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1 Introduction

There have been several attempts to write patterns about the data flow paradigm [Edw95, Meu95,
Sha96, BMR+96], including variants specialized for particular domains [PLV96]. Based on the
insights provided by these studies and on a different set of examples, in this paper I revisit the
subject and define a pattern language. The major contributions of this approach are the following:

1. Within data flow architectures, I refine the granularity and identify 3 other patterns (Payloads,
Module data protocol and Out-of-band and in-band partitions) which are not restricted to data
flow systems.

2. Although some of the issues associated with these patterns are also considered by other
studies, discussing them outside the context of data flow systems provides more thorough
coverage, offers new examples and encourages their use as stand-alone patterns.

Payloads is applicable to any instance where different entities communicate by exchanging
messages. It facilitates decreased coupling between messages and the entities that operate with
them. The Module data protocol offers several solutions for the inter-module message passing
mechanism and could be employed by any modular application. Out-of-band and in-band par-
titions organizes an application such that different architectural, design and implementation so-
lutions for contradictory requirements can be married. Finally, some of the issues discussed in
Data flow architecture and covered in more depth here are: (1) processing with two priority lev-
els at the filter level, (2) changing the behavior at runtime, (3) dynamically adapting to different
requirements, (4) improving performance with static composition and (5) facilitating visual pro-
gramming tools.

The presentation follows the guidelines from [MD96]. Each pattern is illustrated with a fairly
large number of examples from different areas, such as avionics systems, digital video, hardware,
music composition and improvisation, multimedia, operating systems, parallel computers and
scientific visualization. The domain diversity confirms the applicability of each pattern and helps
readers with different backgrounds achieve a better understanding.

I believe that the pattern language offers a broader perspective over the various issues related
to these patterns. For each of them, I have also tried to synthesize insights and conclusions from
other authors. This approach also improves the clarity of the presentation, allowing the reader to
focus on one problem at a time.
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2 Pattern: Data flow architecture

Context

A variety of applications from different domains (scientific visualization, media processing, en-
coders and decoders, to name just a few—an exhaustive categorization is provided in [Lea96])
apply a series of transformations to a data stream. Their architectures emphasize data flow and
consist of a set of interconnected processing modules (networks of modules) where control flow
is not represented explicitly. The modules are self-contained entities that perform generic opera-
tions and can be used in a variety of application contexts. They represent the computational units,
while the network is the operational unit. Therefore, the application’s functionality is determined
by the following:

� types of modules within the network; and

� interconnections between the modules.

Generally, the developers cannot anticipate all the possible ways the application will be used,
or all the contexts in which the applications will run. The resulting application could also be re-
quired to dynamically adapt to different requirements, while maintaining the same transfer func-
tion.

Problem

Some applications perform (in the same order) a number of operations on similar data elements.
Sometimes they could also be required to dynamically change their functionality (e.g., apply dif-
ferent operations) and/or adapt to different requirements, without compromising performance.
What architecture can accommodate these requirements?

Forces

� In some circumstances, a high-performance toolkit that is applicable for a wide range of
problems from a specific domain is required;

� The application’s behavior might need to change dynamically or adapt to different require-
ments at runtime;

� For complex applications, it is not possible to construct a set of components that cover all
potential combinations;

� The loose coupling associated with the black-box paradigm usually has performance penal-
ties. Generally, it is difficult to decouple the algorithmic properties of software modules
from the entities using them, without decreasing performance (generic, context-free efficient
algorithms are difficult to obtain);

� Software modules could have different, incompatible interfaces; share states; or need global
variables;

� Some applications require bidirectional data flow or feedback loops.
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Solution

Highlight the data flow such that the application’s architecture can be seen as a network of mod-
ules.1 Solutions for a wide range of problems from a given domain are possible with generic
modules which can be connected in different ways. By enforcing strict interfaces at the module
boundary, a large number of combinations is possible. Particularly for large applications, this
approach can also be regarded as an incarnation of the “divide and conquer” principle: instead
of attempting to solve a complex problem all at once, split it into sub-parts and deal with each
separately.

Inter-module communication is done by passing messages (sometimes called tokens) through
unidirectional input and output ports, thereby replacing direct calls. Depending on the number
of ports and their types, modules could be classified as follows (a comprehensive classification
according to various criteria is available in [Lea96]):

Sources Usually they interface with an input device and have one or several output ports.

Sinks Interface with an output device and have one or several input ports.

Filters Have both input and output ports (not necessarily only one in each direction) and perform
processing on the information fed into the input port and write it to the output port.

Unidirectional input and output ports are not a limitation. Rather, they increase a component’s
autonomy, such that—provided that there are no feed-back loops—processing is unaffected by the
presence or absence of connections at the output port(s). Because any component depends only
on the upstream modules, it is possible to change the output connections at runtime.

For two modules to be connected, the output port of the upstream module and the input port
of the downstream module have to be plug-compatible. Having more than one data type (i.e.,
“plug-type”) that flows through ports means that some modules perform specialized process-
ing. This reduces the number of data conversions required—thus improving performance—but
also decreases the number of possible network configurations—therefore the number of solvable
problems).

