
1

 Analysis Patterns for the Order and Shipment of a Product

Eduardo B. Fernandez, Xiaohong Yuan, and Sandra Brey

Dept. of Computer Science and Engineering,
Florida Atlantic University,

Boca Raton, FL 33431

Abstract

These analysis patterns describe how a customer places an order for a product, and the
subsequent shipment of the product. We describe first two elementary patterns, the Order and
Shipment patterns. We then combine them to form what we have called a semantic analysis
pattern because it emphasizes semantic aspects of the application model as opposed to
improving flexibility. The purpose of this type of pattern is to serve as a starting point when
translating requirements into an actual design. This pattern represents a minimum application so
that it can be applied to a variety of situations and it can be combined with other related patterns
to describe more complex applications. The order and shipment of a product is a very common
real-life problem. The pattern focuses on the basic aspects of the order and its delivery, and the
correspondence between an order and its fulfillment.

1. Introduction

We present analysis patterns that describe how a customer places an order for a product, and
the subsequent shipment of the product. We describe first two elementary patterns, Order and
Shipment. We then combine them to form a pattern of the category that we have called
Semantic Analysis patterns [Fer00] because they emphasize semantic aspects of the application
model as opposed to improving flexibility. The purpose of this type of pattern is to serve as a
starting point when translating requirements into a conceptual model. This pattern represents a
minimum application so that it can be applied to a variety of situations and it can be combined
with other related patterns to describe more complex applications.

The order and shipment of a product is a very common real-life problem. It involves a customer
placing an order for certain kind of product or service; for example, food, book, tapes, etc.,
and subsequently taking delivery of the product and paying for it. The Order pattern focuses on
the basic aspects of the order, without detailing the specific type of product or customer. The
Shipment pattern describes delivery of the ordered product. An important point of the
combined pattern is tying together an order and its corresponding fulfillment. Details of the
product such as manufacture and availability are left for the specific application or for
complementary patterns.

 Copyright  2000, Eduardo B. Fernandez and Xiaohong Yuan
Permission is granted to copy for the PLoP 2000 Conference. All other rights reserved.

2

2. Order pattern

The most basic pattern is the description of the order itself.
Context
Numerous practical situations require requesting a product or a service, e.g., ordering dinner in
a restaurant, ordering books from an e-commerce company, etc.

Problem
How to describe a request for a product or service

Forces
• The request must be captured in a precise way
• The status of the request must always be known.
• The order must be correlated with its final result, a shipment or delivery.
• Customers want usually a type of product, not a specific individual product

Solution
The class model of Figure 1 shows the required information, including classes to describe the
order, the customer who placed the order, and the product. The association between classes
Customer and Order shows that each order is placed by a specific customer, but a customer
may generate many orders. An order consists of a collection of line items, each of which
describes a particular type of product and the quantity ordered. Figure 2 shows the states of an
order along time. State changes in the order trigger other events; completion creates a shipment
object, closing the order puts its information in a log. A sequential diagram describing these
actions is given in Figure 8.

Consequences
• This pattern describes only the request for a product, but it can be related to its delivery.
• Order requests may be for products or services.
• The customer may be a person or another system; for example, a Shop Order is created

from each line of a Customer Order for products that need to be manufactured.
• While the order must include complete information, only some aspects need to be specified

for the customer and the product.
• The requested product is a product type, not an individual product. It can be easily

extended for this case.
• Information about a customer and credit checking are performed only the first time a

customer places an order.

Known uses and related patterns
See Sections 5 and 6

3

 Figure 1. Class model for the Order pattern

 Figure 2. Statechart for class Order

_

_

Customer

name
phone_No
address
credit_info

Order

date
order_No
payment_status
shipment_status

LineItem

quantity

Product

Model_No
price
description

*

1 0..*

Places

* 1

Order
for

Created

do:
add_info
check_credit

In_Process
process

close/log
In_Assembly

[completed]/^shipment.create

receive/create

cancel

Shipped
[finish]

4

3. Shipment pattern

Context
An order for some product has been fulfilled and the product must be delivered to the customer.
The product to be delivered must correspond to the ordered product.

Problem
How to describe the shipment of an ordered product or delivery of a requested service.

Forces
• The shipment must correspond to some request expressed in some order.
• The shipment should describe the products shipped and the amount to be paid (an invoice

document).
• There is a responsible customer who will receive the shipment.
• The ways in which the product may be delivered or paid are not relevant to the pattern.

