Analysis Patternsfor the Order and Shipment of a Product

Eduardo B. Fernandez, Xiaohong Y uan, and Sandra Brey

Dept. of Computer Science and Engineering,
Florida Atlantic University,
Boca Raton, FL 33431

Abstract

These andyss patterns describe how a customer places an order for a product, and the
subsequent shipment of the product. We describe first two dementary patterns, the Order and
Shipment patterns. We then combine them to form what we have cdled a semantic andyss
pattern because it emphasizes semantic aspects of the gpplication model as opposed to
improving flexibility. The purpose of this type of pattern is to serve as a Sarting point when
trandating requirements into an actud design. This pattern represents a minimum gpplication so
that it can be gpplied to avariety of situations and it can be combined with other related patterns
to describe more complex gpplications. The order and shipment of a product is a very common
redl-life problem. The pattern focuses on the basic aspects of the order and its ddlivery, and the
correspondence between an order and its fulfillment.

1. Introduction

We present analysis patterns that describe how a customer places an order for a product, and
the subsequent shipment of the product. We describe first two eementary patterns, Order and
Shipment. We then combine them to form a pattern of the category that we have cdled
Semantic Analyss patterns [Fer00] because they emphasize semantic aspects of the application
model as opposed to improving flexibility. The purpose of this type of pattern isto serve as a
garting point when trandating requirements into a conceptua model. This pattern represents a
minimum application o that it can be gpplied to a variety of Stuations and it can be combined
with other related patterns to describe more complex applications.

The order and shipment of a product is a very common red-life problem. It involves a cusomer
placing an order for certain kind of product or service; for example, food, book, tapes, etc.,
and subsequently taking delivery of the product and paying for it. The Order pattern focuses on
the basic aspects of the order, without detailing the specific type of product or customer. The
Shipment pattern describes delivery of the ordered product. An important point of the
combined pattern is tying together an order and its corresponding fulfillment. Detalls of the
product such as manufacture and avalability are left for the specific application or for
complementary patterns.

Copyright & 2000, Eduardo B. Fernandez and Xiaohong Y uan
Permission is granted to copy for the PLoP 2000 Conference. All other rights reserved.

2. Order pattern

The most basic pattern is the description of the order itsdlf.

Context

Numerous practical Stuations require requesting a product or a service, eg., ordering dinner in
arestaurant, ordering books from an e-commerce company, etc.

Problem
How to describe a request for a product or service

Forces
The request must be captured in a precise way
The gtatus of the request must away's be known.
The order must be corrdated with itsfina result, a shipment or delivery.
Customers want usudly atype of product, not a specific individua product

Solution

The class modd of Figure 1 shows the required information, including classes to describe the
order, the customer who placed the order, and the product. The association between classes
Customer and Order shows that each order is placed by a specific customer, but a customer
may generate many orders. An order conggts of a collection of line items, each of which
describes a particular type of product and the quantity ordered. Figure 2 shows the states of an
order dong time. State changes in the order trigger other events; completion creates a shipment
object, closng the order puts its information in a log. A sequentid diagram describing these
actionsisgivenin Figure 8.

Consequences
This pattern describes only the request for a product, but it can be related to its ddlivery.
Order requests may be for products or services.
The customer may be a person or another system; for example, a Shop Order is created
from each line of a Customer Order for products that need to be manufactured.
While the order must include complete information, only some aspects need to be specified
for the customer and the product.
The requested product is a product type, not an individua product. It can be easly
extended for this case.
Information about a customer and credit checking are performed only the firsg time a
customer places an order.

Known uses and related patterns
See Sections 5 and 6

Quomer Ordr
neme 1 Q* dae
phoe No ade No
ades Haoes | paymat saus
aedt info dhipmat daus
. Oy Prodlct
Lindtem for
. 1 M'(IH_NO
Quantity pnce
desription

Figure1l. Classmode for the Order pattern

[compl eted]/~ shipment.create

. receive/create
[Created In_Process]
process

do: >

add info

check credit \

\ A
Shipped In_Assembly
i . _

close/log PP [finish]

Figure 2. Statechart for class Order

3. Shipment pattern

Context
An order for some product has been fulfilled and the product must be delivered to the customer.
The product to be ddlivered must correspond to the ordered product.

Problem
How to describe the shipment of an ordered product or ddlivery of arequested service.

