
12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 1

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Archi-Patterns 1:

A Process Pattern Language for Defining Architectures

Author: Gerard Meszaros
Object Systems Group

87 Connaught Drive NW,
Calgary, Alberta, Canada T2K 1V9

e-mail: gerard@osgcanada.com
Phone: 1-403-210-2967

Abstract

This pattern language is a first crack at capturing the key concepts and processes of
defining an architecture for a computer system. It captures the experiences of the author
based on well over ten years of building complex software systems in a variety of domains
including fault-tolerant systems, telecommunications, real-time databases and distributed
object computing.

1. Introduction:

In the spirit of the patterns movement, the patterns described here should be “old hat” to
practicing software architects. They capture the kinds of decisions and thought processes
that most architects have (in whole or in part) while they lay out the architecture of a
system. As these patterns are drawn from a number of problem domains, many architects
will recognize a subset of the patterns. Experience that crosses problem domains shows
that all these patterns are useful to some extent in all types of systems.

This pattern language is, by necessity, very high level. The detailed, supporting patterns
have not yet, for the most part, been documented. The author hopes that readers will take
up the challenge and help “flesh out” this pattern language based on their experiences.

1.1 Notes to PLoP-97 Reviewers

This pattern language is a rather ambitious undertaking and will not likely be “done” for
quite a long time. Given the finite time provided for review of each submission to PLoP-
97, I would like to focus the writer’s workshop discussions on the sections 2.6 Defining
Architectural Interfaces, and 2.7 Component Implementation. Reviewers will likely find it
useful to read or skim the higher level patterns which precede this section to better
understand the context in which the patterns in the section to be discussed operate.

1 The name of this pattern language is a pun on Architypes.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 2

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

One area in which I hope to receive many comments is Related Patterns. I am sure that
there are many patterns to which these patterns should refer. Some I am aware of but
have not had the time to track down; others I may not even know about. Any concrete
references you can provide will be greatly appreciated.

I would be more than happy to receive comments on the other patterns of the language in
any form including marked-up manuscripts, e-mail, verbally, etc.

1.2 Notation and Organization

This pattern language uses a number of conventions suggested in Patterns for Writing
Patterns [PWP97]. Specifically, it attempts to use EvocativePatternNames to
communicate the essence of each pattern. To set them off from the surrounding text, the
names are concatenated in the WikiWeb (or Smalltalk) style with all blanks removed.

Even though this is a process oriented pattern language, the patterns are named using
NounPhraseNames which describe the end result of applying the pattern. To facilitate
digestion of the large amount of information, this pattern language has an architecture
which can be used to “zoom into” specific topics in more and more detail. This
architecture is visible in the organization of the document sections

1.3 Pattern Language Summary

The following figure illustrates the structure of this pattern language as it is laid out in
section 2.0. The numbers in parenthesis correspond to the heading number with the first
digit omitted. (E.g. (3.1) can be found in section 2.3.1.)

All the patterns in this language are realizations (or specializations) of the patterns
DocumentedDecisions. The pattern SoftwareArchitecture is the root of this pattern
language. It suggests that a system should be partitioned into a number of interacting sub-
components. ArchitecturePerSubDomain suggests partitioning the system and its
architecture based on the different domains it touches. A first order decomposition results
in two key sub-domains and their respective architectures, the TechnicalArchitecture and
the BusinessArchitecture.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 3

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Software
Architecture

(2.1) Business Architecture

(4) Multiple
Architecture Levels

(6) Architecture
Interfaces

(3) Architecture
Requirements

(2) Architecture per
SubDomain

(5) Multiple
Architecture Views

(7) Component
Implementation

(2.2) Technical Architecture

(3.1) Documented Architecture Objectives

(5.1) Requirements Vieiw

(4.1) Logical Architecture

(3.3) Hungry Infrastructure

(3.2) Traceable Architecture Objectives

(4.2) Physical Architecture

(4.3) Mapped Architecture

(5.5) Hierarchical Vieiw

(5.4) Delivery Vieiw

(5.3) Software Dependency Vieiw

(5.2) Interaction Vieiw

(6.6) Extensible Interfaces

(6.5) Most Encapsulated Implementations

(6.4) At Least One Implementation

(6.3) Clearly Defined Semantics

(6.2) Encapsualated Implementation

(6.1) Component Use Cases

(7.1) Traceable Implementation

(7.2) Optimized Behind Interfaces

(7.3) Interfaces Optimized Out

Documented
Decisions

Mater ia l to be reviewed.

The pattern MultipleArchitectureLevels and its supporting patterns LogicalArchitecture,
PhysicalArchitecture and MappedArchitecture deal with techniques for ensuring that the
system distribution is handled in a way which facilitates changing of the distribution
model.

The pattern MultipleArchitectureViews and its supporting patterns InteractionView,
DeliveryView, HierarchyView and RequirementsView deal with ways of describing the
architecture to audiences with different interests and needs.

The pattern ArchitectureInterfaces leads to a number of patterns which deal with defining
the right interface for architecture-level components to facilitate subsequent “architectural
substitution”. ClearlyDefinedSemantics states that all operations of the interfaces should
have semantic descriptions in addition to syntactic descriptions.
AtLeastOneImplementation states that the architect must be able to conceive of at least
one reasonable implementation of every architectural concept introduced.
MostImplementationsEncapsulated guides the architect when several possible interfaces
must be evaluated and chosen amongst.

The pattern EncapsulatedImplementation leads to a number of patterns which deal with
implementing the architecture. Traceable Implementation suggests that the

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 4

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

implementation should be forward engineered from the architecture (making as few
changes as are necessary) to ensure traceability. OptimizeBehindInterfaces suggests that
optimizations should be done out of sight of the client. InterfacesOptimizedOut suggests
that performance can be improved by ”flattening” the implementation.

