
Copyright © 2000, Lucent Technologies. All Rights Reserved.
 1 11/16/00

Real Time and Resource Overload Language
Robert S. Hanmer

Lucent Technologies
2000 North Naperville Road

P. O. Box 3033
Naperville, IL 60566-7033

voice: +1 630 979 4786
hanmer@lucent.com

Abstract

This pattern language merges the Traffic Congestion pattern language from PLoP-99 with the
patterns in Gerard Meszaros' “Pattern Language for Improving the Capacity of Reactive Systems”
presented in Pattern Languages of Program Design-2 as well as those in the collection of 4ESS Switch
project from Lucent Technologies.

A system that reacts to externally provided stimuli might receive more stimuli than it can handle at
any given time. When this "overload" situation occurs the system must be able to deal with it somehow.
Many systems respond by ceasing all work, i.e. locking up or crashing. A well-designed system is able to
handle the overload and respond gracefully to the excess stimuli. This system might have somewhat
reduced capabilities during the transition, but it will correctly handle much of the work presented to it, and
when stimuli levels return to normal, it can resume full functionality with minimal involvement.

These patterns assume that the basics of a fault tolerant architecture exist. For example, the
“Fault-Tolerant Telecommunication System Patterns”, also in Pattern Languages of Program Design-2 has
guided system design so that it will automatically respond to anomalous events.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 2 11/16/00

Language Map

The diagram below shows patterns that enhance the solutions of other patterns, resolve previously
unresolved forces in a pattern, or take advantage of an earlier pattern to provide some new system
capability. For example, FINISH WORK IN PROGRESS (13) refines the pattern OVERLOAD EMPIRES (1),
helping to solve unresolved forces or new problems that OVERLOAD EMPIRES (1) introduced.

Language Context

The patterns within this language are intended to gracefully handle excess stimuli that results in a
workload that exceeds the amount of available resources. The resource might be processor CPU time, or
they might be a tangible resource such as memory or a tone detector. By gracefully handling whatever
traffic arrives at the system, the Quality of Service standards can best be achieved.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 3 11/16/00

When a system is intended to handle errors autonomously, it must first decide if a given system
state is due to the manifestation of a fault1, or an excess of stimuli. This requires that the System Integrity
Control (SICO FIRST AND ALWAYS [ACGH+]2) evaluate to determine global system status. If the Integrity
Controller decides that it is indeed a fault situation, fault-handling patterns are to be applied, such as those
in the Fault-Tolerant Telecommunications Patterns [ACGH+]. If an overload is present, responses can be
grouped into two broad categories: processor and resource. There will be times when both a real-time and
resource overload will occur simultaneously. Many techniques apply to only one of these categories, so a
mechanism is needed to resolve the question as too which OVERLOAD EMPIRE (1) is overloaded.

To handle a real-time overload situation the system should attempt to FINISH WORK IN PROGRESS

(13) to prevent the time spent switching between tasks to exceed the amount of time spent processing tasks.
When events arrive that require tangible resources they can be QUEUED FOR THE RESOURCE (6). Recent
requests for service should take precedence over those that have been in the queue longer, i.e. do the FRESH

WORK BEFORE STALE (14). This is especially important to deal with consumer behaviour.

If the system has idle resources reserved for fault handling, such as spare processors; or if the
system has adjunct processors that can help with certain tasks a real-time overload can be handled by
SHARING THE LOAD (18) among processors. System architecture sometimes precludes this however. In
these cases the system must be designed to SHED LOAD (17) that cannot be handled.

In fault tolerant systems, the system generally has many maintenance tasks executing
simultaneously. If the system is performing well yet is overloaded, these tasks can be deferred. In other
words, IF IT IS WORKING HARD, DON'T FIX IT (4). Resources must be ALLOCATED EQUITABLY (8). One
way of doing this is to use pre-determined allowable PRIORITY MASKS (5) to select which runnable task
should be executed.

Work should be shed as close to the edges of the system as possible (WORK SHED AT THE

PERIPHERY (20)). The work to bring events into the processors' core, are wasted if the work is to be
canceled. When requests for service are canceled, some indicator should be sent to other parties involved
through a FINAL HANDLING (12) report.