Forces
The shipment must correspond to some request expressed in some order.
The shipment should describe the products shipped and the amount to be paid (an invoice
document).
Thereis aresponsible customer who will receive the shipment.
The ways in which the product may be delivered or paid are not relevant to the pattern.

Solution

A shipment is going to a cusomer and this should receive an invoice for a payment. This is
shown in the class model of Figure 3, where classes Shipment, Customer, and Invoice describe
these facts.

Statecharts for classes Shipment and Invoice describe the states of these classes dong time
(Figures 4 and 5). When the shipment is completed, an invoice is created, and closing the
shipment or the invoice enters them in a log. Figure 7 shows a sequentid diagram for these
actions.

Consequences
Each shipment can be related to its corresponding order.
Customers may be a person, an inditution, or another system
Deivery and payment details are not included.
The receiver may or may not be the same customer who placed the order.
The Invoice class describes the amount to be paid and corresponds to areal document.
The modd dso applies to services, with class Shipment representing the delivery of the
requested service.

Known uses and related patterns
See Sections 5 and 6.

Shipment

date
shipment_no
shipment_type

Invoice receive_status

payment_status

date

account_no e e e ¥

sales_amount Receives

sales tax 1

freight -

total Customer

payment_type
name
phone_No
address
credit_info

Figure 3. Classmodel for Shipment pattern

create

Created ship/*Invoice.create Shipped close/log

do: > [do:
assemble update status
check order

Figure4. Statechart for class Shipment

create

Created receive_payment paid close/log

do: > | do: > :)
calc_cost update status

Figure5. Statechart for classInvoice

4. Order/Shipment pattern

I ntent
This pattern describes the placement of an order for some product or service and its
corresponding fulfillment.

Context

A specific exampleis shown in Figure 6, where a Customer orders a shipment of pagers from a
pager manufacturer. The classes contained in the modd include Customer, Order, Lineltem,
Shipment, Invoice, and Pager, with their obvious meanings.

The association between Shipment and Order shows that each shipment has a corresponding
order, but an order does not necessarily result in a shipment (e.g. the order could be cancelled).
The objects of the association class between classes Customer and Shipment describe the
invoices created for each shipment.

Thisexample isa particular case of amore generd problem of order and shipment, which

appearsin avariety of contexts, e.g., when ordering some product, when ordering adinner in a
restaurant, when ordering arepair job to be done somewhere.

Forces
The inditution neads to optimize cycle time of order fulfilling (in aquditetive sense).

The inditution needs to track order fulfillment to maintain cusomer satisfaction.

The modd must include representations of red-life documents, eg., Orders, Line Items,
and Invoices.

Equivaent products may be substituted for requested products.

The andyss modd must be a faithful representation of the requirements without including
implementation details. Notice that these requirements may gppear in different domains.

The pattern must describe a fundamental semantic unit. This means the pattern must be
smple enough to gpply to avariety of Stuations.

Solution
a) Requirements
The solution corresponds to the redization of the following generic Use Cases:

Receive an order. The customer’sinformation (name, address, etc.) is recorded and credit
is checked. An Order is created.

Cancel an order. An existing order is cancdled. Some indtitution policies may apply.
Deliver an order. The shipment or service must be checked againg the order. Aninvoiceis
created. The product and its corresponding invoice are ddlivered to the customer.

These Use Cases are generic in that they correspond to a variety of Stuations. In some cases
some of these stleps may be implicit.

b) ClassModel

Figure 7 is a class diagram for the redlization of these Use Cases. This diagram is an abgiraction
and extension of the diagram of Figure 6, where Pager has been replaced by Product. The
“process’ operation in class Order summarizes al the steps necessary to produce the Product,
while operation “assemble’ in class Shipment summarizes the actions needed to collect and put
together the different portions of the order. The diagram aso shows that not al products
ordered may bein the find shipment or that some of these products may be different from those
ordered.

Shipment
shipment no
shipment_type
) receive status Corresponds to
Invoice —
payment_status
date "
a:countfno
sales amount Receives
sales_tax 1 1
freight)
total Customer Order
payment_type
name 1 0*] date
phone No order No
address Places | payment status
credit info shipment status
* Order Pager
Lineltem for
. ° 1| Model_No
quantity price
description

Figure 6. Order and shipment of pagers

¢) Dynamic aspects

We have shown earlier statecharts for classes Order, Shipment, and Invoice. Figure 8 shows a
sequence diagram showing how a customer places an order for a product and the subsequent
shipment of the product. Figure 9 shows an activity diagram for the process of order and
shipment. Notice that the state diagrams just show ‘close’ as event to close an order, without
going into details of what produces the closing, while the sequence and activity diagrams assume
payment as event to close the order. In Figure 8, the order of recelve shipment and
receive_payment may be reversed.