1.4 Fundamental Principles

This section describes the fundamental principles behind this pattern language. Most of
the patterns in this language specialize this pattern (or can be viewed as instances of this
pattern. You choose your preferred metaphor.)

1.4.1 Documented Decisions

Context:

You are carrying out a task or activity whose results need to be understood by others who
many need to continue it in the future.

Problem:

How do you help others understand what you have done and the rationale behind it?

Forces:

• Documenting decisions takes time and effort.

• Some decisions seem so obvious that it seems silly to spend the effort to document
them.

• What is obvious to one person may be obtuse to another.

• Time is often in short supply. (We never have time to do it right, but we often have to
make time to do it over.)

Solution:

Document all significant decisions. This decisions may pertain to the design of the
architecture, assumptions about the deployment environment, details of the functionality
requirements.

For our purposes here, a decision is significant if any of the following are true:

• It affects the implementation of the subsequent design.

• It is likely to be questioned at a review.

• It is likely to be reversed at some time in the future if the circumstances surrounding
it change.

• It needs to be understood before making any changes in the areas it affects.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 5

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

If in doubt, document the decision. The kinds of decisions which may need to be
documented include:

• Designs chosen or rejected (at least the ones which appeared to be “good” on the
surface)

• Requirements included or excluded

• Assumptions (about just about anything)

By documenting the decisions, it is easier for to question them, detect bad assumptions or
misunderstandings, or to understand when the decision should be revisited.

Related Patterns:

Most of the patterns in this pattern language are specializations (i.e. examples or
instances) of this pattern.

The "Decision Capture and Deferral Pattern Language" [Hopley95] discusses the
principles involved in making conscious decisions about what decisions to make and
which to defer until later.

2. Software Architecture

Alias: Application Architecture

Context:

You are defining a software system with complex requirements. It will probably be built
by a multi-person team .You expect that the system will be modified over its lifetime or
will be one member of a family of related systems.

Problem:

How do you organize your system to help manage the complexity?

Forces:

• An application / software system without a well-defined structure is hard to
understand or maintain.

• Developers need guidelines for what parts of a software system are allowed to talk to
another part. (rules about the parts and their interrelationships or dependencies …)

• A well partitioned application may be able to reuse much of the functionality from
other applications that had similar requirements.

• A well partitioned application may be very easy to adapt to changing requirements
(such as new kind of user interface).

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 6

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

• Without well defined system components and their interfaces, developers will
introduce more interactions between system components than are necessary.

• “Divide and Conquer” is a good approach to managing complexity. This can be
achieved through decomposition, abstraction and encapsulation.

• K.I.S.S. (Keep It Simple, Stupid)

• Make it as simple as possible, but no simpler. (Albert Einstein?)

• An arbitrary subdivision is worse than no subdivision.

• Defining an architecture for an application is difficult work that requires a lot of
experience (and sometimes creativity) to do well.

• Reuse of an existing architecture may be made easier by frameworks. (& domain
specific software architectures)

Solution:

Define an architecture for your application. You may be able to (re)use a pre-defined
architecture if your requirements are similar to other applications, or you may need to
define your own architecture to address specific needs.

Ensure that the architecture you choose or define addresses all current functional
requirements as well as all the Change Cases [Change] of your application. (Or at least
ensure that it can be easily extended to address them in the future.)

For the purpose of this pattern language, an architecture can be considered to be:

A pattern (or blueprint) for organizing a set of components to solve a
particular class of problem in a manner which satisfies a set of principles
chosen to address the needs of the user and/or business.

The components of which we speak are the software entities which exist within the
system. Depending on the particular view of the architecture, the components may be
Classes, Packages, Subsystems, Executables and so on.

Related Patterns

To capture the architecture to everyone’s satisfaction, provide MultipleArchitectureViews
for each of MultipleArchitectureLevels. Decompose the architecture into components
using ComponentPerSubDomain.

Document the requirements of each component of the architecture using Architecture
ComponentUseCases. These will later form the basis of the test suite to validate any
implementation of the component. (description of the requirements of the architecture vs.
description of the requirements of each component this architecture is made of/consists of
…)

Architect Controls Product in [Cope95] suggests that an architect should be in charge of
an entire family of systems while individual project managers are responsible for delivery

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 7

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

each release.

Related Literature

Nearly everybody I know has a different understanding of the term ‘architecture’. Here is
just a sampling of definitions that appear in the literature:

• Perry; Wolf (92): “Architecture is a set of architectural (or, if you will, design)
elements that have a particular form. We distinguish three different classes of
architectural elements: processing elements; data elements; and connecting
elements.”

• Tichy; Habermann; Prechelt (93): “The architecture of a software system represents
the information with the strongest leverage for software development and evolution.”

• Gacek; Abd-Allah; Clark; Boehm (95): “A software system architecture comprises: A
collection of software and system components, connections, and constraints. A
collection of system stakeholders’ need statements. A rationale which demonstrates
that the components, connections, and constraints define a system that, if
implemented, would satisfy the collection of system stakeholders’ need statements.”

• Garlan; Perry (95): “The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their design and evolution
over time.”

• Luckham; Kenney; Augustin; Vera; Bryan; Mann (95): “An architecture consists of a
set of special specifications (called interfaces) of modules, a set of connection rules
that define direct communication between the interfaces, and a set of formal
constraints that define legal and/or illegal patterns of communication.”

• Shaw; Garlan (96): “Abstractly, software architecture involves the description of
elements from which systems are built, interactions among those elements, patterns
that guide their composition, and constraints on these patterns. In general, a
particular system is defined in terms of a collection of components and interactions
among these components. Such a system may in turn be used as a (composite)
element in a larger system domain. ... In addition to specifying the structure and
topology of the system, the architecture shows the correspondence between the
system requirements and elements of the constructed system, thereby providing some
rationale for the design decisions. At the architectural level, relevant system-level
issues typically include properties such as capacity, throughput, consistency, and
component compatibility.”

