
Assembler
F. Balaguer - G. Dombiak

LIFIA-Departamento de Informática, Facultad de Ciencias Exactas, UNLP
CC 11 (1900) La Plata, Buenos Aires, Argentina

[gaston,fede]@sol.info.unlp.edu.ar
Tel/Fax : (54) (21) 228252

1.-Pattern Name
Assembler

2.-Also Known As
Grouper / Packager

3.-Intent
Provide an object artifact responsible to group a collection of objects, using a domain-based criterion. The
resulting object or collection of objects may be part of a new collection to assemble again.

4.-Motivation
It is common in financial applications to find the requirement to group Transactions, TransactionFundSplits
(TransactionFundSplits represents the split payment to different counterpart accounts) or Instruments in
other objects.
Sometimes the user of a trade support application needs to group Transactions with the same Counterpart
and maturityDate in order to make the settlement. The result is a new financial object that encapsulates the
bulk set of elements. Since these new financial objects are polymorphic with the initial ones, the settlement
operation makes no difference between them. There exists a well-defined selection criterion in order to
group these objects; in the example above the criteria was by counterpart + maturityDate .
Usually the user needs to be able to specify the grouping criteria. At other times, this criteria is hard coded
into some method of a domain object.
We propose to model the selection criteria as a component that will be used by an assembler object in order
to group the collection. This component can be replaced by other selection criteria without affecting the
other objects. In our financial model1 (see Fig 1.) instances of class Netter acts like an assembler, while
instances of NetTransactionFundSplit play the assembled object role.

NetTransactionFundSplit
settlementDate
quantity
price

TransactionFundSplit
fund
amount
quantity

AbstractTransactionFundSplit
price()
tradeDate()

Netter
netElements(col)

Client
elements()

NettingAlgorithm
quantity
price

NettingCriteria
 selectFrom:aColl for: aNet
canBeNetted: anObj with: baseObj

“select from aColl those
objects that could be
added to aNettedObject” “Answer if anObj

can be netted
with baseObj”

^self nettingAlgorithm price

Figure 1. The structure of the financial implementation of the Assembler pattern

1The model is the result of three years of development at J. P. Morgan doing financial applications (trade,
confirmation & settlement of transactions) implemented in VisualWorks with ENVY/Developer and
Sybase RDBMS

Part of the knowledge of the NetTransactionFundSplit is based on the computing of a given aspect of the
grouped elements, such as: price, quantity, etc. Thus, it is possible to define operations to compute these
transformations.
We usually find that this knowledge is placed in methods of the assembled object. The problem with this
approach is that it is difficult to reuse the assembled object since it is tightly coupled with the context where
it was defined. We propose to split this knowledge in a new object called CalculationAlgorithm which is a
private collaborator of the assembled object (in our model TransactionFundSplit). The assembled object
delegates to the CalculationAlgorithm the responsibility to respond to some messages.

5.-Applicability
Use the Assembler pattern when:

• There are lots of objects that have to be grouped based on some recurrent aspect. The
resulting set is a new abstraction, That is based on its components.

• The selection criteria's algorithm should be independent and may be replaced by another one.
• The AssembledObject wants to be used in many contexts without having to modify it.

6.-Structure
Figure 2. Shows the general structure of the Assembler pattern.

AssembledObject
add: anElement
aspectA
aspectB

Assembler
netElements:aColl

Client
elements
elements: aColl

CalculationAlgorithm
aspectA

GroupingCriteria
canNet: with:

BaseObject

aspectA
aspectB

AbstractBaseObject
aspectA
aspectB
aspectC

Figure 2. The general structure of the Assembler pattern

7.-Participants
• Assembler (Netter)
 - Defines an interface for receiving the objects to group.
 - Defines an interface for receiving the GroupingCriteria.
 - Constructs and assembles AssembledObjects from an initial collection of objects according

to the GroupingCriteria.