OVERLOAD ELASTICS (7) can be used to decide the extent of a processor CPU time overload. The
system architects must decide what the system should do when attempts to shed work are unsuccessful.
One approach to deal with this is found in the pattern OVERLOAD OUT-OF-CONTROL (3): if all other
attempts to reduce the level of stimuli are unsuccessful cease processing all new stimuli until the situation
improves and real-time becomes available. This might be difficult for some system architects to allow.

Requests for tangible resources should be handled in an EQUITABLE MANNER (8) Requests for
these resources are controlled through either protective or expansive AUTOMATIC CONTROLS (9).
Expansive controls allow the use of resources that are not normally available for use, such as AUTOMATIC

OUT-OF-CHAIN ROUTING (10). Protective controls restrict access to protect the system. Examples of these
are SELECTIVE TRUNK RESERVATION (16) and SELECTIVE DYNAMIC OVERLOAD CONTROL (15). Whenever
the system cancels and ignores a stimuli FINAL HANDLING (12) should be performed on the stimuli to report
status and to aid in diagnosing problems.

1 A fault is a deviation from correctness. When a fault is encountered in program execution an

error occurs which is incorrect result. The effect on the system’s user is a failure.
2 All the patterns here will be followed by either an internal reference number contained within

parenthesis, or a reference to a published paper. Internal reference number one through eight refer to
patterns contained within this paper. Internal references greater than eight refer to patterns that are part of
this language but are not presented in their entirety here. They are thumbnailed at the end.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 4 11/16/00

1. OVERLOAD EMPIRES

… The situation within the system has been analyzed and the decision has been made that it is not
an error caused by faulty hardware or software. Overload situations occur when the system loses the
resources necessary to handle its workload efficiently. This might be due to internal problems, such as
memory leaks or excessive maintenance work requests which are really faults within the system and should
be handled through the fault recovery system (SICO FIRST AND ALWAYS). When external systems send
too many requests for service too quickly the system must handle as many as possible and then degrade as
smoothly and as little as possible.

vv vv vv

How should situations of overload be handled?

The resource exhaustion philosophy comes from the days of trunks that needed to have MF3 trunk
receivers quickly connected to the trunk between seizure and digit reception. If MF receivers were in scarce
supply, there wouldn't be time to recovery gracefully from the seizure. If we start running out of MF
receivers, we tell the far end to reduce what they're sending us, so we can keep up with the traffic. Then, the
other system can re-route the traffic. This is a suggestion, not an absolute block: even for switches in
overload, another switch may select them as the next link in the routing chain, as the lesser of several evils.

Too many requests for service can be taxing on a system in a number of ways:

• Memory: more memory might be required to store the requests for than the system has
available.

• Peripheral equipment: the requests might require the use of tangible peripheral resources that
are already in use.

• Processor CPU time: processing the requests might take more time than the system has.

There are a variety of techniques designed to address these resource overloads. Some, such as
queuing for memory resources work for some types of requests, but not for others. Some techniques will
work for all three. Trying to manage one type of overload with a mechanism designed for another might
have devastating results.

Therefore:

3 "MF" or "Multi-Frequency” refers to trunks that use a combination of tones over the actual

talking path to exchange call related signals between switching offices. This is a different combination of
tones than TouchTone, which is "Dual Tone Multi-Frequency" or "DTMF".

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 5 11/16/00

Administer multiple overload empires, one for managed resources like trunks, lines and
peripheral equipment, another for memory, and yet another for processor CPU time. Avoid
grouping all of the possibilities together, as they will only rarely work well for overloads in other
empires.

Memory
Overload

Tools

Processor
Overload

Tools

Resource
Overload

Tools

v v v

An effective technique to deal with overloads of the tangible variety is to QUEUE FOR RESOURCES

(6). EQUITABLE RESOURCE ALLOCATION (8) discusses a way to divide up the tangible resources such as
memory and peripheral equipment.

A technique similar to QUEUING FOR RESOURCES (8) that works for the intangible of CPU cycles
is to take on FRESH WORK BEFORE STALE (14). Enabling the system to SHARE LOAD (17) or to SHED LOAD

(18) also help with CPU time.