2.2 Architecture Per Sub-Domain

Context:

You have decided to define an architecture for your complex system.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 8

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Problem:

What is an appropriate way to subdivide your system?

Forces:

• “Divide and Conquer” is a good approach to managing complexity. (decomposition,
abstraction & encapsulation … ?)

• A system with requirements from many domains will be necessarily complex.

• Each domain has its own terminology and concepts. (What is the meaning of domain
here in this context?)

• A “Jack of all Trades” is most often a “master of none”. Subdividing the system allows
people to specialize and excel within their domain.

• Arbitrary subdivision may be worse than no subdivision (Documented Design
Decisions …)

Solution:

Subdivide your system into a component per identifiable sub-domain with the appropriate
interfaces between them. Document the requirements of each component using UseCases.
Define an architecture for each component. Encapsulate complexity of each domain
specific component behind a simple (domain related) interface that hides the complexity
from the rest of the system.

A sub-domain is defined as being a collection of concepts (abstractions) that relate much
more closely to each other than they do to concepts in the other sub-domains.

Related Patterns:

OrganizationFollowsArchitecture [Cope95] should be used to help reinforce the
architecture by ensuring that organizational boundaries coincide with architectural ones.
This prevents the two forces from working at cross-purposes.

Examples:

Examples of sub-domains of a typical business system architecture are
BusinessArchitecture and TechnicalArchitecture. Examples of sub-domains of a typical
application program might be UserInterface, Persistence Design, Process/Concurrency
Control, Security, etc.

2.2.2 Business Architecture

Context

You are building a system which will need to inter-operate with other applications within
your enterprise.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 9

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Problem

How can you make sure that all the applications in your enterprise can inter-operate
properly?

Forces

• There are many entities in the typical business and relationships amongst them that can
be quite complex.

• If each application defines its own entities, the applications will not share a common
vocabulary.

• Even if they work from the same domain model but each application creates its own
implementations of the entities, the applications will be hard pressed to inter-operate.
(The so-called “application silo” problem.)

• Every business process (or the software application which implements it) may
introduce additional associations between existing objects (what kind of relationships
to what kind of objects?). Left unmanaged, this can create overly complex
relationships which make persistence design (amongst others)(Do these unmanaged
relationships only impact persistence design or is it just an example?) very difficult.

• Someone needs to be responsible for monitoring proposed new business objects
(entities) for commonality with already defined ones. Once identified, it may be
necessary to reconcile differences in attributes or naming, and to introduce new
abstractions to capture the commonality where there are significant legitimate
differences.

• Many developers look for differences rather than for similarities. This is then used to
justify why they cannot reuse (with or without modification) the existing concepts.

Solution:

Define a Business Architecture based on the structure of the business. The business
architecture defines the vocabulary of the business to ensure that all applications mean the
same thing when they use a particular noun.

Assign an Architect (or ArchitectureTeam) to own it. (ArtifactOwner) Validate it using
the BusinessUseCases which capture the BusinessProcesses. The Business Architecture
will describe the BusinessObjects in your domain complete with all the operations
(including attributes) they support and the associations they may have with other
BusinessObjects

Resulting Context:

The Business Objects may become quite large due the varied requirements of the many
applications which use them. You may find it necessary to use Business Object

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 10

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Extensions2 to add the additional behavior and attributes which are only required by some
Business Processes.

Related Patterns:

ArtifactOwner [Cope95] states that any artifact which is considered valuable must have an
owner who is assigned the responsibility for maintaining its integrity (otherwise it is sure
to lose its value over time.)

Implementation:

When you get to the point of implementing your system, all your Business Objects should
inherit their basic implementation from a single class. This class would be a good place to
add the interface which allows all Business Objects to support Transactions and
Persistence. The implementation of this interface would use the services of the Technical
Infrastructure.

If you need to inter-operate with systems of other companies, you may need to jointly
define an IndustryArchitecture which consists of the definitions of common concepts in
the industry. The OMG has established a number of such groups for the purpose of
standardizing on a set of common Business Objects across a particular industry.

2.2.3 Technical Architecture

Alias: Technical Infrastructure

Context:

You are developing a system with significant business and technical challenges.

Problem:

How do you make it possible for the application developer to focus on the business
problem?

Forces:

• “Jack of all trades; master of none...”: A person who studies computer science enough
to understand how to implement transactional persistence and concurrency control
likely doesn’t have the time to become an expert in user interface design or business
modeling.

2 BusinessObjectExtensions: This is similar to ENVY’s class extensions in that it involves providing optional
attributes and behavior that can the associated with a Business Object at run-time and therefore it can be
selectively included in only those systems using that Business Object that require it.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 11

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

• Clearly separating the Computer Science domain from the Business Domain is hard,
especially for computer scientists and engineers who like to get their hands dirty with
the technology.

Solution:

As a key component of the system architecture, define a “technical infrastructure”
component which encapsulates the complexities of the computing domain from the
average application developer. Strive especially hard to encapsulate the
PhysicalArchitecture (which is prone to frequent changes), the SecurityArchitecture
(because if you understand it, we’ll have to shoot you) and the ConcurrencyArchitecture
(because if you understand it, you will want to shoot yourself!) from the application.

Capture the requirements of the infrastructure as Infrastructure ComponentUseCases. The
Infrastructure ComponentUseCases may be categorized into groups of related use cases
collectively known as Infrastructure Services.

Define an Architecture for the TechnicalInfrastructure. This Technical Architecture can be
used to integrate the various components of the Technical Infrastructure, including
ensuring that various purchased components can be integrated into a single cohesive
infrastructure.

Related Patterns:

The architecture of the Technical Infrastructure is also known as the Technical
Architecture. Products based on the Common Object Request Broker Architecture
(CORBA) are examples of a TI (may be captured my an examples section …).

