
Copyright  2000, J Burgos et al., Permission is granted to copy for the PLoP 2000 Conference. All other rights reserved.

Reductor

$�3DWWHUQ�WR�6ROYH�3UREOHPV�ZLWK�'HFUHDVH�$QG�&RQTXHU�$OJRULWKPV

J.Burgos1 J.Galve J.García M.Sutil2

Universidad Politécnica de Madrid
Campus de Montegancedo, s/n Boadilla del Monte - 28660- Madrid

Phone: 34-1-3367455 Fax: 34-1-3367412
{jmburgos, jgalve, juliog}@fi.upm.es, msutil@arrakis.es

Abstract

Problems that require a traversal on a collection of data can be solved following a
decrease-and-conquer algorithm strategy. Reductor is a behavioral pattern that describes
an object-oriented design relying on higher-order facilities to solve this sort of problem.

Intent

Identify, encapsulate and organize the variant and invariant parts (both behavior and structure)
of the decrease-and-conquer algorithm design technique3 for application with programs that
want to apply the technique to collections.

Also Known As

Decrease-And-Conquer Abstract Solver, Reduction Pattern.

Motivation

Let’s consider a simple XML4 document, called library.xml, as shown in Figure 1. The
XML document represents a set of book records in a virtual library. The information provided
for each book record is the title, URL address where the book is located, and a brief text

1 This work has been partially supported by the Spanish project F.G.UPM-43700000190.
2 This work has been partially supported by WorldNet 21 Ltd.
3 The Decrease-And-Conquer algorithm design technique [LEV99], also known as induction [MAN96],

simplification, or reduction [BRA96] consists of solving a problem by reducing its instance to a smaller one,
solving the latter (recursively or iteratively) and then extending the obtained solution to get a solution to the
original instance.

4 XML is an extensible markup language that offers the opportunity to create richer documents than HTML can
produce by introducing appropriate tags. Because of this flexibility, XML is considered to be the next generation
markup language for general documents. More information about XML can be found in [MTU99].

��� �����������������������������-�0�%XUJRV��-�*DOYH��-�*DUFtD��0�6XWLO

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

2

description. Now we outline the problem of collecting the set of books that include a given
word (or text pattern) in their description field. For example:

Collect all the books whose title includes the word “man”

Let’s suppose we are using a XML parser for Java, and the previous XML document generates

the corresponding DOM5 tree (figure 2). Now, we can process this tree to search for the nodes
that meet the above condition. As a result, we obtain a collection of nodes. This collection
could be represented using arrays of nodes or grouped as a new tree (in order to generate a
new XML file again). Each representation would force us to implement a different solution.
However, this new implementation could be overcome if we abstract the way that solutions
are combined (once again, with the help of the common abstract interface provided by a
Function Object).

We can also think of different ways for showing the solution output. Suppose you are
constructing a software application involving XML management, and you have to return
different external representations from a XML document, for instance, another XML format
file for a remote computer, an HTML file for a web-browser, or WAP6 code for cellular
phones. Because of the different output formats, a priori, one could decide to write a different

5 DOM defines a set of Java interfaces to create, access, and manipulate internal structures of XML documents. XML

is a language for describing tree-structured data. In XML, an element is represented by a start tag and an end tag.
An element may contain one or more other elements between its start and end tags. Thus an entire document is
rendered as a nested tree [MTU99].

6 The Wireless Application Protocol (WAP) is the de facto worldwide standard for providing Internet communications
and advanced telephony services on digital mobile phones, pages, personal digital assistants and other wireless
terminals [WAP].

<?xml version="1.0"?>
<!DOCTYPE library SYSTEM "library.dtd">
<library>
 <book>
 <title>El Quijote</title>
 <url>http://amazon.com/quijote.html</url>
 <description>Very interesting ...</description>
 </book>
 <book>
 <title>La Galatea</title>
 <url>http://amazon.com/galatea.html</url>
 <description>Interesting ...</description>
 </book>
 <book>
 <title>La Celestina</title>
 <url>http://amazon.com/celestina.html</url>
 <description>Interesting ...</body>
 </book>
 ...
</library>

Figure 1. Example of a XML format document

7KH�5HGXFWRU�3DWWHUQ

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

3

algorithm (i.e. a different implementation) for each problem. Alternatively, we might decide to
abstract the function that is applied to the input data in order to obtain any abstract output
format. As a consequence, the algorithm can remain as a common invariant part for the three
problems.