The filter modules should take into account the following guidelines:

� The transfer function should not model the domain or depend on a particular solution;

� The filters should be designed independently of their use;

� The functions should not have side effects and should be able to cooperate only by using the
output of one as the input to another.

Decoupling the filters from a particular problem increases their reusability. However, in most
circumstances the black-box approach has performance penalties because it does not take into
account context-specific factors. Good filters are designed to offer an even balance between these
two forces.

High priority processing can be done when the filter receives a message from the upstream
module. For example, if the message corresponds to an asynchronous event, the filter could pass
it downstream right away. Once acquired, the data could be processed at a later time, at lower pri-
ority. A common characteristic of these two priority levels (assuming a single thread of execution)

1In this context, “module” is any processing unit within the application domain.
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Figure 1: Data flow architecture.

is that scheduling (i.e., “when” the actual processing takes place) is non-deterministic. This issue
is also addressed in [BMR+96]. However, the finer granularity approach allows separation of the
policy from the mechanisms used to implement it—see Section 4.

Filters that do not have internal state could be replaced while the system is running.2 This
is an important property of the data flow architecture which allows dynamic change of behavior
(transfer function) and adaptation to different requirements (the same functionality implemented
in different ways) at runtime.

Within a network, adjacent performance-critical modules could be regarded as a “larger” fil-
ter and replaced with an optimized version (using the Adaptive pipeline pattern [PLV96]) which
trades flexibility for performance. Formally, this is modeled with functional composition: two ad-
jacent filters with transfer functions f(x) and g(y) are replaced with only one filter h = g(f(x)) =

g�f (x). Static composition could provide the underlying application (e.g., compiler) with enough
information to collapse a sequence of modules into a functionally equivalent primitive module,
reducing the overhead of inter-module communication. However, modules that use static compo-
sition can not be dynamically reconfigured. Figure 1 illustrates an example of a data flow archi-
tecture with 2 sources, 1 sink and 6 filters. Filters 5 and 6 can be statically composed into filter 56,
to improve performance.

Modules play a key role in data flow architectures. Applications that follow this pattern man-
ifest an increased degree of modularity, which makes it very easy to distribute the development
effort among different groups (e.g., visualization modules could be developed by the visualiza-
tion group, etc.). Users that have knowledge only about the application domain (e.g., scientific
visualization) could create new applications by simply connecting modules, without performing
any other programming. As mentioned in [Foo88], this is usually done with visual programming
tools [AEW96] which assist the creation of module networks.

The network normally triggers recomputations whenever a filter’s output value changes. While
manipulated interactively, it should be possible to temporarily disable the network, such that no
output is computed until a valid, stable state is reached. Disabling computations is useful if sev-
eral parameters need to be modified without having the filters recompute every time a change is

2Assuming that the internal state of a filter could be converted to an equivalent state of a different filter which has
the same transfer function, this condition could be relaxed.
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made, or if processing takes a long time.
The data flow architecture is applicable only for data-driven applications, where the output

is generated by performing various sequential transformations to the input. Like with analog
filters, the transfer function is determined by a combination of the individual transfer functions
of each module. Control flow is distributed across the participating entities and is not explicitly
represented at the architectural level. Adopting this pattern facilitates the rise of end-user pro-
gramming, automation and software components and emphasizes interface reuse at the module
level. Because the interaction mechanism between modules is fairly simple, this architecture is
suitable for domain-specific frameworks and often is the subject of visual programming tools. It
is not a good choice for applications with dynamic control flow or feedback loops. For instances
where the overhead of enforcing the inter-module interface is too high, a different architectural
choice might be a better solution.

As discussed in [BMR+96], signaling errors that occur inside filter modules is cumbersome
and difficult. Modules do not make any assumptions about their context and communicate only
with other data-processing modules. Only when combined with some knowledge about the net-
work topology and the application’s domain could an error message generated by a module be
meaningful. The Out-of-band and in-band partitions pattern provides one possible solution.

Resulting context

An application structured as a set of sources, sinks, filters and communication channels can be dis-
tributed over several CPUs (computers). This change is transparent for sources, sinks and filters;
the communication channels/messages need to provide marshalling/unmarshalling methods.

Examples

1. The Application Visualization System (AVS) [AVS93] is a powerful visualization package
that uses the data flow architecture. Different modules (file readers, data processing, etc.)
are organized into a network with the aid of a visual network editor. AVS modules have the
following characteristics:

� Not all AVS modules are plug-compatible. There are several types of input and output
ports, and the system does not allow two modules to be connected if their correspond-
ing ports are not compatible.

� Besides input and output ports, AVS modules also have a control port which generally
allows parameterizing of some internal variable by the output of some other module.
For example, the color of a plot could be determined by a module which compares the
plotted value with a reference.

Figure 2 shows an example of an AVS network.

2. Iris Explorer [EXP93] is a visualization program originally developed by Silicon Graphics. It
allows users to visualize data and create visualization applications by connecting modules
into a map. Explorer modules are small software tools, which could have several input ports,
several output ports, and a module control panel which provides access to the module’s
functions. Whenever a module is fired, it processes the data it has received and passes it
to the next module downstream. Firing can occur at several different stages of the map-
building process. A module fires when:

5



            

Figure 2: AVS Network. Top side ports are inputs, while bottom side ports are outputs. The
port types are color-coded and the network editor does not permit the connecting of incompatible
ports.

