
Copyright © 2000, Qusay H. Mahmoud. 1
Permission is granted to copy for the PLoP 2000 conference.
All other rights reserved.

 Security Policy: A Design Pattern for Mobile Java Code

 Qusay H. Mahmoud
 School of Computer Science, Carleton University
 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
 qmahmoud@scs.carleton.ca

Abstract When users on the net visit a homepage that has an embedded applet, the mobile
code is downloaded to the user’s machine and executed there. In other words, the
applet’s code migrates from the host’s machine to the user’s machine, and it will
run on the user’s machine. In such an environment, we want to make sure that the
code being downloaded does not do any harm to the system on which it will be
executed. Also, when network computers (devices with not much local storage)
get deployed on the net, they would have to use the network as a source for all
sorts of full-fledged applications. In such an environment, it is difficult to predict
what a downloaded application will need to do. In such distributed environments,
security is a major concern. This paper presents the Security Policy pattern, a
design pattern that has been used in many contexts, and proved to be useful, to
develop applications capable of securely loading classes off the network and
executing them locally. The Security Policy pattern can be used either on the
client- or server-side. For example, in the case of a Web browser, the pattern is
used on the client-side, and in the case of a global compute engine the pattern is
used on the server-side. While the pattern may sound Java-centric, it can however
be implemented in other languages.

Problem How do you protect the user’s machine file system and network resources from,

possibly malicious, code loaded off the network.

Context Milli ons of users are visiting applet-enabled homepages or downloading unseen
programs, from unknown web sites, allowing them unquestioned access to their
systems. The power of mobile code is undeniable, but so are the security issues
associated with this technology. For example: a user allowed untrusted agents to
run on his machine, not knowing that they can steal proprietary information (e.g.
credit card numbers).

Use the security policy pattern under any of the following circumstances:

• You are an Internet programmer and want to write the next generation Web

browser that is capable of downloading mobile code and executing it on the
local machine. You would want to offer the users a comfort level by assuring
them that no harm wil l be caused by the downloaded code through your
browser.

• You are a High-Performance computing programmer who is interested in

building the largest supercomputer (essentially out of idle machines on the
Internet). In this context, users wil l have to be wil ling to share their CPU
cycles to be part of such a supercomputer, and therefore you must provide
them with security features to protect their machines.

 2

• You need to establish a policy so that when you run downloaded applications,
they would run within the context of that policy. For example, you can
establish a policy such that all downloaded code is not allowed to establish
network connections to any host.

Forces

• Users on the net are reluctant to visit web sites with applets embedded into
their HTML pages, which forces some organizations not to use applets in
their homepages.

• People are reluctant to allow outsiders use their machines as part of a global

compute server because they are afraid that malicious outsiders may delete or
alter the state of their files and applications.

• There are many restrictions on applets (e.g. they cannot read or write files or

open network connections to random hosts) and this limits the usefulness of
applets. This forces the development of a secure platform on which applets
can do useful things.

• A user wishes to establish a policy that applets from site X may read files,

whereas applets from site Y may read and write files. The level of granularity
can be applied to any system resource: files, communication channels, port
numbers, etc.

Solution Define an extensible policy that can be customized and implemented easily, then

establish a security policy that states what foreign code can and cannot do.

A security policy is a mapping from a set of properties that characterize running
code to a set of access permissions granted to the code. The JDK1.0 introduced
the Secur i t yManager class, which defines and implements a security policy
by centralizing all access control decisions. Web browsers, such as Netscape’s
Navigator, and Microsoft’s Internet Explorer use the Secur i t yManager class
to implement a customized security policy that will be installed when executing
untrusted code or applets, to reflect their own security policies. The
Secur i t yManager is one of the layers of Java’s sandbox. The essence of the
sandbox is that local code is trusted and can have full access to the underlying file
system. Likewise, downloaded remote code is untrusted and can access only
limited resources provided inside the sandbox. JDK1.1 has introduced the concept
of signed applets. A correctly signed applet is treated as trusted local code, and it
can access the file system. Signed applets, together with their signatures, are
delivered in the JAR (Java Archive) format.