Invoice

date
account_no
sdles_amount
sales_tax
freight

total
payment_type
payment_status

create()
cac_cost()
receive

payment()

Shipment
date 0-1
shipment_no
shipment_type
receive_status Included in
create()
check _order()
receive
hipmeni() Corresponds to
close()
assemble()
ship()
0.* 1 ’
Receives Order Product
1 date product_No
order_No
Customer Places | status
name n *| create()
phone_No cac_cost()
addr_eﬁ_ cancel()
credit_info add info()
11 *
check_credit()
add_customer() process()
update_addr() close()
check _shipment
T Product_Type
x Mode_No
Lineltem Order for price_ -
. o 1 description
quantity
change_price()
change_price()

Figure7. Classdiagram for order and shipment of a product

aCustomer anOrder: aCustomer:| | aShipment: | [aProduct: || anlnvoice:

Order Customer Shipment Product Invoice
recave add_customer : E E
[« process H : i E
create : [II i :
assemble | P ! !
: 1 include ! |
|] credle .\ cac_cost
check_shi pment P
< check_order, _
| receive » shipment | < ship

—

receive_payment !

N e
[

Figure 8. Sequencediagram for ordering and receiving a product

d) Consequences

Thefollovvlng elements are common to dl implementations of this modd:
An “order” is always generated in the “system” based on the customer’s
expressed need. In a modern manufacturing facility or catalog store, the order would
amogt certainly take the form of an entry in a database. Likewise, at a sophigticated fast
food restaurant such as Taco Bell, the order would exist as a virtud entity in the computer
system, having been entered by specid keystrokes at the point-of sde register. For an
online vendor such as Amazon.com, the order (undoubtedly a virtua one) would be
crested automaticaly from the online request of the customer. At many st-down
restaurants, the order would consst of the “check”, handwritten by the server based on
requests from the customer.
An order isalwayslinked to a customer. That is, the customer responsible for the order
must be identifiable. This may be as ample as the “rolling” system at the fast food restaurant
identifying the customer by a serialized number on his printed receipt, the table number on a
restaurant check, or in the form of a more sophisticated system where each order is linked
via a pointer (e.g. “customer number”) to a customer database containing information such
as name, address, telephone, account status, discount digibility, purchase history, etc.

10

Order Shipment Invoice

cregie

(Lproem)

cregte

= (Lt)=o)
C=

ship

recdve |\ A
:

Upon entry of an order, it isassumed that one of the following three possibilities
may occur

a). The product is available in stock and the order is dispatched.

b). The product is not available, and the vendor must either order or manufacture the

product.

C). The order is cancelled before shipment.
Some type of documentation is always generated, with a copy archived and a copy
delivered to the cusomer along with the product. This will take the form of a cash
register receipt, or invoice, or both, usudly depending upon the sequencing of payment and
delivery. It will contain important information such as the date, the product(s) delivered, and
the price paid (or to be paid).
Theordered product could be an individual unit, not a type.
Theordering or receiving cusomers could be another subsystem or system.

Figure 9 Activity diagram for order and shipment

The use of this pattern provides a systemétic way of recording orders and their fulfillment and it
would contribute to optimize the cycle time of order satisfaction. The pattern dso gppliesto
savices, in this case class Shipment represents the delivery of the service.

The class diagram applies to an order for a generic product. It can be adapted to describe

ordering specific individua products by changing the association between Lineltem and
ProductType to Product.

11

Not al the situations described by this pattern are exactly dike:

- The process of obtaining and verifying customer data may vary from lengthy in some cases,
to non-existent in others.
The customer may take delivery of the order directly from the vendor, i.e., the shipping part
of the modd is skipped.
Payment may be required either before or after ddivery, depending on the customer status
and credit worthiness.

For generality, agood number of aspects are not represented in this pattern:
Description of contextua and environmental aspects of the product
Exceptions, eq., bad credit
How to keep track of the availability of products
How to queue up requests when the required products are not available
How to ded with varieties of customers, e.g., individua, corporate, preferred
Order modification
Returning of products
Billing and payment policies
Physcd details of shipping, eg., packaging
History

All these aspects should be completed with additiond patterns or ad hoc models. One can
expand these patterns into a pattern language for orders.