� it is launched in the Map Editor, provided it has all the data it needs on its input ports;

� an upstream module fires, sending data downstream;

� one of its parameters is changed;

� it is fired manually;

� it is connected to an upstream module which has already fired and has data on its
output port;

� it is triggered by an external event.

Module ports accept or output only one data type—lattice, pyramid, geometry, parameter
or pick. The Map Editor permits temporary disabling of a module or a group of modules.

Another system component is the Module Builder, which is used to create modules without
doing any programming beyond that needed to implement the module’s function.

3. Data flow architectures have been investigated from a hardware perspective as well [Gur85,
Pap91]. The execution model offers attractive properties for parallel processing—implicit
synchronization of parallel activities and self schedulability. Unlike the von Neumann model
which explicitly states the sequence of instructions, in the data flow model the execution of
any instruction is driven by the operand availability. This emphasizes a high degree of paral-
lelism at the instruction level. The Monsoon Project [Pap91] developed by MIT and Motorola
produced a data-flow multiprocessor targeted to large-scale scientific and symbolic compu-
tation. Its success motivated much of the work on similar projects [NPA92] and contributed
to spread the interest in data flow and parallel programming.

4. Avionics Control Systems (ACS) also use this pattern [Lea94]. ACS are complex systems and
constructing a set of components that merge all possible combinations is not feasible. Rather,
a means for combining different types of components (filters) together to serve a particular
purpose is required—the data flow architecture. The algorithmic properties of most filter
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modules are independent of the entities using them; their functions are not designed in
ways that are intrinsically coupled to any particular source or sink.

5. One of the most recent data flow architectures is Microsoft’s ActiveMovie [AMS], which
allows users to play digital movies and sound encoded in various formats. It consists of
sources, filters and renderers connected in a filter graph. All graph components are imple-
mented as Component Object Model (COM) objects. Filters have pins which are connected
with streams, but other communication channels for specialized communication (e.g., error
notifications) are available.

6. MET++ [Ack94] is a framework for multimedia applications. It supports the development
of multimedia applications by providing reusable objects for 2–D graphics, user interface
components, 3–D graphics, video, audio, and music. The audio resources are modeled as
modules of a source-filter-sink architecture.

Variants3

1. The data flow architecture is used in the VuSystem [Lin94], with the same taxonomy as in
“Solution.” Because the data flow in the network is continuous media and has soft real-time
requirements, Chris Lindblad calls it “media flow architecture.” VuSystem applications4 il-
lustrate very well the flexibility of this architecture. In the “room monitor,” the output of a
surveillance camera is analyzed such that just the frames which contain motion are recorded.
The “joke browser” extracts only selected parts (e.g., jokes) from the complete recording of
a late night show. Although these two applications are very different (the former processes
real-time video while the latter provides content-based access), both of them have been built
with the same tool just by connecting existing modules.

2. The multimedia framework described in [GT95] also employs the media flow architecture.
The framework uses a Component abstract class that represents media data processing mod-
ules. There are two kinds of components:

Passive Passive components are characterized by state and behavior. Media processing is
performed in response to messages sent to the object.

Active Active components also have state and behavior. However, processing is performed
spontaneously, even when no messages have been sent to the object.

Each component has one or two ports, which allow several types of information to flow in
the network. Like AVS, two modules could be connected only if the corresponding ports are
plug-compatible. Connectors are stand-alone objects which each connect 2 modules.

3. Bill Walker’s Ph.D. thesis [Wal94] describes a framework that uses this pattern in the context
of computer-assisted music. Unlike typical data flow architectures, his system has feed-back
loops and shared state. The modules are called Composers and Transformers , and global
information independent of the components is encapsulated within a PolicyDictionary
object.

3The differences between the data flow architecture and the variants discussed here are shown in italics.
4Some of these applications are available on the Web at http://www.tns.lcs.mit.edu/vs/vusystem.html .
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4. In [Rit84], Dennis Ritchie describes a variant of this pattern and how it is implemented in the
UNIX stream system. Data flow is bidirectional and modules have queues for each direction.
The queues are also employed for flow control—Section 4.

Related Patterns

� Inter-module communication is done through messages, which could contain either data
or control information. Payloads describes how messages encapsulate different types of
information.

� Data flow architectures require modules to pass information to each other. Module data
protocol provides several options for this mechanism.

� A separate part of a data flow architecture program is in charge of coordinating the modules
(for dynamic or interactive composition) and handling error messages. Out-of-band and
in-band processing describes how to organize such applications.

� Applications following the Layers architectural pattern [BMR+96] also manifest modules
which exchange data between them. However, in this case each module corresponds to a
different abstraction level and the data has different semantics on each layer—of course, the
Data flow architecture could be used within individual layers.

� Static composition is an instance of the Composite pattern [GHJV95], which ensures a con-
sistent interface for primitive (e.g., statically composed filter) and container (e.g., sequence
of filters) objects.