To know whether we are in processor or resource overload there has to be some way of measuring
the overload. OVERLOAD ELASTICS (7) discusses metrics that should be used to evaluate overloads.

Consumer/customer behaviour must be considered in deciding how to deal with an excess amount
of work. FRESH WORK BEFORE STALE (14) and FINISH WORK IN PROGRESS (13) both discuss a way of
dealing with too much work while considering this behaviour.

In a network of peers, strategies can be designed to allow one peer to NOTIFY (2) its neighbors that
it is in overload and seek assistance in handling the traffic or in reducing the load from its peers. …

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 6 11/16/00

2. DISASTER NOTIFICATION

… The system is in trouble. It might be the result of an excess of requests for service from external
sources, or it might be handling errors. In either case the system is dealing with an excessive demand for
some kind of resources: CPU time, tangible resources or memory.

v v v

Overloads happen when too many requests for service arrive too fast. What can a single
system do to slow down the influx of requests?

Within a network of systems what happens in one will influence what happens in the others.
"Regenerative switching delays, if left uncontrolled, can quickly spread throughout the network, causing
the type of decline in carried load shown in [the next figure]." [GHHJ, p. 1170]

You can resolve much of the internal inefficiency through rigorous testing and good design
practices and algorithms. These are things done before the system is placed into service.

External stimuli causes system overloads during execution. By definition, nothing internal can be
done when the communicating systems are sending too much traffic to an overloaded system, since the
stimuli are "external". But the communicating systems can help if they are informed that they are sending
too much information.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 7 11/16/00

Therefore:

Call for help! Institute a method of communication between systems to help throttle the
workload at systems in overload. If a system receives such a signal, it should assist by reducing the
amount of work being sent to the troubled system.

Help!

Slow down!

Not so fast!

v v v

DYNAMIC OVERLOAD CONTROL (11) and SELECTIVE DYNAMIC OVERLOAD CONTROL (15) are
examples of such mechanisms for different types of overload responses.

STRING A WIRE (19) from the Telecommunications Input Output Language [HS] describes how
these signals can be sent. By using a fixed, permanent connection few of the overloaded system resources
will be used to send the signal. …

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 8 11/16/00

3. REASSESS OVERLOAD DECISION
4

… The system is attempting to FINISH WORK IN PROGRESS (13) as well as to SHED LOAD (18).

v v v

What should the system do when the usual load reduction techniques are not working to
diminish the workload?

What happens if load keeps increasing in spite of all attempts to slow the system down?

H
E

L
P

M
E

!

The system is well engineered so that work shedding keeps the system from going into deep
saturation. The mechanisms instituted to SHED LOAD (18) are working, yet the influx of new requests or
the compounding of internal inefficiencies are not producing the desired reduction in workload. These
mechanisms create a negative feedback loop that should keep load from getting out of hand.

Something's wrong if we haven't had any new requests for service in a long time. The system is
designed to perform some work, such as to process telephone calls. If that is skipped for too long a period
of time, it doesn't make any money for its owner.

A major goal of the overload handling mechanisms is to preserve system sanity5 so that when the
overload period is ended the system can handle the routine level of traffic.

4 Strategy alluded to in [GHHJ, p. 1177]
5 Sanity as it is used here refers to the system executing as designed with a clear task or set of

tasks in control of the Program Counter in some manner intended by the system's developers.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 9 11/16/00

If feedback isn't enough to bring the system out of saturation, then the overload may be coming
from a source other than traffic.

For example, when there's congestion (like MF trunks) overload will make a note that this facility
type is congested, and doesn't do anything. It checks again some time later: if the congestion is still there, it
applies an overload control or might trigger fault handling.

Therefore:

Provide the ability for the system to reexamine its decision that this is an overload instead of
an error. This might mean that the system decides that it is not an overload but really an error.

Desired effects?

ControlEvaluate

v v v

Unless reexamination is possible the system can get further and further into trouble by following
the wrong path. This is related to SICO FIRST AND ALWAYS [ACGH+] and could use the same Integrity
Controller to make the decisions.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 10 11/16/00

4. IF IT IS WORKING HARD, DON'T FIX IT
6

… More work is arriving than the system can handle. The system is SHEDDING LOAD (18) and
thus passing up revenue opportunities because it must be able to actually complete some work in order to
realize the revenue.

v v v

What work should be shed?