5. Known Uses

The following are examples of uses.
A retaller/service provider of some type of devices, e.g., pagers, orders a quantity of
devicesto beresold at retail.
A customer orders food from a restaurant.
A customer orders a product from an e-commerce company, e.g., Amazon.com.
A customer orders a new roof for her home.

Many variations of thismodd have appeared in the literature:
Hay [Hay96] presents Order and Shipment patterns but he doesn't relate the order to its
shipment and does not consider dynamic aspects, attributes, or operations.
Fowler [Fow00] uses an order as a running example in his UML book. Our activity
diagram is based on his.
Berkem [Ber99] shows more detailed activity diagrams and relates them to Use Cases.
Ambler [Amb97] shows aclassmodel for orders, he does not consider shipments.
Schneider and Winters [Sch98] enumerate a variety of Use Cases that apply to orders.
Richter [Ric99] congders ordersin the context of stock trading.
K. Brown [Bro96], applies design patterns to an order management system. He does not
discuss andys's aspects.

The Open Applications Group has defined interfaces for orders and shipments for
interoperability between different systems [Ope00]

6. Related Patterns

The Reservation and Use pattern [Fer99] complements this pattern, providing the possibility of
reserving a product being manufactured continuoudy. Fulfilling of orders requires components
and affects the contents of inventories, the Stock Manager pattern [FerOOa) is adso
complementary. This combination could be part of a manufacturing framework. As indicated
above, the Type object pattern appears here as a subpattern. The customer may participate in
this process in different ways and the Role object pattern [Bau00] could be used to indicate
this. A detailed treatment of money aspects can be found in [Hay96] and [Fow97]. The
Dependent Demand pattern [Hau97], discusses how orders may trigger other orders in
manufacturing systems. The Order/Shipment pattern is a specid case of a Compodite pattern
[Rie96], and could be studied as such.

Acknowledgements

We thank our shepherd Dirk Riehle and the Writers Workshop at PLoP 2000 for ingghtful
and detailled comments that have sgnificantly improved the quality of this paper.

References

[Amb97] S. Ambler, “Taking alayered approach”, Software Development, July 1997, 68-70.
[BauOO] D. Baumer, D. Riehle, W. Siberski, and M. Wulf, “Role Object”, Chapter 2 in
Pattern Languages of Program Design 4, Addison-Wedey 2000.
http://st-www.cs.uiuc.edu/~plop/plop97/Workshops.html

[Ber99] B. Birkem, “Tracegbility management from business processes to Use Cases with
UML”, JOOP, September 1999, 29-34 and 64.

[Bro9g] K. Brown, “Experiencing patterns a the design level”. Object Magazine, January
1996, 40-48.

[Fer99] E. B. Fernandez and X. Yuan “An andyss pattern for reservation and use of reusable

entities’, Pattern Languages of Programs Conference, PloP99.
http://st-www.cs.uiuc.edu/~plop/plop99

[Fer00] E.B. Fernandez and X. Yuan, “Semantic Andyss paterns’, Procs. of 19" Int.
Conf. on Conceptual Modeling, ER2000, 183-195.

[Fer00a) E.B. Fernandez, “Stock Manager: An andyss pattern for inventories’, Procs. of
PLoP 2000.

[Fow97] M. Fowler, Analysis patterns -- Reusable object models, Addison- Wedley,

1997.

[Fow00] M. Fowler, UML Distilled (2™ Edition), Addison-Wesley, 2000.

[Hau97] R. Haugen, “Dependent Demand—A business pattern for balancing supply and
demand’, Procs. of Pattern Languages of Programs Conf., PloP97,

13

http://st-www.cs.uiuc.edu/~plop/plop97/Workshops.html

[Hay96] D.Hay, Data model patterns-- Conventions of thought, Dorset House Publ.,
1996.

[John98] R. Johnson and B. Woolf, "Type Object”, Chapter 4 in Pattern Languages of
Program Design 3, Addison-Wedey, 1998.

[Ope00] Open Applications Group, Integration Scenarios,
http://mww.opeanapplications.org/oagis

[Ric99] C. Richter, Designing flexible object-oriented systems with UML, Macmillan Tec.
Publ., 1999.

[Rie96] D. Riehle, “Composite design patterns’, Procs. of OOPS_A’' 97, 218-228.

[Sch98] G. Schneider and J.P. Winters, Applying Use Cases—A practical guide, Addison-
Wedey, 1998.

14

