Abstract

Problem

Context

Security Policy: A Design Pattern for M obile Java Code

Qusay H. Mahmoud

School of Computer Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
gmahmoud@scs.carleton.ca

When users on the net visit a homepage that has an embedded appl&t, the mobile
code is downloaded to the user’s machine and executed there. In other words, the
applet’s code migrates from the host’s machine to the user’s macine, and it will
run on the user’s macdhine. In such an environment, we want to make sure that the
code being downloaded does not do any harm to the system on which it will be
exeauted. Also, when network computers (devices with not much local storage)
get deployed on the net, they would have to use the network as a source for all
sorts of full-fledged applications. In such an environment, it is difficult to predict
what a downloaded application will need to do. In such distributed environments,
searity is a major concern. This paper presents the Security Policy pattern, a
design pattern that has been used in many contexts, and proved to be useful, to
develop applications capable of seardy loading classes off the network and
exeauting them locally. The Seaurity Policy pattern can be used either on the
client- or server-side. For example, in the case of a Web browser, the pattern is
used on the client-side, and in the case of a global compute engine the pattern is
used on the server-side. Whil e the pattern may sound Java-centric, it can however
beimplemented in ather languages.

How do you proted the user’s machine file system and network resources from,
possbly malicious, code loaded dff the network.

Millions of users are visiting applet-enabled homepages or downloading unseen
programs, from unknown web sites, allowing them unquestioned access to their
systems. The power of mobile code is undeniable, but so are the security issues
asciated with this techndogy. For example: a user allowed untrusted agents to
run on his macdhine, not knowing that they can steal proprietary information (e.g.
credit card rumbers).

Use the seaurity policy pattern under any o the following circumstances:

e You are an Internet programmer and want to write the next generation Web
browser that is capable of downloading mobil e code and executing it on the
local machine. You would want to dffer the users a comfort level by asauring
them that no harm will be caused by the downloaded code through your
browser.

* You are a High-Performance computing programmer who is interested in
building the largest supercomputer (essentially out of idle madcines on the
Internet). In this context, users will have to be willing to share their CPU
cycles to be part of such a supercomputer, and therefore you must provide
them with seaurity features to proted their machines.

Copyright © 2000, Qusay H. Mahmoud. 1
Permisdgon is granted to copy for the PLoP 2000 conference
All other rights reserved.

Forces

Solution

* You ned to establish a pdicy so that when you run downloaded applications,
they would run within the context of that pdlicy. For example, you can
establish a pdlicy such that all downloaded code is not allowed to establish
network conrections to any host.

» Userson the net are rluctant to visit web sites with applets embedded into
their HTML pages, which forces some organizations not to use appletsin
their homepages.

» People are reluctant to allow outsiders use their machines as part of a global
compute server because they are afraid that malicious outsiders may delete or
alter the state of their files and applications.

» There are many restrictions on applets (e.g. they cannot read o write files or
open network conrections to random hosts) and this limits the usefulness of
applets. This forces the development of a secure platform on which applets
can do useful things.

» A user wishes to establish a pdicy that applets from site X may read fil es,
whereas applets from site Y may read and write files. The level of granularity
can be applied to any system resource: files, communication channels, port
numbers, etc.

Define an exXensible pdicy that can ke austomized and implemented easily, then
establish a seaurity pdicythat states what foreign code can ard cannd do.

A security policy is a mapping from a set of properties that characterize running
code to a set of access permisgons granted to the code. The JDK1.0 introduced
the Securi t yManager class which defines and implements a security policy
by centralizing all access control dedsions. Web browsers, such as Netscape's
Navigator, and Microsoft’s Internet Explorer use the Securi t yManager class
to implement a customized security palicy that will be installed when exeaiting
untrusted code or applets, to refled their own security policies. The
Securit yManager isone of the layers of Java's sandbox. The essence of the
sandbox isthat local code istrusted and can have full accessto the underlying file
system. Likewise, downloaded remote code is untrusted and can access only
limited resources provided inside the sandbox. JDK 1.1 has introduced the concept
of signed applets. A correctly signed applet is treated as trusted local code, and it
can access the file system. Signed applets, together with their signatures, are
delivered in the JAR (Java Archive) format.