There aren't enough CPU resources both to handle the capacity and to continue the overhead work.
This overhead includes the auditing and maintenance functions that keep the system fault tolerant. It might
be skipping some of its main application work already due to congestion. The choice is to reduce even
more the revenue producing work or to restrict some of the activities that guarantee the system's fault
tolerance.

The system has very stringent availability requirements, which is why a system of audits,
defensive checks and integrity monitors in place. These parts of the system ensure that the system is
working at its peak efficiency and detect errors to contain and correct them.

But if we're in traffic induced overload, the trunks must be working and software must be
working, since we're doing work--so let's defer the stuff that comes to play when we're not working
properly. These deferrable items do work that isn't critical to the primary application. If it works, don't
check if it works--release the time so that we can concentrate on the primary money making aspects of
operation.

Therefore:

Defer maintenance work. Use the system's task scheduler to implement this strategy. If the
system is tending toward overload, chances are that the trunks and software are working--otherwise,
where would all that work be coming from?

6 Strategy alluded to in [GHHJ, p. 1177]

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 11 11/16/00

100%

Idle Busy Congested

System Status

v v v

There's an outside chance that the system just seems like it's in overload, though it may be really
reacting to errors. In that case, employ REASSESS OVERLOAD DECISION (3). REASSESS OVERLOAD

DECISION (3) also addresses when this strategy is not working sufficiently and the system isn't recovering
from the overload. MASK PRIORITIES TO SHED WORK (5) discusses one way that this pattern can be
implemented.

Everything that the system does is important to someone. But not everything is directly related to
the primary purpose of the system. Tasks should not deferred forever. MASK PRIORITIES TO SHED WORK

(5) provides an equitable way to do this. …

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 12 11/16/00

5. MASK PRIORITIES TO SHED WORK

… You want to SHED LOAD (18) and in particular you are implementing IF IT IS WORKING HARD

DON'T FIX IT (4).

v v v

How do you spread out the workload under overload without skewing priorities?

There are many ways to select certain tasks to defer temporarily. Some involve development time
decisions of what is more important. Some involve execution time decisions, as in IF IT IS WORKING HARD

DON'T FIX IT (4). The best way is something that is fair.

All the work that the system performs is important; nothing should be totally eliminated during
overload. Requirements upon execution frequency may be stretched, but eventually all tasks need to be
scheduled.

If we were to alternate tasks that normally are all executed, and execute one half this time and the
other half on the next, every task would be executed eventually. The time period between successive task
executions would be increased, but during periods of overload everything is running more slowly, so this is
acceptable. The time between subsequent iterations with this alternation might be less than if nothing was
done.

One way of implementing this is through the use of bit masks. Every task should have its
allowable bit set in at least one of the masks. Tasks that are runnable and allowable will be executed.
Some tasks that are "more" important might have bits set in several masks so that they get entered more
frequently.

10110011

01011011

10100110

Ready Tasks:

Run now:

Run next time:

Sometimes there are interactions between multiple tasks that will dictate that certain of them must
be executed together (or without certain others intervening).

Therefore:

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 13 11/16/00

Use bit masks to overlay the runnable task words. Every scheduling loop, overload toggles
between several of these "allowable" masks. By alternating allowable masks, and making sure that
every task appears in the masks, every task will eventually get scheduled.

v v v

When several tasks interact strongly and the mask mechanism might not guarantee correctness the
general scheduler and its mask might not be the appropriate scheduling technique.

Good engineering judgement is required to determine how tasks should be sorted onto the
different masks.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 14 11/16/00

6. QUEUE FOR RESOURCES
7

… The system is overloaded, and not in the midst of failure processing. Too many requests for
tangible services such as memory or peripheral equipment (such as MF receivers) are being received.
(OVERLOAD EMPIRES (1)).

v v v

What should be done with requests for tangible resources that cannot be handled at the
moment?

The system is receiving too many stimuli for the moment, but in general can handle the excess
requests for service.

You could throw up your hands and reject all requests that can't be handled as they appear. This
supports the pattern FRESH WORK BEFORE STALE (14). But it results in work that if deferred for only a
short period might be handled.