Four primary components underly the above solution:

1. InputIterator decouples the input data representation and the algorithm. It is advanced
one by one in an explicit loop.

2. Expression abstracts the function that must be applied to every item in the collection
that meets the filter. It is a varying expression that can be combined with the traversal
algorithm by placing it in the loop.

3. Predicate abstracts the predicate that the items in the collection must verify. It is a
varying property that can be combined with the traversal algorithm by placing the
predicate in the loop.

4. Output decouples the output data representation and the algorithm.

How do you combine these four components? Three different design strategies are possible:

a) A specific algorithm.
b) A general higher-order algorithm describing a family of solutions.
c) A half-way algorithm between a) and b), combining both general and specific

components.

library

URL

book

title

 description

El Quijote”

“http://amazon.com/quijote.html”

“Very interesting …”

URL

book

title

 description

“La Galatea”

“http://amazon.com/galatea.html”

“Interesting …”

Figure 2. Example of a DOM tree format

��� �����������������������������-�0�%XUJRV��-�*DOYH��-�*DUFtD��0�6XWLO

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

4

The first approach leads us to write a tailor-made algorithm whose implementation would
probably try to exploit the efficiency with detriment to the reuse. It is the right decision if we
do not plan to face new similar problems. The second approach promotes the definition of a
common algorithmic skeleton to solve a wide range of problems. This second solution is more
focused on the reuse and forthcoming variations of a current problem will take great
advantage of it.

As is well known, one way to achieve behavior parameterization is to use an H[WHUQDO
iterator. Then, the varying property can be combined with the traversal algorithm by placing
the function in an explicit loop that advances the external iterator one by one. As a result, the
number of explicit loops corresponds to the number of member functions uses. However, there
are good reasons to write such a loop once (see "Write a Loop Once" [MAR94] and the
discussion in the Iterator pattern [GHJV95]) in a solution in which the traversal algorithm and
the functions are combined by means of dynamic binding of the abstract function methods
()LOWHU, ([SUHVVLRQ� and 2XWSXW). Disadvantages aligned with this approach are widely
described in [KUH99].

Applicability

Use the Reductor pattern in the following situations:

� To develop solutions for problems that can be decomposed as a decrease-and-conquer
algorithm. The pattern provides a general implementation for the common invariant part of
the algorithm schema for free, leaving up to subclasses the implementation of the parts that
can vary.

� To carry out proofs about correctness and efficiency of decrease-and-conquer based
algorithms. The pattern can behave as a framework of algorithmic analysis. The clear
separation between the common abstract-level and concrete input/filter/expression/output
elements can help to get better-structured and data-independent algorithms, suitable to be
reused or analyzed. Given an algorithm expressed as an instance of Reductor, its
implementation is distributed along the components of the pattern. Then, it is possible to
do some local analysis, firstly, and afterwards to reassemble these local results in a unique
general result.

Structure

7KH�5HGXFWRU�3DWWHUQ

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

5

Participants

� Reductor defines the operation Solve, a template method that implements a common
algorithm for all decrease-and-conquer problems. It defines the methods ApplyExp and
ApplyFilter that allow the Expression and Predicate to be declared as parameters.

� Predicate defines an abstract interface for predicate application. It is called from the
operation Solve to filter elements in the decrease-and-conquer algorithm.

� ConcretePredicate (XMLPredicate): It implements the abstract operation app defined on
Filter, providing a specific filter predicate.

� Expression: It defines an abstract interface for the function application. It is called from the
operation Solve to apply a function to each element in the decrease-and-conquer algorithm.

� ConcreteExpression (XMLExpression): It implements the abstract operation app defined
on Expression, providing a specific expression function.