� Streams [Edw95], Pipes and filters [Meu95, BMR+96] and Pipeline [Sha96] provide similar
solutions but are subsets of the pattern described here.

3 Pattern: Payloads

Context

Sometimes separate entities5 need to exchange information with each other. This could be done
either by sending messages (payloads) through a communication channel which exists between
them or with direct calls. If communication is restricted to message passing (as in Data flow ar-
chitectures), then payloads encapsulate all types of information (e.g., data, control, etc.). The
communicating entities need a mechanism to distinguish what type of information corresponds
to each payload, as well as other other message attributes (e.g., asynchronous event, priority level,
etc.).

It is also possible that the communication channel does not directly support payload transfer
(e.g., the communication is done through a serial connection). These sorts of details should be
transparent for the entities carrying on a dialogue.

Some overhead is associated with each message transfer. Depending on the communications
profile (frequency and amounts of data exchanged), unless the payload transfer mechanism is
optimized, it could become prohibitively expensive.

5In this context, “entity” is used in a general way, to denote any software component that exchanges data with
another—for example, modules within the same application, or peer layers in a layered architecture.
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Problem

Entities send and receive various types of information. How is it possible to ensure a low cou-
pling between them and the different message types, while allowing communication over differ-
ent channels and reducing the message passing overhead?

Forces

� Communication is restricted to messages;

� The coupling between an entity and the data that is passed to it has to be reduced;

� Messages contain different types of information (e.g., control, data);

� An entity might give special treatment to certain messages (e.g., asynchronous events, high-
priority messages);

� The communication channel might not directly support the format of the messages;

� Copying blocks of data is an expensive operation.

Solution

Direct calls are not feasible for communication between entities located across logical boundaries
(different computers) or which need to exchange complex data (many parameters). For these
instances, all the information is packaged in payloads (or messages) which are logically passed
between the communicating parties.

Payloads are self-identifying, dynamically-typed objects which provide an abstract model such
that the type of information contained within each message can be easily identified. A decreased
coupling between entities and messages facilitates the optimization of the message passing mecha-
nism. Transfer mechanisms that require additional information about messages (Section 4) should
be able to obtain it directly from the message, through a well-defined protocol.

Payloads are composed of two components, a descriptor component and a data component:

Descriptor component Descriptors contain general information about the payload (e.g., type,
asynchronous event, priority level), as well as type-specific parameters (e.g., image size,
if the data component corresponds to an image). For example, the ActiveMovie architecture
recognizes an asynchronous event which requires graceful flushing of old data, followed by
a resynchronization.

Data component Some payloads have a data component, and the data type corresponding to
this component is determined from the descriptor. Other payloads (usually the ones corre-
sponding to control messages) do not have a separate data component (all the information
is included in the descriptor). Generally, this component is much larger than the descriptor.

Figure 3 shows the components of a control message and a data message corresponding to
an image. In the simplest form, the descriptor component contains just a tag that identifies the
payload’s type. If the length of the content is not known and can not be encoded within the
descriptor, the end of contents has to be signaled explicitly. When a source reaches the end of
the input data, it signals this condition to all filters which are connected to its output(s). This
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Figure 3: Different payloads and their components.

mechanism is propagated down the filter network until it reaches the sink. For example, the Basic
Encoding Rules for ASN.1 [X2088b] reserve a special data value (the tag [UNIVERSAL 0] ) for
this purpose. This issue is also discussed in [BMR+96].

If the two entities reside on separate machines, it is possible that they communicate over a
high speed serial link (e.g., Ethernet). In this case, the payloads need to provide serialization
and deserialization methods to encode them into a reliable byte stream (at the transmitter side)
and decode them from a byte stream (at the receiver side). Besides allowing distribution of the
architecture over several networked computers (which need not be homogeneous), these methods
also facilitate the checkpointing of the entire system.

Whenever possible, payload copying should be avoided because of the overhead associated
with this operation. For example, instead of copying the data, the originating entity could pass to
the receiver a reference (or pointer). If the fan-out is larger than 1, the payload has to be cloned
such that each receiver gets its own copy. But cloning wastes space and might not even be viable
if the payloads have large memory footprints. Under these circumstances, the receiver entities
could share the same payload. Should a receiver modify the incoming payload, it has to obtain its
own private copy.

Whenever it is not possible to avoid copying, then an optimized technique could be employed:

Shallow copy Copy just the descriptor and share data components. However, entities are not
allowed to modify the copy.

Deep copy Copy the data components as well. To increase efficiency, they could be implemented
as copy-on-write.

If the entities that exchange the data reside across hardware boundaries, the change of ownership
requires the entire payload to be transferred.

The major liability of this pattern is its inefficiency when compared with direct calls. This is
due to the high overhead associated with the message passing mechanism. One possible way to
improve performance is to pack multiple messages into one container message such that all of
them are transferred in one step—the Composite message pattern [SC95] uses the same principle;
however, rather than improving performance, its main objective is to abstract the communication
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structure. This approach is well suited to high message rates or bursty traffic, such that the sender
does not have to hold a message too long before passing it further. It has been successfully applied
in operating systems which consist of several interacting components [TW97, CRJ87].