While this evolving sandbox opens up interesting possibil ities, it is til l crude in
the sense that all local Java applications enjoy full access to the underlying system
resources while remote code is running in the sandbox, unless the code is signed
by a trusted entity. This, however, has changed in Java 2 where signed code, in
addition to remote, has been extended to local code. With the new security model
in Java 2, all code (local and remote), signed or unsigned, will get access to

 3

system resources based on what is mentioned in a security policy file. A security
policy file allows you to specify what permissions you wish to grant to code
residing in a specified code source, and what permissions you wish to grant to
code signed by specific persons. Note that the Securi t yManager class (which
was used to enforce the security policy in JDK1.0 and JDK1.1) has been kept in
Java 2 for backward-compatibili ty.

Example Consider the development of a global Web-based compute engine[Mah99] (or a

supercomputer). In this distributed system, a client uploads programs to a
compute engine that will in turn execute the code and send the results back to the
client.

Implementing this system in Java would require the development of a custom
class loader capable of loading arbitrary classes off the network. And, in order for
your code to be executed by the compute engine, you must implement the
Comput e interface that has the following definition:

publ i c i nt er f ace C omput e {

 publ i c v oi d r un() ;
}

Now, if a malicious client is aware of a sensitive file (e.g. private.data) that exists
on the compute engine’s host file system, he may write a piece of malicious code
to delete that file, for example. The malicious piece of code may look something
like this:

 publ i c c l ass D est r oy i mpl ement s C omput e {
 publ i c v oi d r un() {
 Fi l e f = n ew F i l e(“ pat h t o p r i vat e. dat a”) ;
 i f (f . del et e() = = t r ue) {
 Syst em. out . pr i nt l n(“ Fi l e: “ +f +” has b een d el et ed”);
 } e l se {
 Syst em. out . pr i nt l n(“ oper at i on i s not a l l owed”) ;
 }
 }
 }

To protect the compute engine’s host file system against this type of attack, we
need to devise and implement a security policy that allows us to state what sort of
instructions a program can and cannot do. This is accomplished by defining a
security policy and implementing it by subclassing the Secur i t yManager
abstract class. The following segment of code demonstrates how the Java
interpreter’s security manager works:

publ i c b ool ean O per at i on(Type a r g) {

 Secur i t yManager s m = S yst em. get Secur i t yManager ();
 i f (sm ! = n ul l) {
 sm. checkOper at i on(ar g) ;
 }
 }

This shows that when a public method call invokes the system security manager,
the system determines whether the Oper at i on is allowed. This means if a
security manager is installed by an application, operations will be checked before
they are performed. Once a security manager is installed it cannot be set to
another security manager by some foreign code. In such a case an exception will

 4

be thrown signaling that no new security manager can be installed. On the other
hand, if a security manager is not installed then foreign code wil l behave as local
code and therefore can do anything (e.g. read and write files) just like local code.

The following snippet of code shows how to protect against deleting files, and
disallowing client’s code from quitting the compute engine’s JVM:

publ i c c l ass E ngi neSecur i t yManager e xt ends Se cur i t yManager {

 pr i vat e b ool ean s i l ent = t r ue;
 pr i vat e b ool ean c heckExi t = t r ue;
 pr i vat e b ool ean c heckDel et e = t r ue;

 Engi neSecur i t yManager () {
 Syst em. out . pr i nt l n(“ Engi neSecur it yManager s t ar t ed”) ;
 }

 / **
 * T he f ol l owi ng o per at i ons a r e a l lo wed. T hi s i s j ust

 * h ypot het i cal t hough. M or e r est r i ct ed a cc ess s houl d b e
 * i mposed w hen w or ki ng w i t h c l ass l oader s.

 */
 publ i c v oi d c heckConnect (St r i ng h os t , i nt p or t) { } ;
 publ i c v oi d c heckCr eat eCl assLoader() { };
 publ i c v oi d c heckAccess(Thr ead g) { } ;
 publ i c v oi d c heckExec(St r i ng c md) { } ;

 / **
 * C heck t o s ee i f a fi l e w i t h t he s peci f i ed n ame c an b e
 * d el et ed.
 */
 publ i c v oi d c heckDel et e(St r i ng f i le) {
 i f (checkDel et e) {
 t hr ow n ew Secur i t yExcept i on(“ Cannot d el et e “ +f i l e);
 } e l se i f (! s i l ent) {
 Syst em. out . pr i nt l n(“ Fi l e: “ +f il e+” h as b een d el et ed”) ;
 }
 }

 / * *
 * C heck t o s ee i f t he J VM c an b e ex i t ed.
 */
 publ i c v oi d c heckExi t (i nt s t at us) {
 i f (checkExi t) {
 t hr ow n ew Secur i ty Except i on(“ Cannot e xi t t he J VM”) ;
 } e l se i f (! s l i ent) {
 Syst em. out . pr i nt ln (“ JVM i s q ui t t i ng”);
 }
 }
 }