If you can store the work in a queue for later processing then the work might complete eventually.
The risks of this are that the queue might get longer than can be effectively managed. There is also the risk
that the work won't need to be done when the task is finally ready.

Therefore:

Store requests for service that cannot be handled immediately in a queue. Give the queue a
finite length to improve the likelihood that the request is still necessary when it reaches the head of
the line.

7 Reference: [WWF]

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 15 11/16/00

v v v

The queue should use a LIFO strategy (as in FRESH WORK BEFORE STALE (4)) to govern insertion
and removal from the queue. This will help people think that they are receiving good service. Allocation of
resources under the guidance of EQUITABLE ALLOCATION (8) should recognize both the requests that have
been queued and those that are fresh and have never been queued. …

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 16 11/16/00

7. OVERLOAD ELASTICS
8

… The problem appears to be one of processor CPU time overload (OVERLOAD EMPIRES (1)).
This is an overload of an intangible resource.

v v v

How should we judge the severity of the too many requests for resources?

Artificial indicators can be created to measure the severity of the overload. This introduces
additional overhead that will be most needed just when the system has the least resources available.

Or already existing indicators can be used. Some indicator such as per cent CPU idle time can be
used. This does not increase overhead, since the computation already done.

The CPU idle time is a metric that system designers include as a measure of workload and its
variability.

In some scheduling regimes, such as round robin, there is no idle time by definition. Such is the
case in many real time systems. Generally in these cases some sort of existing measurement, similar to idle
time, is used to allow the system owners to gauge its performance. In these systems the length of time
spent traversing the loop appears quite elastic.

Therefore:

Use an indicator already tied to the resource as an indicator of the system's sanity and
overload condition.

Scheduling loop
traversal times

v v v

It is important to periodically REASSESS THE OVERLOAD DECISION (3) by checking the overload
indicators.

8 Strategy alluded to in [CCRSS, P. 1116]

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 17 11/16/00

8. EQUITABLE RESOURCE ALLOCATION

… You are trying to handle FRESH WORK BEFORE STALE (14) and yet you have many requests
QUEUED FOR RESOURCES (6). There are distinct types of resources that need to be allocated to requests.
The system is prepared and capable of instituting AUTOMATIC CONTROLS (9).

v v v

How should requests for scarce resources be handled?

You could strictly follow FRESH WORK BEFORE STALE (14) and only give the newest request
service, even if they are from predominantly one type/class/area. Customers might be paying for a
premium service however and will not appreciate being lumped into the resource allocation pool with the
bargain-rate customers.

There might be a specific resource that is especially overloaded. If requests are allocated based
only upon their newness, i.e. position in the queue, then they might end up blocking on this resource
anyway.

Another strategy would be to look at all the requests for service, both fresh and queued and
allocate resources equitably to all of them. While this requires additional bookkeeping be done, work can
be directed around extremely specific resource overloads. This helps ensure the greatest common good by
providing service to as many requests as possible.

Therefore:

Pool all similar requests and allocate resources to the pools based upon their availability and
priority. This allows all types of work to be accomplished even if concentrated overloads from a
certain category of type/class/area exist.

v v v

FINAL HANDLING (12) is required for those requests for service that are abnormally terminated.

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 18 11/16/00

When inter-office trunks are the resources being allocated, there are several patterns that can help.
When the incoming traffic is within groups that have few idle members, SELECTIVE TRUNK RESERVATION

(16) can be helpful. SELECTIVE DYNAMIC OVERLOAD CONTROL (SELECTIVE DOC) (15) is useful to restrict
traffic of certain types through DISASTER NOTIFICATION (2) of congestion so that they will restrict traffic
flow. If the flow of traffic is extremely mismatched then the expansive control of AUTOMATIC OUT-OF-
CHAIN ROUTING (10) can help. …

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 19 11/16/00

Previously Published Patterns
Internal

Reference
Number

Pattern Source Intent

9 AUTOMATIC CONTROLS [HW] When conditions dictate, the switch should
automatically institute changes to normal
behaviour to respond to conditions.

10 AUTOMATIC OUT-OF-CHAIN

ROUTING

[HW] During overloaded periods, allow new routes
within a hierarchical network.