A consequence of the Payloads pattern is that adding new message types does not require
changing the existing entities which are not interested in them. For example, in a Data flow ar-
chitecture (Section 2), filters pass downstream the messages they do not understand, without per-
forming any processing. Payloads increase the overall flexibility and permit the addition of new
functionality and/or features (e.g., priority levels, support for asynchronous events, etc.) with
minimal changes.

Examples

1. VuSystem’s modules [Lin94] communicate by exchanging payloads. Examples of payloads
are VideoFrame for single uncompressed video; AudioFragment for a sequence of audio
samples; and Caption for close-captioned text. Descriptor members common to all pay-
loads are:

Channel Channel number, which is used whenever payloads corresponding to different
sources are multiplexed on the same channel.

StartingTime Indicates the time when a payload is valid. It is initialized when the payload
is recorded, and then modified by VsRetime filters.

Duration Indicates for how long the payload is valid. The VsRetime filter modifies this
value at runtime to allow presentations at a different rate than the one used for capture.

The data component could be image data or the compressed image data for a video frame, a
sequence of audio samples, or text corresponding to close-captions.

Data components are located in shared memory segments. This facilitates inter-process com-
munication and improves performance. (The VuSystem uses the MIT-SHM X extension.)
However, whenever payloads need to be copied, one of the optimized techniques mentioned
in “Solution” is employed.

The payloads also provide marshalling/unmarshalling methods which allow VuSystem mod-
ules to reside on different computers.

2. Abstract Syntax Notation One (ASN.1) [X2088a] is a method of specifying abstract objects
in the Open Systems Interconnection (OSI) architecture. The Basic Encoding Rules [X2088b]
describe how to encode values of each ASN.1 type as a string of bytes. BER encodes each part
of a value as a (identifier,length,contents) tuple. The identifier and the length correspond to
the descriptor component, while the contents correspond to the data component. Although
ASN.1 and BER have been designed for the application-presentation interface within the OSI
architecture, they have also been applied for distributed systems.

3. In ActiveMovie [AMS], payloads are either media samples or quality control data. Media
data originates at the source and is passed only downstream. Quality control data provides
a means to gracefully adapt to load differences in the media stream. It is used to send noti-
fication messages from a renderer either upstream, or directly to a designated location.

4. In UNIX streams [Rit84], the objects that flow in the network are message blocks. A header
specifies their type (data or control), as well as other attributes (e.g., asynchronous event).
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5. The Message Passing Interface (MPI) [SOHL+96] is a standardized and portable message
passing mechanism which runs on a wide variety of parallel computers. MPI messages call
the descriptor component “message envelope.”

Related Patterns

� Many applications that adopt the Data flow architecture use payloads to encapsulate the data
that flows through the network.

� Marshalling and unmarshalling methods require payloads to reconstruct themselves from
a byte stream. A Factory method [GHJV95] could be employed at the receiver’s end to
reconstruct the appropriate type of payload.

� The Composite message pattern [SC95] facilitates the packaging of several messages into a
composite, thus improving performance by reducing the message passing overhead.

4 Pattern: Module data protocol

Context

Collaborating logical modules communicate by passing data blocks (or Payloads) between them.
Depending on the application’s domain, the requirements could be very different. Some applica-
tions process asynchronous events (e.g., user input) or assign different priority levels to various
requests. Other applications manipulate large amounts of data (e.g., images) or time-sensitive
information (e.g., audio or video).

Sometimes the receiving module operates slower than the modules which send data to it. For
instance, the speed of a module that writes to disk is determined by the hardware, which usually
is one of the slowest subsystems in a computer. To avoid data loss, the slow module needs to be
able to throttle down the other modules, thus determining flow control.

Therefore, the inter-module data transfer mechanism is subject to the application’s require-
ments and has to take place in a transparent manner.

Problem

Applications have domain-specific requirements. How can payloads be transferred between mod-
ules in a way that is compatible with the application’s requirements?

Forces

� Large payloads render buffering inviable;

� Payloads that contain time-sensitive data have to be delivered in a timely manner, such that
no deadlines are violated;

� Asynchronous or prioritized events are sent from one module to the other;

� Shared resources for inter-module communication (e.g., shared memory) might not be avail-
able, or the overhead associated with synchronization is too expensive;

� Flow-control has to be determined by the receiving module.
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Solution

Three different ways to assign flow control among modules that exchange Payloads are the fol-
lowing:

Pull (functional) The downstream module requests information from the upstream module with
a procedure/method call that returns the values as results. This mechanism could be imple-
mented via a sequential protocol, may be multi-threaded with other requests on either side,
and may perform in-place updates rather than returning results.

In the pull model, the payload transfer is initiated by the receiving module which deter-
mines flow control. It is applicable for instances where the senders operate faster than the
receiver. Because there is no provision for the sending module(s) to trigger a data transfer,
this mechanism can not deal with asynchronous or prioritized events.

The pull model is illustrated in Figure 4.

Module 1 Module 2

Data Flow

Data

Request (1)

Return (2)

Figure 4: The pull model for inter-module communication.