To check whether or not it is ok to read a certain file, the Java API invokes the
checkRead() method on the security manager and passes the path name of the
file to be read as a parameter. Also, to check if a client can exit the JVM, the Java
API invokes the che ckExi t () method. The Secur i t yManager class
declares 28 of these checks, and new check methods have been added in Java 2.
Once we have the Engi neSecur i t yManager implemented, it must be
installed by the compute engine. This can be easily done as shown in the main ()
method below:

publ i c c l ass C omput eEngi ne i mpl ement s R unnabl e {
 / / s ome met hods g o h er e
 publ i c s t at i c v oi d mai n(St r i ng a r gv[]) {
 Engi neSecur i t yManager e sm;
 t r y {

 5

 esm = n ew Engi neSecur i t yManager () ;
 Syst em. set Secur i t yManager (esm);
 } c at ch(Secur i t yExcept i on e) {
 Syst em. out . pr i nt l n(“ secur i t y m anager al r eady r unni ng”) ;
 }
 new Comput eEngi ne();
}

Structure The diagram in Figure 1 shows the structure of the Security Policy pattern.

Figure 1: Structure of the EngineSecurityManager

The participants are:

• The Secur i t yManager abstract class that defines all the operations that

clients may wish to protect their systems’ against.
• The Engi neSecur i t yManager concrete class, which is a direct subclass

of the Secur i t yManager . It implements the operations that it needs to
protect the system’s against.

• The Comput eEngi ne which is really the client that collaborates with the
Engi neSecur i t yManager instances through the Secur i t yManager .

This technique works in Java 2 as well. However, Java 2 has a new feature known
as protection domains that implements the site’s security policy, which is defined
by stating explicitly what permissions you want code running in a particular
domain to have. The policy is represented by a policy object as instantiated from
the class jav a. secur i t y . Pol i cy . The policy object is a runtime
representation of policy usually set up by the Virtual Machine at startup time
(much like the Secur i t yManager). A policy object (in plaintext format)
consists of a series of grant clauses, an example policy object is shown here:

gr ant c odeBase “ ht t p: / / www. j avacour ses. com/ *” , s i gnedBy “ Qusay” {

 per mi ssi on j ava. i o. Fi l ePer mi ssi on “ / t mp/ * ”, “ r ead”;
 per mi ssi on j ava. net . Socket Per mi ssi on “ * ” , “ connect ” ;

};

 6

This security policy file states that any class downloaded from the site
www.javacourses.com and signed by Qusay is allowed to only read (but not write
or delete) any file in the directory tmp. It can also open a socket connection to any
host. Now, to specify that this policy (assume it is saved in the file policy.all)
should be used when invoking an application, the property-defining –D flag can
be used as follows:

% java –Djava.security.policy=<path to>security.all

Resulting Context The Security Policy pattern introduces several benefits for building secure

distributed and mobile code based systems. Users will gain a level of comfort
from knowing that they are protected and how their machines are being used.
However, there are some limitations to this pattern:

• Requires the existence of a framework. The security policy pattern uses the

Secur i t yManager as its framework. Also, the security policy pattern uses
the advanced security features in Java 2 (e.g. protection domains). However,
it should not be hard to implement similar things in other languages, as it is
done in Safe-Tcl[OLW98].

• A security policy can be set by a user (as in Java 2). This idea has its own

disadvantages as users may not know what exactly they are granting code to
do. It is an error-prone task as any mistakes made could potentially translate
into security holes at runtime.

• No perfect world. The security policy pattern does not address all potential

threats posed by mobile code. For example, an activity of malicious code that
is not addressed here is allocating memory (or creating new threads) until i t
runs out. This type of attack is called denial of service, as it denies end-users
from using their own machines.

• If a signer is honest, the code is secure. A security policy file in Java 2 allows

you to specify what signed code can and cannot do. One myth about code
signing is if signer is honest, the code is secure. However, all the signature
tells us is who signed the code, and it says absolutely nothing about the
code’s security. Certification authorities and schemes may begin to change
the way this works[MF99].