2.3 Architecture Requirements

2.3.1 Documented Architecture Objectives

Synopsis: The objectives of the architecture should be documented and made available to
all developers so they can ensure they don’t compromise any of them.

2.3.2 Traceable Architecture Objectives

Synopsis: The objectives of the architecture should be clearly traceable to the objectives
of the business it supports. The objectives should not appear out of “thin air”. The set of
objectives should be validated for completeness against the objectives of the business by
asking “What else (services, flexibility) could the architecture provide to allow the
business to be more efficient and competitive?”

2.3.3 Hungry Infrastructure

Context:

You are defining an architecture to be used for building a number of applications. You

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 12

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

plan to implement part of this architecture as an Application Framework or Technical
Infrastructure.

Problem:

How do you maximize the value provided by the architecture by providing the client
application with a clean, usable and highly functional interface?

Forces:

• Every bit of functionality moved into the infrastructure reduces the amount of work
required to build an application.

• Every bit of functionality added to the infrastructure reduces the complexity of the
infrastructure and may make it harder to understand how to use it.

Solution:

Put yourself in the shoes of a developer of application to be built using the architecture.
Capture all the things the architecture should do to make your application easy to
construct. Ask yourself “How could I make it even easier to build this application?”
Examine every step in a typical application programs asking whether this is something the
application developer should have to deal with. If the work is “computer science” related,
the odds are that it can and should be handled by the infrastructure. As a rule, only
“application policy” and “business process” related decisions should be left in the hands
of the application developer.

Move as much of the complexity as possible into the infrastructure. Capture these
requirements as Component Use Cases of the infrastructure which describe what the
application wants to achieve and scenarios which describe the circumstances in which the
Use Cases are “invoked”.

2.4 Multiple Architecture Levels

Context:

You are building a system which will be deployed in a multi-computing environment
(whether distributed or just having multiple processors) which is bound to change over
time. There are many decisions to be made to get from a set of functional requirements
(e.g. Use Cases), non-functional requirements (e.g. performance, constraints) and future
requirements (e.g. Change Cases) to a working distributed system.

Problems:

How do you ensure that the decisions are made in an orderly fashion that results in a high
quality system that is capable of being extended to address the future requirements at a
later date?

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 13

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Forces:

• Building a complex business system is hard; building a distributed one is even harder.

• First make it work, then make it efficient. In a performance oriented development
culture, developers are prone to optimizing the design before they have even designed
it.

• Deferring distribution may be scary if you are not confident in your ability to tune any
performance issues quickly.

• An architecture based primarily on the physical environment (which changes very
rapidly) is likely to become obsolete quickly. In the future, developers will need to
explain that things in the architecture exist for “Hysterical reasons.”

Solution:

Define a set of architecture models which address specific aspects of the system at
defined levels of abstraction. The number and nature of these models may vary based on
the type of system being built, however, for a typical distributed system, the bare
minimum set of architecture models should include:

• The Logical Architecture

• The Physical Architecture

• The Mapped Architecture

Define the “logical” or “conceptual” architecture for the system without respect for the
planned distribution boundaries. Let’s call this the LogicalArchitecture. Separately,
define the physical environment in which the system will be deployed. This is called the
PhysicalArchitecture. Finally, define a mapping of the components of the
LogicalArchitecture into the components of the PhysicalArchitecture. Do this as late as
possible to ensure that the LogicalArchitecture is not corrupted by the
PhysicalArchitecture.

Define all the interactions between components of the Logical Architecture. Define the
mapping of the LogicalArchitecture into the PhysicalArchitecture only after the
LogicalArchitecture has been validated as being complete and sufficient.

Optimize behind interfaces. (=> Related Pattern?)

Related Patterns:

The "Decision Capture and Deferral Pattern Language" [Hopley95] discusses the
principles involved in making conscious decisions about which decisions to make and
which to defer until later.

The patterns LogicalArchitecture, PhysicalArchitecture and MappedArchitecture elaborate
on those principles as they apply to the process of distributed system design.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 14

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Rationale:

Distributing functionality onto processors before one has verified that the functionality
actually works is a common mistake and often leads to systems that meet performance
requirements but remain “buggy” throughout their lifetimes. With the levels of
functionality and complexity seen in modern systems, the likelihood of getting it to work
correctly without the extra step is fast approaching nil.

Taking a more disciplined, multi-step approach may feel like it is taking longer, but the
result is typically more correct functionality and much less time spent chasing down hard-
to-find problem.

Known Uses:

There are now more and more tools which support such “late distribution”. These tools
allow the Logical Architecture to be implemented in a programming language without
concern for the distribution of the system. The resulting implementation is then “mapped”
using the tools into the PhysicalArchitecture in a way which preserves the semantics of
the implementation across multiple processors. Specific examples include IBM’s
VisualAge Distributed feature, CORBA based products such as ParcPlace-Digitalk’s
Distributed Smalltalk, and Forte. Some of these tools generate distributed applications in a
“compile” step, while others introduce distribution at run-time.

2.4.2 Logical Architecture

Context:

You are building a system which will be deployed in a multi-computing environment
which is bound to change over time. Note: in a non-distributed system, the
LogicalArchitecture and the MappedArchitecture are one and the same.

Problems:

How do you ensure that the physical deployment model (the PhysicalArchitecture) does
not unduly warp the architecture of the system.

Forces:

• Building a complex business system is hard; building a distributed one is even harder.

• Too much of a focus on efficiency before functionality can lead to systems with very
efficient bugs.

• Deferring distribution may be scary if you are not confident in your ability to tune any
performance issues quickly.

• Without a disciplined architecture-centric development process, it may take a physical
(e.g. processor) boundary to force a component interface to be defined with any rigor.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 15

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

• An architecture based on the physical environment (which changes very rapidly) is
likely to become obsolete quickly. In the future, developers will need to explain that
things in the architecture exist for “Hysterical reasons.”