Push (event driven) The upstream module issues a message whenever new values are avail-
able. This mechanism may be implemented as procedure calls containing new data as argu-
ments, as non-returning point-to-point messages or broadcasts, as prioritized interrupts, or
as continuation-style program jumps.

Usually the sending module does not know if the other end is ready to receive or not. To
prevent data loss, the receiving module could have a data repository to queue the upcom-
ing messages. If the system processes asynchronous events or high priority messages, the
data repository should be able to identify and pass them to the downstream module ahead
of low priority messages. While a simple FIFO queue is suitable for the former situation,
the latter requires a priority queue. Payloads provides one possible solution for message
identification.

Because data transfers are triggered by the sender modules, the push model can handle
asynchronous or prioritized events. However, data repositories require additional schedul-
ing policies, might introduce unpredictable delays and are not viable if the payloads have
large memory footprints.

Figure 5 illustrates the push model.

Module 2Module 1

Queue

Message

Data Flow

Data

Figure 5: The push model for inter-module communication.
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Indirect (shared resources) This model requires the availability of a shared repository (some-
times called mailbox, pipe [BMR+96] or put/take buffer stage [Lea96]) that is accessible
to both modules. Whenever the sender module is ready to pass a payload to the receiver, it
writes it in the shared repository. When ready to process another input, the receiver module
gets a payload from the repository. For example, this mechanism could be implemented via
transfers to shared memory which occur at fixed rates, or via polling.

A consequence of this model is that the sender and the receiver could process payloads at
different rates. Assuming that not all the payloads are required by the receiver, the upstream
module could overwrite the contents of the shared repository before the downstream mod-
ule reads it. This is particularly important for instances where the payloads contain time-
sensitive information. For example, assume a digital video camera which captures frames
at a high rate and makes them available in a shared buffer. If the frame rate is not critical
for the rest of the system, then the next module could get frames from the shared buffer at a
different, lower rate.

The indirect model is illustrated in Figure 6. The square waves show how the two modules
access the shared repository at different rates (the writes and reads are shown as arrows).

Module 2

Data Flow

Transfer (1) frequency

Transfer (2)

Transfer (2) frequency

Shared Repository Writes

Shared Repository Reads

Module 1

Data Data

Shared
Repository

Transfer (1)

Figure 6: The indirect model for inter-module communication.

The performance of this mechanism depends on the nature of the repository; for systems
which use shared memory it could be quite efficient. However, the shared resource re-
quires the additional overhead which is typically associated with synchronization prob-
lems [SPG91] (e.g., managing the critical sections). This model might not work if the mod-
ules that communicate are located across hardware boundaries.

In the context of concurrent systems [Lea96] identifies two basic forms of flow policies (pull-based
flow for demand-driven applications and push-based flow for event-driven contexts), as well as a
mixed strategy (exchange). The rest of this section provides some additional details with general
applicability and shows the relationships with other patterns.

A push mechanism could use the data repositories for flow control [Rit84]. A high water mark
limits the amount of payloads that could be stored in the repository; the sending module does not
place data in the queue above this limit. When the queue exceeds its high water mark, it sets a
flag and the upstream module stops sending data. When the downstream module notices this flag
set and the queue drops below a low water mark, it reactivates the sender. However, this control
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flow mechanism is not suitable for applications that process time-sensitive data because it could
introduce unpredictable delays.

Depending on how flow control is implemented, data repositories could introduce an addi-
tional problem: if there is no message that marks the end of stream or the data repository cannot
detect it, the last messages need to be automatically flushed by a timeout mechanism. The Pay-
loads pattern facilitates the detection of this situation while maintaining a loose coupling between
messages and data repositories.

Each of the three models described below has its own problems. Mixed mechanisms that com-
bine the advantages of more than one method are sometimes viable. For example, the upstream
module could use the push model until the downstream module blocks communication. Then the
pull model could be used, until the downstream module is ready to accept other messages from
the receiver.

Having more than one input port complicates flow control and requires additional policies.
Two possible scenarios have been identified in the context of hardware data flow architectures [Den80,
Pap91]. In the static model, a filter recomputes its output value each time a new payload is avail-
able at an input port. The dynamic model tags the payloads with context descriptors. A new out-
put value is computed only when payloads with identical tags (context descriptors) are present at
the input ports. The choice between the two models depends on the application’s requirements.
However, the associative memory required by the latter and the dynamic token matching over-
head sometimes make this scenario not feasible.

Examples

1. The VuSystem [Lin94] module data protocol has the following requirements:

� Reduced latency, which is equivalent to no buffering.
� Feed-back to upstream modules.
� No multi-threading (the VuSystem runs like a single-threaded process).

To pass a payload, the upstream module calls the Send() method on its output port, which
calls the Receive() method of the downstream module. If the downstream module ac-
cepts the payload, the call to Receive() succeeds (returns True ). The downstream module
could indicate that it is not ready for new data by returning False from Receive() . Upon
receiving False from Send() , the upstream module stops trying to send data.

Whenever the downstream module becomes ready for more data, it calls the Idle() method
on its input port. This translates into a call to the Idle() method on the upstream module,
that sends any waiting data to the downstream module.