• GroupingCriteria (NettingCriteria)
 - Specifies which objects could be grouped according to the criteria.

• AssembledObject (NettedObject)
 - Implements the default behavior for its interface according to the hierarchy where it belongs.
 - Implements the Collection interface (#add:, #addAll:, #includes:, etc.).
 - Holds a reference to the GroupingCriteria used to build itself.
 - Holds a reference to the CalculationAlgorithm to use in order to respond to some messages.

• CalculationAlgorithm (NettingAlgorithm)

- Implements the behavior necessary to calculate some aspecs of the AssembledObject

8.-Collaborations
• The Client creates the Assembler object and configures it with the GroupingCriteria to use. This may

be accomplished with a Builder (refer to the Builder pattern for more information [Gamma95]). The
Client must also provide the collection of objects to group.

• The Assembler asks the GroupCriteria to select which objects of the collection could be grouped in an
AssembledObject.

• The Assembler requests the AssembledObject class to create a new instance which will contain a given
collection of objects according to a GroupingCriteria.

• The AssembledObject collaborates with the CalculationAlgorithm in order to respond to some
messages.

9.-Known Uses
Building a geographical application that shows different temperature and pressure measures, we had to
represent isopleths based on these measures. An isopleth is a curve which joint points with equal
characteristics. We used a solution based on the Assembler pattern in order to model an Isopleth object.
Fig 3 shows the structure of the geographical implementation. In this case the Isopleth hierarchy has a
Composite [Gamma95]. A SingleIsopleth is instantiated when the first two points are found; afterwards only
ComposedIsopleth instances are used to generate the temperature or pressure isopleth.

ComposedIsopleth
measure
add:
position

SingleIsopleth
measure
position

Isopleth
maximunMeasure
minimunMeasure
matchAMeasure:

IsoplethBuilder
build

Client
elements
elements:

CalculationAlgorithm
value:

GroupingCriteria
canGroup: with: inDistance:
canGroup: with:

Figure 3. The geographical implementation of the Assembler pattern

10.-Implementations
We have seen two different implementations of this pattern, the first one in the financial domain was
presented in section 4 “motivation”, the second one was the geographical example that was presented in the
known uses (section 9). The main difference between both cases is the specific implementation of
AssembledObject. This class has to be implemented following the rules given by the domain.
In the financial case the result of the whole netting operation is a collection of NetTransactionFundSplit,
while the source is a collection of TransactionFundSplit and NetTransactionFundSplit.
In the geographical case, the IsoplethBuilder produce one Isopleth as result, while the source is a collection
of measure and Isopleth (Single or Composed).
The GrouppingCriteria and the CalculationAlgorithm may be implemented as strategies since any of them
may vary independently from the clients that use them. Refer to the Strategy pattern for more information
[Gamma95]

11.-Consequences
• The creation of AssembledObject is based on a GroupingCriteria (a logic based on the

domain), which could change, or applied again.
• The Assembler object can be easily reused in many different contexts just by replacing the

GroupingCriteria.
• For small collections of objects where the GroupingCriteria is too silly, it may be wiser to

extend Collection in order to respond to #groupBy: instead of implementing the Assembler
pattern.

12.- Related Patterns
Actually, Assembler is a pattern that is composed of smaller patterns. It could be structurally

described in terms of a Composite which interacts with two Strategies; one for building and the other for
calculating. It could be part of a second order pattern classification.

• The AssembledObject is similar to Composite, because it groups objects with a defined
structure.

• The GroupingCriteria provides the domain based logic to select objects that will be grouped, it
could be implemented as a Strategy.

• The CalculationAlgorithm implements operations to compute or represent the
AssembledObject’s internal state. It could be implemented as a Strategy.

• Assembler, like a Builder, implements the construction of the AssembledObject. It uses the
GroupingCriteria in order to accomplish this task.

13.- References
[Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: "Design Patterns.

Elements of reusable Object-Oriented Software". Addison Wesley, 1995.