� InputIterator: It defines an abstract interface to traverse the collection of data managed by
the decrease-and-conquer algorithm. It is modeled as an Iterator pattern.

� ConcreteInputIterator (DOM Iterator): It implements the abstract operations defined on
InputIterator, providing a specific data iterator.

� Output: It defines an abstract interface to model the output data of the decrease-and-
conquer algorithm. It is called from the operation Solve to determine the null value (i.e. the
operation base) and the combination operator (i.e., the operation op) in the output domain.

Output

base():Output
op(Output):Output

Expression

app(Object):Output

Predicate

app(Object):boolean

Reductor

ApplyFilter (Filter, Object):boolean
ApplyExp (Expression, Object):Output
Solve (InputIterator, Output, Filter, Expression):Output

Concrete Iterator

e : Enumeration

DOMIterator (Vector)
IsDone() : boolean
Next() : Object

Input Iterator

IsDone():boolean
Next():Object

ConcreteExpression

app(Object):Output

ConcretePredicate

app(Object):boolean

ConcreteOutput

result : Hashtable

base():Output
op(Output):Output

Figure 3. The Reductor pattern (structure)

��� �����������������������������-�0�%XUJRV��-�*DOYH��-�*DUFtD��0�6XWLO

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

6

Client Reductor anIterator aPred anExp

 5: create (args)

 1: createIter (..)

 2: createPred (..)

predInvoker expInvokeranOutput

 3: createExp (..)

 4: createOutput (..)

 6: solver () 7: base ()

 8: isDone ()

 9: applyPred ()

 10: application ()

 11: applyExp ()

 12: application ()

 13: op ()

 14: "result"

C
on

st
ru

cc
ió

n
E

xe
cu

tio
n

Figure 4. The Reductor pattern (collaborations)

� ConcreteOutput (Words): It implements the abstract operations defined on Output,
providing a specific output data domain.

Collaborations

• The client creates an iterator, a predicate, an expression and an output. He/she possibly
supplies arguments for several of them.

• The client creates an instance of Reductor and supplies the above elements as arguments.
• The client invokes the method Solve, which encapsulates a while-loop implementation for

the decrease-and-conquer algorithm strategy.
• The client invokes the method Solve, which encapsulates an implementation of the

decrease-and-conquer algorithm strategy.

Consequences

The pattern presents the following advantages:

7KH�5HGXFWRU�3DWWHUQ

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

7

� The Reductor pattern is a Higher-Order Function Object [WIK] for the decrease-and-
conquer algorithm strategy. It allows the definition of new algorithms based upon the
decrease-and-conquer schema. The pattern’s structure strongly establishes which
components define the decrease-and-conquer and their relationships. Besides, the
relationships with concrete components of the pattern (subclasses) are established.

� The pattern can be used to build algorithm libraries, in which the common behavior
supplied by the algorithm design schemas can be reused.

� The pattern stresses the so-called "Hollywood principle" [GHJV95] since the operation
Solve fully provides the engine for the schema. The pattern is a good example of "Write a
Loop Once" [MAR94].

� The pattern promotes an error-free strategy to develop decrease-and-conquer algorithms.
The operation Solve in the Reductor calls only those operations provided by ,QSXW,WHUDWRU�
2XWSXW, 3UHGLFDWH� and� ([SUHVVLRQ. However, to implement these operations, other
operations defined by CRQFUHWH,QSXW,WHUDWRU, &RQFUHWH3UHGLFDWH and &RQFUHWH([SUHVVLRQ -
or by other components- can be used.

� The pattern provides a systematic approach that simplifies the development of decrease-
and-conquer algorithms. The way to build new algorithms can be tackled in two steps:
first, defining the components that are related to the input and output data of the problem
(InputIterator� and�Output�, secondly, stating the behavioral components of the concrete
algorithm to solve (Predicate and Expression). In both cases, all the components must be
overridden by the concrete operations in the subclasses. To reuse the schemas effectively,
subclass developers must understand which operations are defined for overriding.

The pattern presents the following disadvantages:

� It yields to inefficient implementations.
� It provokes communication overhead between Reductor and the other components.
� It yields a more complex programming model.