Figure 7 illustrates the methods that are called for inter-module communication. Therefore,
payloads are efficiently passed with one function call. The timing constraints are propagated
through back-pressure. By temporarily refusing a payload, a downstream module slows
down upstream processing. The mechanism is simple and does not require multi-threading.
If a module has little work to do, it can perform everything within the Receive() method;
otherwise, it can schedule processing later—see the discussion about the 2 priority levels in
Data flow architecture.

2. Data flow hardware also employs push and pull mechanisms. For example, consider the
arithmetic expression e = ((a + 1) � (b � 6)). A reduction machine takes a bottom-up ap-
proach, computing first the subexpressions a + 1 and b � 6, and finally the multiplication
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Figure 7: Inter-module communication protocol in the VuSystem.

which yields the result. This eager evaluation corresponds to the push model. A demand-
driven computation takes a top-down approach. It begins by requesting the value of e, which
triggers the evaluation of the product. This in turn triggers the addition and the subtraction.
The lazy evaluation corresponds to the pull model.

3. In ActiveMovie [AMS], the pins are responsible for providing interfaces to connect with
other pins and for transporting the data. These interfaces transfer time-stamped data, ne-
gotiate data formats and maximize throughput by selecting an optimal buffer management
and allocation scheme. Separate protocols are implemented for media samples, quality man-
agement, end-of-stream and flushing.

4. The UNIX stream input-output system [Rit84] uses a message queue and water marks for
flow control.

Related Patterns

� Data flow architecture uses this pattern to transfer messages between modules.

� Data repositories need various types of information about the messages they store (e.g., pri-
ority level, etc.). Payloads ensure uniform access to this information, while maintaining a
loose coupling between repositories and messages.

� Adjacent layers within the Layers [BMR+96] pattern communicate with each other. The
Module data protocol could be used to exchange data across layer boundaries.

� To ensure a loose coupling between communicating modules, the notification mechanism
could be implemented with the Observer [GHJV95] pattern.

5 Pattern: Out-of-band and in-band partitions

Context

An interactive application has a dual functionality:
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1. On one hand, the application interfaces with the user. It handles the event-driven program-
ming associated with user interfaces and usually is built on top of a toolkit that offers an
application programming interface (API) to the underlying graphics subsystem, as well as a
set of “standard” widgets (e.g., menus, buttons, etc). To satisfy the user’s visual perception,
the response times need to be on the order of hundreds of milliseconds.

2. On the other hand, it handles the data processing according to the application’s specification.
Different domains have different requirements. For example, numerical applications em-
phasize correctness and computational speed; likewise, multimedia applications work with
time-sensitive data and have to ensure that processing takes place in a timely manner, etc.
Domain-specific libraries and toolkits are employed for various tasks, including the use of
available hardware resources (e.g., math co-processors, graphics accelerators, etc.).

The problems addressed by the same application belong to different domains and therefore
have different requirements. Optimal architectural, design and implementation solutions for these
requirements are disparate and sometimes contradictory. Depending on the overall requirements,
the final solution is usually best suited for one of the two aspects, compromising the other.

Problem

The same application has different functionalities with divergent requirements. How can the con-
flicting architectural, design and implementation solutions be combined without compromising
any of them?

Forces

� User actions and their sequence are non-deterministic; therefore, user interface code has to
cover a large number of possibilities;

� Data processing has strict requirements and the sequence of operations (the algorithm) is
known in advance;

� Human users require response times on the order of hundreds of milliseconds, and user-
interface code usually has to wait for user intervention;

� Applications emphasize performance (e.g., correctness, accuracy, etc.) that is irrelevant for
the user interface (e.g., multimedia applications display new frames every 33 milliseconds);

� Generally, a large fraction of the running time is spent waiting for user input;

� The user interface code and data processing code are part of the same application and they
collaborate with each other.

Solution

Organize the application into two different partitions, according to their requirements:

Out-of-band partition Typically, this partition is responsible for user interaction. (The partition-
ing process is not limited to user interfaces. Rather, it is suitable for any instance of an application
that has a dual functionality with divergent requirements. The unique requirements associated
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with user interface code make it an excellent example for describing the pattern.) Com-
monly, 50%-80% of an application is devoted to user interface aspects [Lew95] and has to
cover a large number of possible actions which can not be determined in advance. Usually,
the out-of-band partition corresponds to the event-driven code that handles various types of
system messages. (User actions like key presses, mouse movements or mouse button clicks
are transformed into system messages as well.) Sometimes parts of this code are automati-
cally generated by software tools. Because it has to handle relatively infrequent events and
most of the time it waits for user input, performance is not the main issue. Rather, ease of
programming and powerful visual expression are essential requirements.

In-band partition The in-band partition contains the code that performs data processing accord-
ing to the application’s requirements. Even in the event of abnormal situations, control flow
is determined (well-designed code employs mechanisms like exceptions for error-recovery
routines) and the succession of steps is known in advance. This partition does not take into
account any aspects of the user interaction, and the focus is only on performance, as defined
by the application’s domain (e.g., processing speed, numerical accuracy, etc.). The code is
usually subject to instrumentation, which allows the developers to examine the execution
profile and eventually fine-tune the critical parts. Although the size of the code is small
compared to the out-of-band partition, most of the running time of an application is spent
here.