Solution:

Define the logical architecture without respect for the PhysicalArchitecture. Define
components that make sense even if the system were not distributed at all. Define the
interactions between the components of the Logical Architecture.

Related Patterns:

Define a mapping of the LogicalArchitecture into the PhysicalArchitecture only after the
LogicalArchitecture has been validated as being complete and sufficient.

If necessary, optimize the implementation behind interfaces.

2.4.3 Physical Architecture

Context:

You are building a system which will need to execute in a multi-computing environment
consisting of two or more processors or computers.

Problems:

How do you capture and describe on the physical environment in which the system will be
deployed?

Forces:

• Ignoring the physical deployment of the system can result in systems with very poor
performance.

• Systems which define only a physical model become obsolete as soon as the physical
deployment changes.

• The physical computing environment contains many objects with often complex inter-
connections. The details of the connections may often be changed and should have no
impact on the applications which run in the environment.

Solution:

Define the physical architecture consisting of the important physical components and their
interconnections. Model the interconnection of physical components in only as much
detail as is necessary for the understanding and solving the current problem. Only those
components which will have responsibility for application Use Cases should be included.

Later, you will decide how the logical architecture will be mapped into this physical

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 16

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

architecture.

Example:

When dealing with a computer network from the perspective of an application, the
Physical Architecture would consist of Servers (of various types such as Database Servers,
Application Servers, Communication Servers, etc.) and the LAN which connects them.
More detailed components such as disk drives, network cards, etc. are not of interest to
the typical application in this domain.

When dealing with telephone calls in a telephone network, the Physical Architecture
components of interest are Switching Centers and the connectors are Trunks (Payload
carrying links) and Signaling Links. However, when dealing with network management
of the same network, the Physical Architecture components may include Digital Cross
Connects connected by Digital Carriers (such as T1s, DS512s and OC1s.) The increased
level of detail is necessary for this domain but would get in the way when dealing with
call processing.

Known Uses:

UML also refers to this as the Physical Architecture. [UML97]

2.4.4 Mapped Architecture

 Alias: Deployment Architecture

Context:

You are building a system which will be deployed in a multi-computing environment.
You have defined a Logical Architecture and have designed or been mandated a Physical
Architecture.

Problems:

You need a representation of the system as it will be actually deployed in the network.
(deployment vs. runtime/distribution…)

Forces:

• Making the distribution decision too early can result in your design being “married” to
the Physical Architecture.

• Sooner or later, you will have to make the decisions regarding the distribution of your
system so that you can implement it. Leaving it too late can leave significant risk
factors unresolved until too late.

• The physical architecture and the deployment of the software into it are some of the
highest “churn” areas of a software application.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 17

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Solution:

For each object in the LogicalArchitecture, decide in which network elements it will
reside (using the patterns ObjectsLiveAtHome [OopsArch96] and
HomelessObjectsLiveWithTheirBestFriends [OopsArch96]. Hide all distribution
boundaries behind object interfaces. (Refer to the pattern Encapsulated Implementation)

Where an object needs to be easily accessible from several (or many) object spaces,
replicate the object using HalfObjectPlusProtocol [HOPP95]. Where it is acceptable to
use remote messaging to access an object, use RemoteProxy [Siemans96]. A hybrid
approach is Caching Proxy[Siemans96]. These are all examples of
OptimizedBehindInterfaces.

Related Patterns

UML refers to the deployed system architecture as the Deployment View. [UML97]

2.5 Multiple Architectural Views

Context:

You are capturing the architecture of a system or one of its components, for the purpose
of communicating the architecture to others.

Problem:

How do you present the architecture of the system to audiences with potentially diverse
needs?

How do you present different aspects of the system’s architecture in a way appropriate to
the audiences?

Forces:

• There are many potential audiences with different needs of the system’s architecture.

• There are different aspects of a system’s architecture that need to be presented in a
different way/form …Providing a view for each audience could be very expensive
indeed.

• Multiple views of the system loose their value if they do not describe the same
architecture; that is, if they get out of sync.

• Keeping many views consistent is difficult

• The views must somehow be reconciled, at least when the system software is defined.

Solution:

Pick a small set of views of the system architecture which satisfy as many of the

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 18

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

audiences as possible. Capture these views in a manner which facilitates keeping them
consistent. This could be by using an Architecture Case Tool, or by building an
ExecutableArchitectureModel3.

The minimum recommended set of views includes:

• The RequirementsView, which describes the relationships between various pieces of
the system requirements.

• The InteractionView, which describes the interactions between distinct components
in a running instance of the system.

• The DeliveryView, which describes the relationships between the various fragments
of code (code level or architecture level ???).

• The HierarchyView, which describes the commonality of behavior amongst various
system components.

Together, this set of views should present a complete picture of the system without
creating so many views as to be unmanageable. Each of these views should contain
objects at a level of granularity appropriate to the level of model. As an example, at the
Logical Architecture level, only logical architecture concepts should be included; objects
related to implementing a distributed system would be omitted.

 Of the four views, the Delivery View is the one used most in traditional software
development processes. The Interaction View and Requirements View have become
increasingly important as systems become more complex because such systems are hard to
understand purely at the level of source code.. The HierarchyView is most common in
Object Oriented programming languages which support inheritance, but can be quite
useful even where the programming language does not support inheritance; it is the
relationship of interfaces which should be modeled, not the relationships between
programming classes.

2.5.2 Requirements View

Context:

You are gathering the requirements for a complex system. The requirements seem to be
endless.

Problem:

How do you organize large amounts of requirements to make it possible to deal with
them?

3 ExecutableArchitectureModel: A software model (or implementation) of the architecture which exhibits the
same characteristics as the full-scale architecture.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 19

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Forces:

• Organizing the requirements is hard work and may take a significant amount of time
and effort.