Solution
A shipment is going to a customer and this should receive an invoice for a payment. This is
shown in the class model of Figure 3, where classes Shipment, Customer, and Invoice describe
these facts.

Statecharts for classes Shipment and Invoice describe the states of these classes along time
(Figures 4 and 5). When the shipment is completed, an invoice is created, and closing the
shipment or the invoice enters them in a log. Figure 7 shows a sequential diagram for these
actions.

Consequences
• Each shipment can be related to its corresponding order.
• Customers may be a person, an institution, or another system
• Delivery and payment details are not included.
• The receiver may or may not be the same customer who placed the order.
• The Invoice class describes the amount to be paid and corresponds to a real document.
• The model also applies to services, with class Shipment representing the delivery of the

requested service.

Known uses and related patterns
See Sections 5 and 6.

5

 Figure 3. Class model for Shipment pattern

Figure 4. Statechart for class Shipment

Created

do:
assemble
check_order

Shipped

do:
update status

ship/̂ Invoice.create close/log

create

Invoice

date
accoun t_ no
sales_amount
sales_tax
freight
total
payment_ type

Shipment

date
shipment_n o
shipment_type
receive_ status
payment_ s ta tus

Cus tomer

n a m e
phone_ N o
address
credit_ info

*

1
Rece ives

6

Figure 5. Statechart for class Invoice

4. Order/Shipment pattern

Intent
This pattern describes the placement of an order for some product or service and its
corresponding fulfillment.

Context
A specific example is shown in Figure 6, where a Customer orders a shipment of pagers from a
pager manufacturer. The classes contained in the model include Customer, Order, LineItem,
Shipment, Invoice, and Pager, with their obvious meanings.

The association between Shipment and Order shows that each shipment has a corresponding
order, but an order does not necessarily result in a shipment (e.g. the order could be cancelled).
The objects of the association class between classes Customer and Shipment describe the
invoices created for each shipment.

This example is a particular case of a more general problem of order and shipment, which
appears in a variety of contexts, e.g., when ordering some product, when ordering a dinner in a
restaurant, when ordering a repair job to be done somewhere.

Forces
• The institution needs to optimize cycle time of order fulfilling (in a qualitative sense).

• The institution needs to track order fulfillment to maintain customer satisfaction.

• The model must include representations of real-life documents, e.g., Orders, Line Items,
and Invoices.

• Equivalent products may be substituted for requested products.

Created

do:
calc_cost

paid

do:
update status

receive_payment close/log

create

7

• The analysis model must be a faithful representation of the requirements without including
implementation details. Notice that these requirements may appear in different domains.

• The pattern must describe a fundamental semantic unit. This means the pattern must be
simple enough to apply to a variety of situations.

Solution
a) Requirements
The solution corresponds to the realization of the following generic Use Cases:

• Receive an order. The customer’s information (name, address, etc.) is recorded and credit
is checked. An Order is created.

• Cancel an order. An existing order is cancelled. Some institution policies may apply.
• Deliver an order. The shipment or service must be checked against the order. An invoice is

created. The product and its corresponding invoice are delivered to the customer.

These Use Cases are generic in that they correspond to a variety of situations. In some cases
some of these steps may be implicit.

b) Class Model
Figure 7 is a class diagram for the realization of these Use Cases. This diagram is an abstraction
and extension of the diagram of Figure 6, where Pager has been replaced by Product. The
“process” operation in class Order summarizes all the steps necessary to produce the Product,
while operation “assemble” in class Shipment summarizes the actions needed to collect and put
together the different portions of the order. The diagram also shows that not all products
ordered may be in the final shipment or that some of these products may be different from those
ordered.

8

Figure 6. Order and shipment of pagers

c) Dynamic aspects
We have shown earlier statecharts for classes Order, Shipment, and Invoice. Figure 8 shows a
sequence diagram showing how a customer places an order for a product and the subsequent
shipment of the product. Figure 9 shows an activity diagram for the process of order and
shipment. Notice that the state diagrams just show ‘close’ as event to close an order, without
going into details of what produces the closing, while the sequence and activity diagrams assume
payment as event to close the order. In Figure 8, the order of receive_shipment and
receive_payment may be reversed.