• Multiple security policies. Sometimes it is better to have multiple security

policies rather than just one policy that includes all the features that are safe
for applets. Multiple security policies are needed because safe features do not
compose: if feature X is safe, and feature Y is safe, then the combination of X
and Y is not necessarily safe[OLW98]. For example, it is safe for an applet to
open a socket connection outside the firewall as long as the applet cannot
communicate with hosts inside the firewall. It is also safe for an applet to read
files, as long as this is the only communication the applet makes outside its
interpreter. However, if an applet has access to both of these features then it
can transmit local files outside the firewall, which is a breach of both, security
and privacy. Creating multiple security policies, however, is error-prone for
naïve users as it requires a full understanding of how this is done.

 7

Rationale The security policy pattern resolves the forces mentioned above as follows:

• Users may feel their systems are protected. If users know that their web
browser enforces a security policy that protects their files and applications,
they may not mind visiting homepages with applets embedded in them.
Major Web browsers (e.g. Netscape Navigator and Microsoft Internet
Explorer) devise and implement a security policy by subclassing the
Secur i t yManager class.

• People might be willing to contribute their idle CPU cycles to be part of a

global compute engine if they are guaranteed that their files and
applications wil l not be altered. Such people can define their own security
policies to state what foreign code, running on their machines, can and
cannot do.

• Allowing applets to read and write files and open network connections

increase the usefulness of applets. With the security policy, users can
establish a policy that states what applets can and cannot do.

• Furthermore, users can specify what applets coming from a particular site

are allowed to perform. For example, they can establish a security policy
which states that applets coming from site X can read files only and
applets coming from site Y may read and write files. The same can be
applied to communication channels and other system resources.

Known Uses The pattern described in this paper has been used in a number of systems. The
j ava. l ang. Secur i t yManager abstract class serves the same purpose as
this pattern, and it can be used to implement this pattern. A number of
distributed frameworks implement their security policies by subclassing the
Secur i t yManager class, use the new policy-based security features in Java
2, or define their own security policy-based architecture. For example:

• Netscape’s Navigator and Microsoft’s Internet Explorer implement the

Security Policy Pattern by subclassing the Secur i ty Manager class.

• Java Remote Method Invocation (RMI) implements a security policy and

provides a default security policy (the RMISecur i ty Manager) that must
be installed by the server application; otherwise no class loading for RMI
classes is allowed.

• ObjectSpace’s Voyager customizes the Secur i ty Manager class by

providing the Voyager Secur i t yManager that implements the security
policy pattern.

• A Web-based Compute Engine[Mah99] implements its security policy by

subclassing the Secur i t yManager class.

 8

• In the Aglets Workbench[KLO98], a secure aglet system should implement
the overall effect of all security policies involved that have been defined by
principals (e.g. AgletOwner, ContextMaster, etc.). A policy database
represents the security policy defined by the context master; security
preferences represent the security policy defined by the aglet owner.

• Jini provides security by relying on a security policy that is defined in a

text-based file that describes what actions mobile code can and cannot do.

• Safe-Tcl[OLW98], a mechanism for controlli ng the execution of programs
written in the Tcl scripting language, uses this pattern to allow a variety of
security policies to be implemented within a single application, and it
supports both policies that authenticate incoming scripts and those that do
not.

Related Patterns Most of the Java-based distributed frameworks employ a security policy by

either implementing a custom Secur i t yManager (as in JDK1.0 and 1.1) or
writing a text-based security policy (as in Java 2). The Security Policy pattern
uses the adapted Secur i t yManager class inspired in the Strategy
pattern[GHJV95].

Acknowledgments I would li ke to thank Federico Balaguer for shepherding this paper; his

constructive comments helped me improve the pattern. I also want to thank
Dwight Deugo and Robert Hanmer for their comments, which helped me to
improve the presentation of this pattern.

References

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[KLO98] G. Karjoth, D. B. Lange, M. Oshima. A Security Model for Aglets. In
G. Vigna (editor) Mobile Agents and Security. Springer-Verlag, Germany, 1998.

[Mah99] Q. Mahmoud. The Web as a Global Computing Platform. In
Proceedings of 7th International Conference on High Performance Computing and
Networking Europe, Amsterdam, The Netherlands, April 1999, Lecture Notes in
Computer Science, pp. 281-290.

[MF99] G. McGraw, E. W. Felten. Security Java: Getting Down to Business
with Mobile Code. John Wiley & Sons, 1999.

[OLW98] J. K. Ousterhout, J. Y. Levy, B. B. Welch. The Safe-Tcl Security
Model. In G. Vigna (editor) Mobile Agents and Security. Springer-Verlag,
Germany, 1998.