• Dealing with the requirements without organizing them may not even be possible.

• The earlier you identify reuse opportunities, the more development effort you can
save. Reuse of requirements can maximize your savings.

Indications:

You worry that it will be hard to comprehend all the requirements let alone make sure you
deal with them all.

Solution:

Organize the requirements into a Requirements View of the architecture. Abstract out the
details of the user interface to create simpler, less implementation oriented use Cases (ref:
Essential Use Cases). Gather ConditionBasedScenarios [Cockburn96] with a common
objective under a single GoalOrientedUseCase. [Cockburn96]

2.5.3 Interaction View

Context:

You are building a large complex system which will have many components which will
have to interact with one another at run-time.

Problem:

How do you explain the dynamic aspects of the system behavior?

Forces:

• It may be hard to understand how a particular piece of software interacts with the rest
of the system without having a higher level view.

• The DeliveryView does not describe the dynamic behavior of the system.

Solution:

Define an “interaction view” of your system architecture. This TypeModel describes the
key high-level components that exist in the system at runtime and how they interact to
fulfill the system’s specification. An InteractionDiagram is a good way to describe the
interactions between the components. At the highest level, the interactions would be
between application components and components within the BusinessArchitecture and
the TechnicalArchitecture.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 20

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Known Uses:

Many software development methods include notations for describing the interactions
between components. Examples include:

• Booch: Object Interaction Diagrams and Sequence Diagrams

• UML: Collaboration Diagrams and Sequence Diagrams

• CCITT: Message Sequence Charts (Z.100)

• Jacobson/OOSE: …

2.5.4 Software Dependency View

Context:

You are building a large complex system which will have many bits of code much of
which depends on one another.

Problem:

How do you manage the software (code) in your system such that you can reliably
configure a system from it?

Forces:

Tracking the dependencies of every bit of software in your system may be too large a
problem to keep up to date.

Building systems without tracking software dependencies will often result in failed system
builds or random, unexplained errors in the resulting system.

Solution:

Organize the software of your system into collections of code which can be managed as a
group. Bits of software with a common purpose and common dependencies should be
packaged together. If necessary, define several levels of recursive packaging; only stop
the recursion when the number of packages is manageable. Track the dependencies of
each package using a Configuration Management Tool.

Examples:

Examples of packaging include Classes, Modules, Subsystems, Software Packages.

Known Uses:

Examples of systems which manage the delivery view of the system include
Envy/Developer.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 21

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

2.5.5 Delivery View

Context:

You are building a large complex system which will have many bits of code much of
which depends on one another. You plan to do many system builds, either to support
incremental development or to build different members of a product family.

Problem:

How do you ensure that there are no circular dependencies which could prevent assembly
of the system? (E.g. compile or make/build errors.) How do you capture the rules for
what software has to be included in a system configured from it?

Forces:

• There may be more than one delivered configuration of a system.

• It is hard to manage all the dependencies amongst the software components.

Without understanding the dependencies amongst the software components, building a
system from them may not be a repeatable process.

Solution:

Capture the software dependencies within your system in a delivery view. Ideally, this is
done proactively (i.e. before construction) but if omitted on the first pass, it will have to
be done retroactively (i.e. retrofitted over top of an existing implementation.)

If you have already defined the implementation level software, capture and name the
“clumps” or “packages” of software which should be treated as a unit for delivery
purposes. Note all the dependencies of the software that a package contains and translate
them into dependencies on the containing package(s). You now have a higher level
representation of the software dependencies that can be more easily managed.

If you have yet to construct the implementation, you should define the packages
proactively. Decide what parts of the software functionality will always be present and
what parts will be optional. Which optional parts must be present together? Which ones
are mutually exclusive? Which ones should depend on one another? Define packages to
contain the functionalities you have thus partitioned and capture the dependencies
between them.

Depending on the nature of your development environments, these software packages may
or may not need to be translated into “executable packages”.

Examples:

UML has Packages in the Logical View as well as Components in a Component View. A
Component describes the Executable Components (e.g. DLLs) while a Logical View

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 22

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Package describes the source code used to generate it. The Deployment view shows how
the components are mapped into the processors in the system (the PhysicalArchitecture).
A Component is typically the result of having compiled and linked (often via a “make
file”) a set of classes, modules or packages.

OTI/IBM’s Envy/Developer (and IBM’s VisualAge Smalltalk and Java products which
incorporate it) have a concept called “Application” (in Smalltalk versions) or “Package”
(Java versions) which contain Classes (and Class Extensions in Smalltalk). These are used
to provide the unit of software ownership and configuration. These packages are then
assembled into “configurations”.

2.5.6 Hierarchical View

Context:

You are building a complex system possibly using software technology capable of
supporting polymorphism (and possibly inheritance.) You are documenting a
SoftwareArchitecture.

Problem:

How do you identify and communicate reuse opportunities afforded by the KindOf
relationships between entities in your architecture?

Forces:

• Knowing that two things behave in a similar way helps identify reuse opportunities
through identification of common interfaces. This can lead to designing the KindOf
hierarchies in the system.

• Discussing KindOf relationships too early can lead to premature focus on
implementation reuse because developers will want to subclass a concept because it
contains some useful implementation rather than to subtype something which has a
useful interface definition.

Solution:

Define a HierarchyView of the system which describes SubType relationships between
Types. Limit the discussions to true KindOf relationships as defined by the domain
experts. Do not look for code reuse opportunities at this time as it will remove the
necessary focus on understanding and analyzing the requirements. Note: Feel free to
subtype several existing Types when defining a new Type. This does not need to imply
that you will be using multiple inheritance; it just says that any implementation of your
new (sub)Type must satisfy the interface definitions imposed by all the subtyped Types.