Invoice

date
account_no
sales_amount
sales_tax
freight
total
payment_type

Shipment

date
shipment_no
shipment_type
receive_status
payment_status

Customer

name
phone_No
address
credit_info

*

1
Receives

Order

date
order_No
payment_status
shipment_status

LineItem

quantity

Pager

Model_No
price
description

*

1 0..*

Places

* 1

Order
for

1

0..1

Corresponds to

9

Figure 7. Class diagram for order and shipment of a product

Invoice

date
account_no
sales_amount
sales_tax
freight
total
payment_type
payment_status

Shipment

date
shipment_no
shipment_type
receive_status

Customer

name
phone_No
address
credit_info

0..*

1

Receives Order

date
order_No
status

LineItem

quantity

Product_Type

Model_No
price
description

1 0..*

Places

0..* 1

Order for

1

0..1

create()
calc_cost()
receive_
payment()

create()
check_order()
receive_
shipment()
close()
assemble()
ship()

add_customer()
update_addr()

create()
calc_cost()
cancel()
add_info()
check_credit()
process()
close()
check_shipment

change_price()
change_price()

*

Corresponds to

Product

product_No

*

0..1

*

Included in

10

Figure 8. Sequence diagram for ordering and receiving a product

d) Consequences
The following elements are common to all implementations of this model:
• An “order” is always generated in the “system” based on the customer’s

expressed need. In a modern manufacturing facility or catalog store, the order would
almost certainly take the form of an entry in a database. Likewise, at a sophisticated fast
food restaurant such as Taco Bell, the order would exist as a virtual entity in the computer
system, having been entered by special keystrokes at the point-of sale register. For an
online vendor such as Amazon.com, the order (undoubtedly a virtual one) would be
created automatically from the online request of the customer. At many sit-down
restaurants, the order would consist of the “check”, handwritten by the server based on
requests from the customer.

• An order is always linked to a customer. That is, the customer responsible for the order
must be identifiable. This may be as simple as the “rolling” system at the fast food restaurant
identifying the customer by a serialized number on his printed receipt, the table number on a
restaurant check, or in the form of a more sophisticated system where each order is linked
via a pointer (e.g. “customer number”) to a customer database containing information such
as name, address, telephone, account status, discount eligibility, purchase history, etc.

aCustomer anOrder:
Order

aShipment:
Shipment

create calc_cost

process

receive

assemble

receive_payment

create

add_customer

aCustomer:
Customer

anInvoice:
Invoice

shipreceive_shipment

aProduct:
Product

include

check_order
check_shipment

11

Figure 9 Activity diagram for order and shipment

• Upon entry of an order, it is assumed that one of the following three possibilities
may occur:

 a). The product is available in stock and the order is dispatched.
b). The product is not available, and the vendor must either order or manufacture the
product.
c). The order is cancelled before shipment.

• Some type of documentation is always generated, with a copy archived and a copy
delivered to the customer along with the product. This will take the form of a cash
register receipt, or invoice, or both, usually depending upon the sequencing of payment and
delivery. It will contain important information such as the date, the product(s) delivered, and
the price paid (or to be paid).

• The ordered product could be an individual unit, not a type.
• The ordering or receiving customers could be another subsystem or system.

The use of this pattern provides a systematic way of recording orders and their fulfillment and it
would contribute to optimize the cycle time of order satisfaction. The pattern also applies to
services; in this case class Shipment represents the delivery of the service.

The class diagram applies to an order for a generic product. It can be adapted to describe
ordering specific individual products by changing the association between LineItem and
ProductType to Product.

Order Shipment Invoice

create

process

assemble

create

prepare

send
ship

cancel

receive
payment

12

Not all the situations described by this pattern are exactly alike:
• The process of obtaining and verifying customer data may vary from lengthy in some cases,

to non-existent in others.
• The customer may take delivery of the order directly from the vendor, i.e., the shipping part

of the model is skipped.
• Payment may be required either before or after delivery, depending on the customer status

and credit worthiness.

For generality, a good number of aspects are not represented in this pattern:
• Description of contextual and environmental aspects of the product
• Exceptions, e.g., bad credit
• How to keep track of the availability of products
• How to queue up requests when the required products are not available
• How to deal with varieties of customers, e.g., individual, corporate, preferred
• Order modification
• Returning of products
• Billing and payment policies.
• Physical details of shipping, e.g., packaging
• History

All these aspects should be completed with additional patterns or ad hoc models. One can
expand these patterns into a pattern language for orders.