Whil e this evolving sandbox opens up interesting possibilities, it is till crude in
the sense that all local Java goplications enjoy full accessto the underlying system
resources whil e remote code is running in the sandbox, unlessthe wde is signed
by a trusted entity. This, however, has changed in Java 2 where signed code, in
addition to remote, has been extended to local code. With the new seaurity model
in Java 2, al code (local and remote), signed o unsigned, will get access to

Example

system resources based onwhat is mentioned in a security pdicy file. A security
pdlicy file allows you to specify what permissions you wish to grant to code
residing in a specified code source, and what permissions you wish to gant to
code signed by specific persons. Notethat the Securi t yManager class(which
was used to enforce the security policy in JDK1.0 and JDK1.1) has been kept in
Java 2 for backward-compatibility.

Consider the development of a global Web-based compute engingfMah99] (or a
supercomputer). In this distributed system, a dient uploads programs to a
compute engine that will in turn exeaute the code and send the results back to the
client.

Implementing this g/stem in Java would require the development of a custom
classloader capable of loading arbitrary classs off the network. And, in arder for
your code to be e&ecuted by the compute engine, you must implement the
Conput e interface that has the following definition:

publici nterfaceConpute {
publicv oidr un();

Now, if amalicious client is aware of a sensitive file (e.g. private.data) that exists
on the compute engine's hast file system, he may write a piece of malicious code
to delete that file, for example. The malicious piece of code may look something
likethis:

publicc lassDestroyi nplenmentsC onpute{
publicv oidr un(){
Filef=n ewFile(“patht oprivate.data”);
i f(

f.delete()= =t rue){
Systemout.printin(“File:* +f+"hasb eend el eted”);
I's

e

Systemout.println(“operationi s nota |l owed”);

}
}

To proted the compute engine's host file system against this type of attack, we
need to devise and implement a seaurity policy that allows us to state what sort of
instructions a program can and cannot do. This is accomplished by defining a
seaurity policy and implementing it by subclassng the Securi t yManager
abstract class The following segment of code demonstrates how the Java
interpreter’s fcurity manager works:

publicb ool eanOperation(Typearg) {
SecurityManagers m=S yst em get Securi t yManager ();
if(smi=null){
sm checkOperation(arg);

}

This dhows that when a puliic method call invokes the system security manager,
the system determines whether the Operat i on is alowed. This means if a
searity manager is installed by an application, operations will be checked before
they are performed. Once a security manager is installed it cannot be set to
anather security manager by some foreign code. In such a case an exception will

be thrown signaling that no new seaurity manager can be installed. On the other
hand, if a security manager is not installed then foreign code will behave as local
code and therefore can do anything (e.g. read and write fil es) just like local code.

The following snippet of code shows how to proted against deleting files, and
disallowing client’s code from quitting the compute engin€ s ¥M:

publicc | ass E ngi neSecuri tyManager e xtends Se curityManager {
privatebooleansilent=t rue;
privateb ool eanc heckExit=t rue;
privateb ool eanc heckDel ete=t rue;

Engi neSecuri tyManager () {
System out. printl n(“Engi neSecurit yManagers tarted”);

/**
*T hef ollowingo perationsareallowed.T hisi sj ust
*h ypotheticalt hough.M orer estricteda ccesss houldb e
*/i nposedwhenworkingwithc | ass| oaders.

publicv oidc heckConnect (Stringh ost,i ntp ort){} ;
publicv oi dc heckCreated assLoader(){};

publicv oidc heckAccess(Threadg) {} ;
publicv oidc heckExec(Stringc nd) {}

/**

*C heckt os eei fafi lewitht hes pecifiednanmec anbe
*d el eted.
*/
publicv oidc heckDelete(Stringf ile){
i f (checkDel et e) {
thrownew SecurityException(“Cannotd elete” +file);
te Isei f(!silent){
Systemout.printin(“File:“ +fil e+"h asb eend el eted”);

}
/**

*/C heckt os eei ft heJ VMcanb eex ited.
publicv oidc heckExit(ints tatus) {
i f(checkExit){
thrownew Security Excepti on(“Cannote xitt heJ VM);
te Isei f(!slient) {
Systemout.printin (“JVMisquitting”);

To check whether or not it is ok to read a certain file, the Java APl invokes the
checkRead() method on the security manager and pas<s the path name of the
fileto beread as a parameter. Also, to check if a dient can exit the VM, the Java
APl invokes the checkExit () method. The SecurityManager class
dedares 28 of these checks, and new check methods have been added in Java 2.
Once we have the Engi neSecurityManager implemented, it must be
installed by the compute engine. This can be esily dore as srown in the main ()
method below:

publicc | ass Conput eEngi nei npl ement s R unnabl e {
/s omemethodsg oh ere
publics taticv oidmain(Stringargv[]) {
Engi neSecuri t yManagere sm;

try{

esm=n ew Engi neSecuri tyManager () ;
Syst em set Securi t yManager (esnj;

}c atch(SecurityExceptione) {
Systemout.println(“securitymanager alreadyr unning”);

}
new Conput eEngi ne();

Structure The diagramin Figure 1 shows the structure of the Security Policy pattern.