When it comes time to implement the system, this view may help identify opportunities
for code which can be reused using your programming language’s inheritance feature.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 23

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

2.6 Defining Architectural Interfaces

This section of the pattern language deals with the definition of the interfaces that define
the architecture.

2.6.1 Component Use Cases

Context:

You are defining the interfaces of one or more components of an architecture. The
interfaces will provide access to the functionality provided by each component and define
how the components will interact to provide the system functionality.

Problem:

How do you ensure that the architecture supports evolution of the system while providing
the client with a clean, usable interface?

Forces:

• A good architecture supports easy evolution of the implementation. That is, it
supports all the known change cases in addition to the required functionality.

• Coming up with an interface which support many possible implementations requires
good abstraction skills and possibly several iterations of the architecture.

• An API which is complex is very hard to learn and use.

• Designing a minimalist API for a given set of functionality is difficult and takes time.

• Time is of the essence on most projects.

Solution:

Before starting to define the interface of the components (of the architecture), enumerate
the requirements of the component(s) as a set of scenarios. From these scenarios,
condense out the set of application objectives (or goals) they satisfy. Collect all the
scenarios which serve to achieve a common goal or objective (from the applications’
perspective) as a single use case with scenarios which describe the circumstances under
which the Use Cases are invoked.

Assign each Use Case to a component of the architecture using standard OO design
practices. Use the use cases to determine the necessary operations on the architecture
component. Use the scenarios of the use case to help you ensure that the argument list of
the operation is sufficient to handle all current and future requirements.

Resulting Context:

You should end up with a much smaller set of application-visible functionality to
implement. But each bit of functionality will have a number of scenarios which must be

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 24

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

implemented. This complexity can thus be hidden behind an interface who’s breadth is
based on the small set of use cases.

2.6.2 Encapsulated Implementation

Alias: Architecture Component Interface

Context:

You are defining the interfaces of one or more components of an architecture. You have
defined a set of Component Use Cases for the component in question (e.g. the Technical
Infrastructure or Application Framework.) The interfaces will provide access to the
functionality provided by each component and define how the components will interact to
provide the system functionality.

Problem:

How do you ensure that the system can be evolved while providing the client with a clean,
usable interface?

Forces:

• A good architecture supports easy evolution of the implementation. That is, it
supports all the known change cases in addition to the required functionality.

• Coming up with an interface which support many possible implementations requires
good abstraction skills and possibly several iterations of the architecture.

• An API which is complex is very hard to learn and use.

• Designing a minimalist API to a given set of functionality is difficult and takes time.

• Time is of the essence on most projects

Solution:

Define an interface for each component of the architecture. Ensure that the interface hides
the implementation and that it either supports or at least does not inhibit any of the
ArchitectureObjectives or ChangeCases. Define the interfaces of each component in terms
of operations with ClearlyDefinedSemantics. Define an acceptance test suite for the
operations of the component based on the Architecture Component Use Cases they
support.

Ensure that the implementation (of each operation) of each component complies with the
ClearlyDefinedSemantics. When you have a choice of possible interfaces, chose the one
which results in the MostImplementationsEncapsulated. Where the implementation needs
to be optimized, ensure you OptimizeBehindInterfaces.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 25

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Known Uses:

The Catalysis methodology [Catalysis96] describes the use of Type Models to define the
behavior of an interface.

In Analysis Patterns [Fowler96], Martin Fowler writes about the use of Type Models as a
way of specifying the behavior of the implementation.

Implementation Notes:

Some Object Oriented Programming Languages (OOPLs), like Java, differentiate between
the concept of Type (Interface or Protocol) and Class (or implementation.) In OOPLs
which do not, a Type can be represented as a “fully abstract” class, while a concrete class
is an implementation. Multiple Inheritance (when supported) can be used to link an
implementation Class with all the Abstract Classes which define the Types (Interfaces or
Protocols) it implements.

2.6.3 Clearly Defined Semantics

a.k.a. TypeModels Define Semantics

Context:

You are encapsulating one or more implementations behind an interface. You have
defined the set of operations supported by the interface.

Problem:

How do you ensure that the interface is understandable and usable without examining one
or more of the implementations?

Forces:

• An operation is only useful if you know how and when to use it.

• Descriptive operation names are important to facilitate understanding.

• Descriptive operation names are often not enough to convey the semantics.

• Describing semantics is hard without talking about implementation.

• A “reference implementation” is often taken as gospel by the implementers who dare
not change it.

Solution:

Describe the interface using a TypeModel. Capture the conditions that are always true as
Invariants. For each operation, use Pre-conditions and Post-conditions to describe the
concepts that the operation manipulates and its effect on them. Stress that the concepts do
not have to be implemented as described but merely have to behave as described. A

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 26

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

“reference” test suite for the interface is a good way to capture the semantics. It can define
the preconditions of each use case in terms of objects that exist (at least in concept) and
which can be queried. The post-condition of each use case describes the resulting set of
objects and their query-able states.

Known Uses:

The concept of Preconditions, Postconditions and Invariants are discussed in detail in
[Meyer9?]. Though they are not cast in pattern form, they are generally accepted as a way
of adding semantic information to an interface description. [Catalysis97] extends this
work by proposing a grammar for specifying the semantics of the operations.

Type Models are defined in a number of recent works including:

• Catalysis [Catalysis96]

• Analysis Patterns [Fowler96]

A particularly amusing exposition on the subject is “Data or Behavior Driven” by
Desmond DeSouza. [DeSouza96?]. It states that even for a relatively well understood
concept such as a “Stack”, the semantics are quite complicated. Operations such as Push
can only be properly expressed based on concepts such as an ordered collection of stack
entries, a stack entry counter, the “top of stack”, etc. Some or all of the concepts may
appear in a specific implementation, but it is only necessary that they appear to be
implemented.

2.6.4 At Least One Implementation

Context:

You are encapsulating one or more implementations behind an interface. You have
defined the set of operations supported by the interface.