5. Known Uses

The following are examples of uses:
• A retailer/service provider of some type of devices, e.g., pagers, orders a quantity of

devices to be resold at retail.
• A customer orders food from a restaurant.
• A customer orders a product from an e-commerce company, e.g., Amazon.com.
• A customer orders a new roof for her home.

Many variations of this model have appeared in the literature:
• Hay [Hay96] presents Order and Shipment patterns but he doesn’t relate the order to its

shipment and does not consider dynamic aspects, attributes, or operations.
• Fowler [Fow00] uses an order as a running example in his UML book. Our activity

diagram is based on his.
• Berkem [Ber99] shows more detailed activity diagrams and relates them to Use Cases.
• Ambler [Amb97] shows a class model for orders, he does not consider shipments.
• Schneider and Winters [Sch98] enumerate a variety of Use Cases that apply to orders.
• Richter [Ric99] considers orders in the context of stock trading.
• K. Brown [Bro96], applies design patterns to an order management system. He does not

discuss analysis aspects.

13

• The Open Applications Group has defined interfaces for orders and shipments for
interoperability between different systems [Ope00]

6. Related Patterns

The Reservation and Use pattern [Fer99] complements this pattern, providing the possibility of
reserving a product being manufactured continuously. Fulfilling of orders requires components
and affects the contents of inventories, the Stock Manager pattern [Fer00a] is also
complementary. This combination could be part of a manufacturing framework. As indicated
above, the Type object pattern appears here as a subpattern. The customer may participate in
this process in different ways and the Role object pattern [Bau00] could be used to indicate
this. A detailed treatment of money aspects can be found in [Hay96] and [Fow97]. The
Dependent Demand pattern [Hau97], discusses how orders may trigger other orders in
manufacturing systems. The Order/Shipment pattern is a special case of a Composite pattern
[Rie96], and could be studied as such.

Acknowledgements

We thank our shepherd Dirk Riehle and the Writers’ Workshop at PLoP 2000 for insightful
and detailed comments that have significantly improved the quality of this paper.

References

[Amb97] S. Ambler, “Taking a layered approach”, Software Development, July 1997, 68-70.
[Bau00] D. Baumer, D. Riehle, W. Siberski, and M. Wulf, “Role Object”, Chapter 2 in
Pattern Languages of Program Design 4, Addison-Wesley 2000.
http://st-www.cs.uiuc.edu/~plop/plop97/Workshops.html
[Ber99] B. Birkem, “Traceability management from business processes to Use Cases with
UML”, JOOP, September 1999, 29-34 and 64.
[Bro96] K. Brown, “Experiencing patterns at the design level”. Object Magazine, January
1996, 40-48.
[Fer99] E. B. Fernandez and X. Yuan. “An analysis pattern for reservation and use of reusable
entities”, Pattern Languages of Programs Conference, PloP99.
http://st-www.cs.uiuc.edu/~plop/plop99
[Fer00] E.B. Fernandez and X. Yuan, “Semantic Analysis patterns”, Procs. of 19th Int.
Conf. on Conceptual Modeling, ER2000, 183-195.
[Fer00a] E.B. Fernandez, “Stock Manager: An analysis pattern for inventories”, Procs. of
PLoP 2000.
[Fow97] M. Fowler, Analysis patterns -- Reusable object models, Addison- Wesley,
1997.
[Fow00] M. Fowler, UML Distilled (2nd Edition), Addison-Wesley, 2000.
[Hau97] R. Haugen, “Dependent Demand—A business pattern for balancing supply and
demand”, Procs. of Pattern Languages of Programs Conf., PloP97,

14

http://st-www.cs.uiuc.edu/~plop/plop97/Workshops.html
[Hay96] D.Hay, Data model patterns-- Conventions of thought, Dorset House Publ.,
1996.
[John98] R. Johnson and B. Woolf, "Type Object", Chapter 4 in Pattern Languages of
Program Design 3, Addison-Wesley, 1998.
[Ope00] Open Applications Group, Integration Scenarios,
http://www.opeanapplications.org/oagis
[Ric99] C. Richter, Designing flexible object-oriented systems with UML, Macmillan Tec.
Publ., 1999.
[Rie96] D. Riehle, “Composite design patterns”, Procs. of OOPSLA’97, 218-228.
[Sch98] G. Schneider and J.P. Winters, Applying Use Cases—A practical guide, Addison-
Wesley, 1998.