11 DYNAMIC OVERLOAD

CONTROL

[HW] Provide mechanism to tell far-ends to slow down.

12 FINAL HANDLING [HW] Gracefully tear down a call that cannot complete.

13 FINISH WORK IN PROGRESS [MESZ] Give priority to work that continues already in
progress work.

14 FRESH WORK BEFORE

STALE

[MESZ] Give better service to recent requests.

15 SELECTIVE DYNAMIC

OVERLOAD CONTROL

[HW] Measure the length of the infinite loop to decide
on Overloads.

16 SELECTIVE TRUNK

RESERVATION

[HW] Deny incoming traffic on TSGs (trunk subgroups)
that have few idle trunks during periods of
congestion.

17 SHARE THE LOAD [MESZ] Move some processing to another processor.

18 SHED LOAD [MESZ] Throw away some requests for service to offer
better service to other requests.

19 STRING A WIRE [HS] Provide a system-to-system emergency
information channel.

20 WORK SHED AT PERIPHERY [MESZ] Shed work at minimal cost where it first enters the
system.

Acknowledgments

Mike Adams was a co-author on previous versions of DYNAMIC OVERLOAD CONTROL, EQUITABLE

ALLOCATION, EVALUATE OVERLOAD GLOBALLY, OVERLOAD EMPIRES, IF IT'S WORKING HARD, DON'T FIX IT

and DISASTER NOTIFICATION.

Ward Cunningham was PLoP 200 shepherd for this language.

Karen Hanmer graciously scanned several images to accompany these patterns.

The photo with Mask Priorities to Shed Work is Italian Dyptic 5 copyright 1997 Steve Harp, used
with permission of the artist.

Thanks to my PloP2K Writers’ Workshop group for their valuable comments. Bill Opdyke, Carlos
O’Ryan, Brian Foote, Rossana Andrade, Todd Coram, Brian Marick, Juha Pärssinen and Terunobu Fujino
were members of this group, entitled “Network of Learning”

Copyright © 2000, Lucent Technologies. All Rights Reserved.
 20 11/16/00

References

[ACGH+] Adams, M., J. Coplien, R. Gamoke, R. Hanmer, F. Keeve and K. Nicodemus. 1996.
"Fault-Tolerant Telecommunication System Patterns" in Pattern Languages of Program Design - 2,
edited by J. M. Vlissides, J. O. Coplien and N. L. Kerth. Reading, MA: Addison-Wesley Publishing Co.

[CCRSS] Cieslak, T., L. Croxall, J. Roberts. M. Saad, and J. Scanlon, 1977. "No 4 ESS: Software
Organization and Basic Call handling." Bell System Technical Journal, vol 56, no. 7, Sept, 1977: 1113-
1138.

[GHHJ]: Green, T. V., D. G. Haenschke, B. H. Hornbach and C. E. Johnson. 1977. "No 4 ESS:
Network Management and Traffic Administration." Bell System Technical Journal, vol. 56, no. 7, Sept,
1977: 1169-1202.

[HS] Hanmer, R., and G. Stymfal, 1999. "An Input and Output Pattern language: Lessons from
Telecommunications" in Pattern Languages of Program Design - 4, edited by N. Harrison, B. Foote and
H. Rohnert. Reading, MA: Addison-Wesley Publishing Co.

[HW] Hanmer, R., and M. Wu, 1999. "Traffic Congestion Patterns". Presented and workshoped
at PLoP-99 conference. http://st-www.cs.uiuc.edu/~plop/plop99/proceedings/

[Mesz] Meszaros, G. 1996. “A Pattern Language for Improving the Capacity of Reactive Systems”
in Pattern Languages of Program Design - 2, edited by J. M. Vlissides, J. O. Coplien and N. L. Kerth.
Reading, MA: Addison-Wesley Publishing Co.

[WWF] Wake, W., B. Wake, and E. Fox. "Improving Responsiveness in Interactive Applications
Using Queues" in Pattern Languages of Program Design - 2, edited by J. M. Vlissides, J. O. Coplien and
N. L. Kerth. Reading, MA: Addison-Wesley Publishing Co.