ComputeEngine | _________________ o SecuriyManager

ScheckDeletel
SrheckExit
PeheckRead)
% etc. 0

EngineSecurityManager

FcheckDeletedn
BeheckExton

Figure 1. Sructure of the EngineSeaurityManager
The participants are:

* The SecurityManager abstract classthat defines all the operations that
clients may wish to protect their systems’ against.

* TheEngi neSecurityManager concrete class which is adired subclass
of the Securi t yManager . It implements the operations that it needs to
protect the system’s against.

* The Conput eEngi ne which is really the client that collaborates with the
Engi neSecuri t yManager instancesthrough the Securi t yManager .

This technique works in Java 2 as well. However, Java 2 has a new feature known
as protedion domains that implements the site’ s security policy, which is defined
by stating explicitly what permissons you want code running in a particular
domain to have. The palicy is represented by a policy object as instantiated from
the class jav a.security.Policy. The policy objed is a runtime
representation of paicy usually set up by the Virtual Machine at startup time
(much like the Securit yManager). A policy object (in plaintext format)
consists of a series of grant clauses, an example policy object is svown here:

grantc odeBase*“ http://ww. javacourses.conl * s ignedBy“ Qusay” {
permi ssionj ava.io.FilePermssion” /tnp/*",“ read’
perm ssionj ava. net. Socket Perm ssion® *”, “connect”;

%

Resulting Context

This security policy file states that any class downloaded from the site
www.javacourses.com and signed by Qusay is allowed to only read (but not write
or delete) any file in the directory tmp. It can also goen a socket conrection to any
host. Now, to specify that this policy (assume it is saved in the file policy.all)
should be used when invoking an application, the property-defining —D flag can
be used as follows:

% java —Djava.security.policy=<path to>security.all

The Seaurity Policy pattern introduces sveral benefits for building secure
distributed and mobile code based systems. Users will gain a level of comfort
from knowing that they are proteded and how their machines are being used.
However, there are some limitations to this pattern:

* Requires the exstence of a framework. The security policy pattern uses the
SecurityManager asitsframework. Also, the seaurity policy pattern uses
the advanced security features in Java 2 (e.g. protection domains). However,
it should not be hard to implement similar things in other languages, asit is
dorein Safe-Tcl[OLW9S§].

* A searity pdicy @n be set by a user (as in Java 2). This idea has its own
disadvantages as users may not know what exactly they are granting code to
do. It is an error-prone task as any mistakes made could potentially translate
into security holes at runtime.

* No perfed world. The security padlicy pattern does not address all potential
threats posed by mobile code. For example, an activity of malicious code that
is not addressed here is allocating memory (or creating new threads) until it
runs out. This type of attack is called denial of service as it denies end-users
from using their own machines.

» Ifasigrer ishorest, the mdeis saure. A security pdicy filein Java 2 allows
you to specify what signed code can and cannot do. One myth about code
signing is if signer is honest, the code is secure. However, all the signature
tells us is who signed the code, and it says absolutely nothing about the
code's aurity. Certification authorities and schemes may begin to change
the way this worksfMF99].

* Multiple seaurity pdlicies. Sometimes it is better to have multiple security
padlicies rather than just one pdlicy that includes all the features that are safe
for applets. Multiple seaurity pdicies are needed because safe features do na
compose: if feature X is safe, and feature Y is safe, then the combination of X
and Y is not necessarily saffOLW98§]. For example, it is safe for an applet to
open a socket conredion autside the firewall as long as the applet cannot
communicate with hosts inside the firewall. It is also safe for an applet to read
files, as long as this is the only communication the applet makes outside its
interpreter. However, if an applet has accessto both of these features then it
can transmit local fil es outside the firewall, whichis a breach o both, searity
and privacy. Creating multiple seaurity policies, however, is error-prone for
naive users asit requires afull understanding d how thisis dore.