The two partitions are part of the same application and the inherent coupling between them
can not be overlooked. However, they could have different architectures and designs, and could
even be implemented in different programming languages, as long as the overhead associated
with the inter-partition communication (which is the main liability of this pattern) does not affect
their performance or increase complexity too much. Usually, the in-band partition posts event
notifications, while the out-of-band partition sends control data.

The out-of-band partition has knowledge of (some of) the internal representations used by
the in-band partition and, if required, could translate these into a format understood by the user
(e.g., a graphical representation). It could also allow a user to interact with the in-band partition,
translating in the other direction as well. For example, most interactive drawing programs allow
the selection of a color by positioning a cursor over a color map. When the color selection tool
is brought up, the out-of-band partition reads the current color value from the in-band partition
(values denoting RGB or HSV components), converts it to color map coordinates and displays the
cursor. When the user makes a selection, it does the reverse conversion and writes the selected
value back to the in-band partition.

Partitioning the application increases flexibility and modularity. In multi-threaded systems,
the two partitions could be implemented as different threads (probably lightweight, to ensure fast
interpartition communication), with different priorities. For instances where the in-band partition
performs heavyweight, time-consuming computations, the application could arrange to use the
out-of-band wait states to perform computations for the in-band partition.

Usually different development teams work on each partition. User interaction could benefit
from expertise in human-computer interaction, while the data processing is best understood by
people who are familiar with the application domain. The partitions help to distribute the de-
velopment effort. They also facilitate the generation (from the same sources) of non-interactive
applications suitable for batch execution with job queuing systems, or porting the application to
another system with a different user interface toolkit.
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Figure 8: Out-of-band and in-band partitions within an application.

Characteristic Out-of-band In-band
Objective Handle user interface and

event-driven program func-
tions.

Low-level media processing.

Emphasis on Ease of programming. High-performance.
When? Awaits user input or other

events and performs actions
based on events.

Repeated actions that occur
many times a second.

How? Much of the code rarely exe-
cutes in a given session, be-
cause it is built to handle
many possible situations.

Small part of the application
code which executes most of
the running time.

Tool Tcl/TclXt/TclAw C++

Table 1: Partitions within the VuSystem.

The out-of-band partition also plays an important role in the context of visual programming.
In such systems [AVS93, EXP93], this partition is more elaborate and assists users in assembling,
controlling and manipulating the in-band partition without requiring programming expertise.

Another benefit of application partitioning is that some error handlers can be placed in the
out-of-band partition. It is realistic to assume that the in-band code is made up of several reusable
software components, which are loosely coupled with other parts of the system. The out-of-band
code has additional knowledge about the application and can be regarded as a Mediator [GHJV95]
that coordinates various components and interprets error messages in the global context.

Figure 8 illustrates the two partitions within an application. The rate and size of the data blocks
which are fed to each partition show their different requirements.

Examples

1. The terminology used in “Solution” was inspired by the VuSystem [Lin94], where the two
partitions have different architectures and designs, and are also implemented in different
programming languages. Their characteristics are summarized Table 1.

2. In ActiveMovie [AMS] the graph manager (out-of band partition) connects filters and con-
trols the media stream. It also has the ability to search for a configuration of filters that will
render a particular media type and automatically build the corresponding graph. The stream
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control architecture allows the graph manager to communicate with individual filters and
to control the movement of data through the filter graph. An error detection and reporting
protocol defines how errors are handled by filters and propagated to the graph manager.
Because ActiveMovie is also a software development kit, the graph manager provides a set
of COM interfaces to allow communication between the filter graph and other applications.

3. AVS [AVS93] and Iris Explorer [EXP93] are interactive visual programming tools which rely
heavily on the out-of-band partition. They offer full access over the in-band partition, which
can be built, configured and operated with from the user interface.

Variants

1. This pattern is also present in [Wal94]. Improvisor objects (out-of-band) coordinate differ-
ent Composer and Transformer objects (in-band). In this case, the out-of-band partition
does not handle user interfaces.

2. The Berkeley parallel MPEG–1 encoder [GR94] is partitioned in a similar way. The out-
of-band partition consists of “master server” (which schedules slave processes), “decode
server” (which directs the transfer of encoded frames between slave processes if decoded
frames are used as reference frames) and “combine server” (which concatenates the encoded
frames to create the output bit-stream). The in-band partition consists of “slave processes”
which perform frame encoding. Again, user-interaction is not the main concern.

Related Patterns

� Data flow architectures consist of a set of interconnected modules which could be regarded
as the in-band partition. An out-of-band partition has knowledge about the network topol-
ogy and could handle error messages from the modules. It can also assist in the process of
creation and in monitoring the network.

� The Layers architectural pattern [BMR+96] also partitions an application such that each divi-
sion corresponds to a different level of abstraction. Each layer defines interfaces for the one
above it and uses the services provided by the one below. Unlike Out-of-band and in-band
processing, the objective is to ensure a loose coupling between the divisions such that one could
be changed (eventually at runtime) without affecting the others.
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