refactoring,[17]. Each Task Branch can then be associated with a sandbox.

Page 14 of 22 © 2000 by Steve Berczuk September 23, 2000

Example

Suppose that you are working on release 3.0. Thisreleaseis still onthemain line. A bug for the 2.1 release,
whichisin thefinal stages of QA before release, is reported.

Y ou create a new sandbox in your workspace and populate it with the binariesfrom the release that
corresponds to the 2.1release. Y ou then get the latest code from the 2.1 Branch, and extract the relevant
source @de in to your workspace When you are @nfident that things work, ched the changes back into
the appropriate code line.

References

Many version control toolsprovide eplicit support of separate sandboxes. Perforce? provides for “client
spedfications’ that map dfferent versions of files to different directoriesin the user’sfile system. The
client spedfications aso have the thange li sts associated with them.

2 www.perforce.com

Page 15 of 22 © 2000 by Steve Berczuk September 23, 2000

Integration Build

When you change @de, you should ched to be sure that code cmpil esbeforeit ischeded in, but because
of concurrent work done in separate Private Workspaces and Sandboxes, or smply error, the code may
break the System Build. This pattern addresses mechanisms for helping to ensure that the mde always

buil ds.

@

How do you make sure that the code is always in a state such that it builds?

When you make code avail able for other developers (chedked-in, published, etc) it is possble that, despite
your best intentions, that you may introduce build errors. Y our buil d environment may even be inconsi stent
with the “release” build environment at any point in time.

Doing a cmplete build does take time, but if the build is broken, the problem is at least localized.

Tracking down inconsistent change setsis frustrating work for other devel opers, so the smoather the buil d,
the higher morale. Y ou neal away to ensure that these inconsi stencies are caught as quickly as posshle.

Therefore,
Be surethat all changes (and their dependencies) are built using a central Integration Build process.
Thisbuild processshould be:

* Reproducible

* Ascloseasposshleto the Product buil d. Minor items, such as how fil es are version | abeled might
vary, but it isbest if the Integration Build isthe same asthe Product build. At the end of the
Integration buil d, you should have a Release (Testing) Candidate.

* Automated, or requiring minimal intervention to work. The harder a build isto run, the more even
the best-intentioned developerswill skip the processoccasionally. If your source ontrol system
supportstriggers, you could have the build run on every ched-in.

* A natification or logging mechanism to identify errors and inconsistencies. The sooner that build
errors areidentified, the sooner they can be fixed. Also, rapid notification makesit easier to track
the changethat broke the buil d.

Page 16 of 22 © 2000 by Steve Berczuk September 23, 2000

Perform the buil d in a Sandbox that contains the components being integrated. Determine how often to run
the integration buil d based on the foll owing factors:

e How long it takesto huild the system
e How quickly changes are happening

If the system takes a long time to build, or if the product isfairly static, consider at least a taged daily
buil d, with an option to run additional buil ds as needed. Otherwise, consider running the build on every
submisson (chedk in) to source ontrol. While this may seem resourceintensive, it will makeit very easy
to determine the sequence of changes that broke the buil d.

Follow up the Integration Buil d with a Smoke Test.

Example

You ched in a thangeto the repository. The source ®ntrol system respondsto the ched in by extracting
al of thefilesfor the system, and it builds the resulting system. Errorsin the buil d get reported to the build
master aswell asthe person who submitted the change.

References

Rapid Development [16]describes a Dail y Build and Smoke Test. The Daily Build and Smoke Test Pattern
first appeaed in Coplien’s pattern languagg[7].

Page 17 of 22 © 2000 by Steve Berczuk September 23, 2000

Smoke Test

Periodic Integration Builds are useful for verifying low-level integration issues. There ae still runtime
isalesthat can cause you grief later. This pattern addresss the dedsions you neel to make to validate a
buil d.

@

How do we know that the system is &ill functional after the last changes?

Y ou hope that you tested the amde adequately before dhedingit in Y ou hope that othershave done so as
well. Even if you and your coll eagues make a goad faith effort to test, you may till not have teded against
all of the changes made by others. Also, some integration tests may neel resources that are not on every
devel opment machine.

Therefore,
Subject each build to a smoke test that verifies that the application hasnot broken in an obvious way.

The scope of the test need not be exhaustive. It should test basic functions, and ssimple integration issues.
Idedlly it should be automated so that thereislittle st to do it. The Smoke Test should not replace deger
integration testing. A suite of unit like tests can form the basisfor the smoke test if nothing elseis
immediately avail able. Most importantly, these tests should be self scoring. They should return atest status
and not require manual intervention to seeif the test passed. (An error may well involve some effort to
discover the source)

Running a Smoke test with each buil d does not remove the responsibilit y for a devel oper to test his changes
before submitting them to therepository. A smoke test is most useful for bugfixes, andfor looking for
inadvertent interactions between exigting and new functionality. All code should be unit tested by the

devel oper, and where reasonable, run through some scenariosin a system environment.

When adding new functionality to a system, extend the smoke test to test thisfunctionality aswell.

Example
The automated buil d runs a script that tests basic functionality.

Page 18 of 22 © 2000 by Steve Berczuk September 23, 2000

References

“Daily Build” and “Smoke Test” often appea in the same sentence, so thereferencesfor Integration Build
may be interesting. Code Conplete [18] decribes strategies for developing Unit tests. The Art of Software
Testing [19]provides and excdl ent overview of basic testing strategy.