Implementation

Let us note the following implementation issues:

1. Implementation-driven guidelines. Operations involved in Reductor are defined by
,QSXW,WHUDWRU, 3UHGLFDWH, ([SUHVVLRQ and 2XWSXW.

2. Primitive operations. Operations defined in InputIterator�� Predicate, Expression, and
Output are primitive. Thus, they must be overridden. For example, they could be declared
as pure virtual (in C++ conventions) or as part of an interface (Java conventions). The
operation 6ROYH�must never be overridden.

3. ApplyFilter and ApplyExp are Template Methods [GHJV95] responsible of invoking
Filter and Expression. Actually, these methods hide strategy patterns.

4. The operation Solve is a Template Method.

��� �����������������������������-�0�%XUJRV��-�*DOYH��-�*DUFtD��0�6XWLO

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

8

Sample Code

Next, we use the pattern to solve the problem of processing a XML document, just the way
it was described in the Motivation.

1. Firstly, we propose an implementation for the class Reductor, which provides the skeleton
for the decrease-and-conquer schema:

class Reductor
{

Iteration collection;
Output od;
Predicate filter;
Expression expression;
void create (InputIterator collection, Output od,

Predicate filter, Expression expression)
{...}

private boolean ApplyFilter (Item arg)
{

return filter.application (arg);
}

private Output ApplyExp (Item arg)

{

return expression.application (arg);

}

public Output Solve ()

{

Item thisItem;

Output result = od.base();

while (!collection.IsDone())

{

thisItem = collection.Next();

if (ApplyFilter (thisItem))

result.Op (ApplyExp (thisItem));

};

return result;

}

} // Reductor class

2. Secondly, we implement a XMLIterator to process the DOM tree obtained from parsing
the XML document. We use a preorder traversal in the flattening process:

class XMLIterator implements Iterator
{

Enumeration e;
public XMLIterator (String file)
{

Vector v = new Vector();
Parser parser = new Parser(file);
try {

7KH�5HGXFWRU�3DWWHUQ

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

9

processing(parser.readStream(new FileInputStream(file)),v); }
catch (FileNotFoundException e) {

System.out.println("file not found"); }
e=v.elements();

} // XML_Iterator

private void processing (Node node,Vector v)
{

NodeList nodeList = node.getChildNodes();
for (int i =0; i < nodeList.getLength(); i++)
{
Node n = nodeList.item(i);
v.addElement(n);
processing (n,v);

}
} // processing

} // XMLIterator class

3. Now, we implement a concrete XMLPredicate that will be used as a filter by the Reductor
pattern. In our case, the XMLPredicate tests if a book record includes in its title the word
"adventure".

class XMLPredicate implements Predicate
{

String key;
public XMLPredicate (String key)
{ this.key = key; }

public boolean application (Item arg)
{

Node n = (Node)arg.value;
if (n.getParentNode() != null)
{

if (n.getParentNode().getNodeName().equals("title"))
if (contains(n.getNodeValue())

return true;
}
return false;

}

private boolean contains(String line)
{ ... }

} // XMLPredicate

4. Given a DOM-tree node, there are two methods to go back and forth among child nodes. In
our example, we use this functionality provided by the DOM API to implement the
XMLExpression, by collecting the values of the sibling nodes (i.e., the URL and the book
description), as follows:

class XMLExpression implements Function
{

public Output application (Item arg)
{

Node n = (Node)arg.value;
Words w = new Words();
w.Base();
Node parent = n.getParentNode().getParentNode();

��� �����������������������������-�0�%XUJRV��-�*DOYH��-�*DUFtD��0�6XWLO

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

10

boolean enc = false;
for (Node child = parent.getFirstChild(); !enc;

child = child.getNextSibling())
{

if (child.getNodeName().equals("author"))
{

Node node = child.getFirstChild().getNodeValue()
String value = child.getFirstChild().getNodeValue();
w.words.put (node, value);
enc = true;

}
}
return w;

 } // application (method)
} // XMLExpression (class)

5. Finally, we have to keep the result of applying XMLExpression to the book records
matching the XMLPredicate. Then, we are going to use a Hashtable structure to process the
partial solutions of the problem.. Below, it is presented the class "Words" that is in charge
of collecting and returning the solutions to the problem. It is straightforward to see that
solutions are sorted and non-duplicated.

class Words implements Output
{

public Hashtable words;
public Words ()
{

words = new Hashtable();
}

// .. other methods

public Output Op (Output x)
{

Words w = (Words)x;
Enumeration e = w.words.elements();
while (e.hasMoreElements())
{
// ...