Rationale

Known Uses

The security palicy pattern resolves the forces mentioned abowve as foll ows:

Users may fed their systems are protected. If users know that their web
browser enforces a security pdicy that proteds their fil es and applications,
they may not mind visiting homepages with applets embedded in them.
Major Web krowsers (e.g. Netscape Navigator and Microsoft Internet
Explorer) devise and implement a seaurity policy by subclasing the
SecurityManager class.

People might be willing to contribute their idle CPU cycles to be part of a
global compute engine if they are guaranteed that their files and
applications will not be altered. Such people can define their own seaurity
pdlicies to state what foreign code, running on their macines, can and
cannat do.

Allowing applets to read and write files and open network conrections
increase the usefulness of applets. With the seaurity policy, users can
establish a policy that states what applets can and cannot do.

Furthermore, users can specify what applets coming from a particular site
are allowed to perform. For example, they can establish a seaurity policy
which states that applets coming from site X can read files only and
applets coming from site Y may read and write files. The same can be
applied to communication channels and aher system resources.

The pattern described in this paper has been used in a number of systems. The
j ava. | ang. Secur it yManager abstract class grves the same purpose as
this pattern, and it can be used to implement this pattern. A number of
distributed frameworks implement their seaurity pdicies by subclassng the
SecurityManager class usethe new policy-based seaurity features in Java
2, or define their own seaurity policy-based architecture. For example:

Netscape's Navigator and Microsoft's Internet Explorer implement the
Security Policy Pattern by subclassng the Secur i ty Manager class.

Java Remote Method Invocation (RMI) implements a security pdicy and

provides a default seaurity policy (the RMISecur i ty Manager) that must
be install ed by the server application; otherwise no classloading for RMI
clasesis allowed.

ObjectSpace's Voyager customizes the Security Manager class by
providing the Voyager Secur i t yManager that implements the seaurity
palicy pattern.

A Web-based Compute EngingfMah99] implements its saurity policy by
subclassng the Securi t yManager class

Related Patterns

Acknowledgments

References

* Inthe Aglets Workbench[KLO98], a secure aglet system should implement
the overall effed of all seaurity policies invaved that have been defined by
principals (eg. AgleOwner, ContextMaster, etc.). A podlicy database
represents the security policy defined by the context master; seaurity
preferences represent the security policy defined by the aglet owner.

« Jini provides seaurity by relying ona seaurity policy that is defined in a
text-based file that describes what actions mobil e code can and cannot do.

o Safe-Tcl[OLW9§], a mechanism for controlli ng the exeaution of programs
written in the Tcl scripting language, uses this pattern to allow a variety of
seaurity policies to be implemented within a single gplication, and it
supports both policies that authenticate incoming scripts and those that do
not.

Most of the Java-based distributed frameworks employ a security policy by
either implementing a custom Secur i t yManager (asin JDK1.0 and 11) or
writing a text-based seaurity policy (as in Java 2). The Security Policy pattern
uses the adapted SecurityManager class inspired in the Strategy
patternGHIV95].

I would like to thank Federico Balaguer for shepherding this paper; his
constructive comments helped me improve the pattern. | also want to thank
Dwight Deugo and Robert Hanmer for their comments, which helped me to
improve the presentation o this pattern.

[GHIV95] E. Gamma, R. Hdm, R. Johnson, J. Vlissides. Design Patterns:
Elements of Reusable Objed-Oriented Sftware. Addison-Wesley, 1995

[KLO98] G. Karjoth, D. B. Lange, M. Oshima. A Security Modd for Aglets. In
G. Vigna (editor) Maobile Agents and Security. Springer-Verlag, Germany, 1998

[Mah99 Q. Mahmoud. The Web a a Globd Computing Platform. In
Procealings of 7" International Conference on High Performance Computing and
Networking Europe, Amsterdam, The Netherlands, April 1999 Lecture Notesin
Computer Science, pp. 281-290.

[MF99] G. McGraw, E. W. Fdten. Seaurity Java: Getting Down to Business
with Mobil e Code. John Wiley & Sons, 1999

[OLW9g] J. K. Qusterhout, J. Y. Levy, B. B. Welch. The Sde-Tcl Seaurity
Modd. In G. Vigna (editor) Mobile Agents and Security. Springer-Verlag,
Germany, 1998