Page 19 of 22 © 2000 by Steve Berczuk September 23, 2000

Related Patterns

The foll owing table lists some patterns that were mentioned inthe document that are described in detal

elsewhere.
Pattern Name Description Referenced in
Task Branch A short-lived branch to http://www.enteract.com/~bradapp/acme/branching/
perform aspedfic taslg. This Sreamed Lines. Branching Patterns for Parallel
all ows you to chedkpoint Software Development
changes before they arerealy P
to be shared
Mainline Structure your version control | http://www.enteract.com/~bradapp/acme/branching/
system so that current work is N .
done on aMainline, with gfmégzso Briggfhlng Patternsfor Parallel
releases and other work b
branching of of it.
Shared Object Crede aplacewhere http://www.enteract.com/~bradapp/acme/pl op9Y
Cache developers can copy or _ .
referencethe results of a good Software Reponﬂructmn. Patterns for Reproducing
. Software Builds
buil d.
Shared Source Crede aplacewhere http://www.enteract.com/~bradapp/acme/pl op9Y
Cache developers can referencethe _ .
sourcefor components that ggﬁg gﬁiclcarfrucn on: Patterns for Reproducing
they will not change.
Named Stable | dentify pointsin time for the
Bases software sourcetreefor which

the software works to an
extent adequate for integration

Acknowledgements

Thanksto Linda Rising, our PLoP 2K shepherd for this paper for her valuable dtention to detail, and in

particular for her suggestion of using a secnd person point of view throughout the pager. Also, discussons
with Jim Coplien about the geometry of patterns got me thinking ebout the structure of this paper, a pursuit
that helped sali dify my thinking.

My PLoP 2K workshop group, espedally Paul Asman, Dick Gabriel Andreas Rueping, and Phil Eskdlin,
made many insightful comments. One cainot overstate the role of the workshop processin improving the

patterns literature.

Page 20 of 22

© 2000 by Steve Berczuk

September 23, 2000

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissdes, Design Patterns. Elements of
Reusabl e Object-Oriented Software. Reading, MA: Addison-Wesley, 1995

2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michad Std, Pattern-
Oriented Software Architecture: A System of Patterns. Chichester, England: John Wiley & Sons,
1996

[3] James O. Coplien and Douglas Schmidt, "Pattern Languages of Program Design,". Reading, MA:
Addison Wesley, 19%.

[4] John Vlissdes, James Coplien, and Norm Kerth, "Pattern Languages of Program Design 2,".
Reading, MA: Addison-Wesdley, 199%.

[5] Neil Harrison, Brian Foate, and Hans Rohnert, "Pattern Languages of Program Design 4," in
Software Patterns Series, John M. Vlissdes, Ed. Reading, MA: Addison Wesley Longman, 2000.

[6] Robert C. Martin, Dirk Riehle, and Frank Buschmann, Pattern Languages of Program Design 3.
Reading, Mass: Addison-Wedley, 1998

[7] James O. Coplien, "A Generative Devel opment Process Pattern Language,” in Pattern Languages
of Program Design. Reading, MA: Addison-Wesley, 1995

[8] Stephen P Berczuk, "Organizationa Multiplexing: Patternsfor Processng Satdllite Telemetry with
Distributed Teams," in Pattern Languages of Program Design, vol. 2, John Vlissdes, James
Coplien, and Norm Kerth, Eds. Reading, MA: Addison-Wedey, 1996

[9] Steve Berczuk, "Configuration Management Patterns," presented at Third Annual Conferenceon
Pattern Languages of Programs, Monticdlo, IL, 1996.

[10] Brad Appleton, Steve Berczuk, Ralph Cabrera, and Robert Orenstein, " Streamed Lines: Branching
Patternsfor Parall € Software Development,” presented at Fifth Annual Conferenceon Pattern
Languages of Programs, Monticdlo, IL, 1998.

[1q Ralph Cabrera, Brad Appleton, and Steve Berczuk, " Software Reonstruction: Patterns for
Reproducing the Build," in Proccedings of the Sixth Annual Conference on Pattern Languages of
Program Design. Monticdlo, IL, 199.

[12] Stephen P. Berczuk, "Teanwork and Configuration Management,” C++ Report, val. 9, pp. 28 ff,
1997

[13] C. Alexander, A Timeless Way of Building: Oxford University Press 1979

[14] Len Bass Paul Clements, and Rick Kazman, Software Architecture in Practice. Reading, Mass:
Addison-Wedley, 1998

[15] David Whitgift, Methods and Tools for Software Configuration Management. Chicester, England:
Wiley, 1991.

[16] Steve McConnell, Rapid Devel opment, Taming Wild Software Schedules. Redmond, WA:
Microsoft Press 19%.

[17] Martin Fowler, Refactoring: Improving the Design of Existing Code Reading, MA: Addison-
Wesley, 1999

[18] Steve McConnell, Code Complete : A Practical Handbook of Software Construction. Redmond,
Wash.: Microsoft Press 1993.

[19 Glenford J Myers, The Art of Software Testing. New Y ork: Wiley, 1970.

Page 21 of 22 © 2000 by Steve Berczuk September 23, 2000

Photo credits

Private Workspace Library of Congress Prints & Photographs Division, FSA-OW!I Calledion, LC-
USRF33-015598M2 DLC

Integration Build: Library of Congress Prints & Photographs Division, FSA-OWI Colledion, LC-
USW361-138DLC 6

Sandbox: Library of Congress Prints & Photographs Division, FSA-OWI Colledion,LC-USF34-024142D
DLC

Smoke Test: Library of Congress Prints & Photographs Division, FSA-OW!I Colledion LC-USF33-
011632M1DLC

Private System Build: Library of Congress Prints & Photographs Division, FSA-OWI Colledion, LC-
USF33-006349M3 DLC

Page 22 of 22 © 2000 by Steve Berczuk September 23, 2000