}
return this;

} // Op (method)
} // Words (class)

Known Uses

Higher-order functions are a very common programming mechanism in Functional
Programming. On the contrary, traditional imperative languages give little scope for higher-
order facilities: Pascal, Java and C allow functions as arguments, as long as those functions are
not themselves higher-order, but have no facility for returning functions as results. In spite of
this common drawback, there are several examples of higher-order facilities in object-
orientation: the blocks in Smalltalk, the components in Eiffel, the bound routines in Sather. On
its side, C++ is capable of returning objects that represent functions by overloading the

7KH�5HGXFWRU�3DWWHUQ

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

11

function application operator This underlies the genericity hailed in the C++ Standard
Template Library (or STL [STKE86]) which requires advanced features of the language to
implement higher-order functions.

Both the C++ STL and, more recently, the Java Generic Library (or JGL [JGL]) include a
representative set of examples on how to combine higher-order facilities and iterators. It is
simple to see how many of the algorithm templates presented in those libraries are instances
Reductor.

Again in the scope of functional programming, the list comprehension mechanism of
languages like Haskell [THO99] is a reduced version of the Reductor pattern for the case of
problems dealing with lists. The construction of Reductor would have the following
appearance in Haskell:

[Expression (x) | x <- iterator, Filter (x)]

where iterator is a Haskell list.

The Standard Template Library [STKE86], which was adopted as part of the standard C++
library, has a nice set of examples of the Reductor pattern in the non-mutating, minimum and
maximum and generalized numeric algorithms sections. In the Iterator pattern [4] the
operation Traverse in the template class ListTraverser can be modelled as a Reductor with an
Expression named ProcessItem and without Filter. The operation Traverse in the class
FilteredListTraverser can be modelled as Map quantifications with an Expression named
ProcessItem and a Filter named TestItem. The Process Filters of the Booch’s catalog of
reusable software components in Ada [BOO87] are examples of application of the Reductor
pattern. In [SOL85], we find an example of the Reductor pattern with the chunks of
programming knowledge named plans.

In addition, it is straightforward to see how the application of a SELECT on a relational
database can be expressed as an instance of the Reductor pattern, as follows:

SELECT average (salary-taxes) FROM employer WHERE type = ’Teacher’;

� InputIterator: the rows of the EMPLOYER table.
� Predicate: the predicate that selects rows whose column is equal to "Teacher".
� Expression: the result of substracting the taxes to the salary.
� Output: the collection to accumulate the values: average (salary-taxes)

The next example shows how a JOIN sentence can be expressed as a Reductor again:

SELECT name, grade, subject FROM student, school-record
 WHERE id-number = ’508’ GROUP BY level

� InputIterator: the Cartesian product of STUDENTS and GRADES
� Predicate: Select the rows of the JOINED tables which ID-NUMBER is equal to

"508".
� Expression: Extract the columns of NAME, GRADE, SUBJECT, LEVEL

��� �����������������������������-�0�%XUJRV��-�*DOYH��-�*DUFtD��0�6XWLO

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

12

� Output : Merge the answers (the columns) according to the LEVEL.

Finally, the Monads model [THO99] and the Quantification [BUR00] are good examples of a
more formal usage of the Reductor pattern.

Related Patterns

• Command: Unlike Predicate and Expression, the Command pattern [GHJV95] defines a
procedure object that does not take any arguments after creation and produces side-
effects.

• Iterator: Predicate and Expression objects allow the use of data from inside (elements) and
outside the collection.

• Observer: Instead of receiving a notification message from a subject, an observer may
register call-back procedure objects at the subject that will perform necessary updates.
This scheme adds another variant to the push-and pull-models of the Observer pattern.

• Composite: A Reductor object can be uniformly accessed with the Composite pattern
[GHJV95]. A composite of Reductors can be operate as a pipeline structure, for which the
Output result is the InputIterator argument for the next Reductor in the pipeline.

• Divide-And-Conquer and Backtracking patterns [BGGS98] are other good examples of
patterns that model algorithm strategies.

Acknowledgments

Many thanks to our shepherd Dwight Deugo for his useful hints and comments on how to
improve the paper. We would also like to express our deep appreciation to Eva González for
her review of this article.

References

[BGGS98] Burgos et. al.: An Approach to Algorithm Design by Patterns, Proceedings of the
3rd European Conference on Patterns Languages of Programming and Computing
(EuroPLoP’98), 63-76, 1998.

[BOO87] Booch G.: Software Components With Ada: Structures, Tools and Subsystems.
Bejamin-Cummings, 1987.

[BRA96] Brassard G., T. Bratley, Fundamentals of Algorithms, Prentice Hall, 1996.
[BUR00] Burgos et al.: Abstract Solution Design by Specification Refinement, Innovation

and Technology in Computer Science Education (ITICSE’2000) Helsinki, Finland
July 11-13, 2000.

[GHJV95] Gamma, E. Helm R., Johnson R., Vlissides J. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

7KH�5HGXFWRU�3DWWHUQ

�WK��&RQIHUHQFH�RQ�3DWWHUQ�/DQJXDJHV�RI�3URJUDPV��3OR3
������$XJXVW�����

13

[JGL] JGL: The Generic Collection Library for Java. URL:
http://ultra64.cs.lafayette.edu/java/jgl/

[KUH97] Kühne, T., The Function Object Pattern. C++ Report, 9 (9) , October 1997, pp.
32-42.

[KUH99] Kühne, T. A Functional Pattern System for Object-Oriented Design. (PhD)
University of KaisersLautern. URL: http://www.agce.informatik.uni-
kl.de/~kuehne . 1999.

[LEV99] Levitin, A. Do We Teach the Right Algorithm Design Techniques? SIGCSE
Bulletin and Proceedings, March 1999, pp.179-183.

[MAN96] Manber U., Introduction to Algorithms: A Creative Approach, Addison-Wesley,
1996.

[MAR94] Martin R.: Discovering Patterns in existing Applications. In James O. Coplien and
Douglas C. Schmidt editors, Pattern Languages of Program Design, pp. 365-393.
Addison-Wesley, 1994.

[MTU99] Maruyana, H., Tamura, K., Uramoto, N.: XML and Java: Developing Web
Applications, Addison-Wesley, 1999.

[SCH96] Schmidt, D.R. Towards a Classification Approach to Design. In Proceedings of
the Fifth International Conference on Algebraic Methodology and Software
Technology, AMAST’96 (1996), vol. LNCS 1101, Springer-Verlag, pp. 62-84.

[SCH99] Schmidt D. A.: A Return to Elegance: The Reapplication of Declarative Notations
to Sofware Design. G. Gupta (Ed.): PADL’99, pp. 360-364, Springer-Verlag,
1999.

[SOL85] Soloway, E. From Problems to Programs Via Plans: The Content and Structure of
Knowledge for Introductory Lisp Programming. J. Educational Computing
Research, vol. 1(2), 1985, pp. 157-172.

[STKE86] Stepanov A., Kershenbaum, A.: The Standard Template Library URL: http: //
www.sgi.com / Technology /STL/. 1986.

[THO99] Thompson, S. Haskell: The Craft of Functional Programming. 2nd ed. Addison
Wesley, 1999.

[WAP] W@p Forum. http://www.wapforum.org/
[WIK] WikiWikiWeb Pages - The Portland Pattern Repository: Category Functional

Programming. http://www.c2.com/cgi/wiki?CategoryFunctionalProgramming.