Problem:

How do you ensure that the interface is implementable?

Forces:

• A well defined interface is lean, clean and elegant. But, an elegant interface is useless if
it is not implementable. An architect who never thinks about implementation may find
themselves defining interfaces which cannot be realized practically.

• An architect needs to maintain a complete system (or subsystem) view to provide the
technical leadership which is their responsibility. Spending too much time on
implementation issues can quickly use up all their time leaving none for architecting.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 27

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

Solution:

The architect of the interface should ensure that they can come up with at least one
implementation of the interface. It is enough to come up with one; there is no need to
decide which of several possible implementations is best. (Leave that to the developer(s)
of the implementation!)

Related Patterns:

ArchitectAlsoImplements [Cope95] ensures that the architect has current enough
implementation skills so that (s)he can reliably envision at least one possible
implementation for any architectural element.

2.6.5 Most Encapsulated Implementations

Context:

You have defined the components of your architecture. Now you are trying to define the
interface on one of the components. You can think of several different interfaces for this
component, each of which will satisfy the “use cases” of the component, but would like to
choose a single one.

Problem:

How do you decide which of several possible interfaces is the best one?

Forces:

• There is no absolute “bests” in software design; “best” is often a matter of personal
opinion.

• You may have as many proposed interface designs as you have people involved in
creating the design.

• Choosing amongst designs without clear and precise guidelines is prone to turning
into a personal or “religious” battle.

Solution:

Imagine many different implementations of the functionality to be provided behind the
interface. Evaluate each candidate interface in terms of how many of the possible
implementations could be encapsulated behind it. Pick the interface that could
encapsulate the most, if not all, of the implementations.

If several candidates could hide different subsets of the implementations but none could
hide all, it is likely that none of the candidates is abstract enough. In this case, you should
look for a new interface which combines the best features of the interface candidates you
already have. This is sort of like using “genetic algorithms” to create new interfaces by
“mating” existing ones and the evaluating the rather random results. But this is how

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 28

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

nature innovates, and it works!

2.6.6 Extensible Interfaces

Context

You are designing the signatures of the operations that make up the interface of a
component.

Problem:

How do you ensure that the signatures do no lock you into a particular implementation
and are easily extended to handle future requirements?

Forces:

• Signatures which have long lists of parameters are hard to remember.

• they are also less resilient to change.

• Using “whole objects” as parameters makes the signature more easily understood and
extended, but requires the caller to build the objects before invoking the interface. In
some systems, this can create considerable extra overhead.

Solution:

Design the operation interfaces such that the interface does not preclude passing new,
unanticipated variants of parameters.

Techniques for doing this include passing “whole objects” rather than lists of parameters.
(This makes it possible to pass additional information by extending an object and its
constructors rather than visiting all “senders” of the operation.)

Optimize the creation of the “whole objects” by providing suitable factory methods or
Prototype objects.

Related Patterns:

Whole Value from [Checks95] is an example of a pattern which makes interfaces more
extensible by amalgamating several parameters into a single, potentially polymorphic,
object.

Need to find the example from “Found Objects” by James Noble in PLOPD97 or the
proceedings of PLoP-96.

2.7 Component Implementation

This sections discusses techniques to be used when realizing an Encapsulated
Implementation.

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 29

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

2.7.1 Traceable Implementation

Context:

You are implementing a component. interface. You have defined the set of operations
supported by the interface.

Problem:

How do you ensure that the implementation is easily understood and maintained?

Forces:

• A simple implementation is more easily understood than a complex one.

• A simple implementation may not meet performance requirements (such as memory
consumption, processing cost, latency, etc.)

• Many developers feel a need to demonstrate their cleverness through “tricky”
programming.

• Excessively clever programming may satisfy the programmer but is sure to drive
anyone trying to understand the software mad.

• It is easier to come up with a design that solves a problem in a straightforward way
than it is to try and explain a convoluted design in a way that anyone can understand.

Solution:

Build “traceability” into the implementation rather than trying to retrofit it onto an
implementation that has poor “conceptual continuity” with the architecture it implements.

Start with the simplest, most obvious possible implementation. Assess its strengths and
weaknesses and if they are acceptable, use it unchanged. If the weaknesses are
unacceptable, address with as few changes as is necessary to avoid making the
implementation difficult to understand.

Examples:

This is similar to the concept of “Structure Preserving Transformations” of which
Christopher Alexander spoke in his keynote address at OOPSLA96. The structure of
which we speak is the semantic behavior of the component as defined by the TypeModel.
Our implementation may be changed to have different time/space/complexity tradeoffs as
long as the functionality semantics are preserved.

2.7.2 Optimized Behind Interfaces

Context:

You are encapsulating one or more implementations behind an interface. You have

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 30

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

defined the set of operations supported by the interface.

Problem:

How do you improve the performance of the system without sacrificing the “ilities” you
worked so hard to build into the architecture?

Forces:

• A highly flexible implementation will handle a lot of different situations.

• When you don’t need the flexibility, it would be good to not have to pay the run-time
price (whether memory usage or processing time.)

• Different configurations of a system may have different optimization needs depending
on whether the system is processor bound or memory bound.

Solution:

The beauty of a well defined interface is that you can substitute different implementations
behind it. Take advantage of this by building an alternate implementation which is
appropriately optimized. The optimized implementation can be bound to the interface at
system configuration time if you know that the sacrificed flexibility will not be required
in this configuration of the system. Otherwise, select the appropriate implementation at
run-time, when you have enough information to know whether the flexibility will be
required. You may be able to create several implementation optimized for different
circumstances as alternatives to the “all-singing, all-dancing” flexible implementation. As
long as you can identify the criteria for using each alternative at run-time, you can safely
substitute them.

Examples:

An OrderedCollection is a container which keeps it elements in the same order as they
were inserted. Examples of OrderedCollections include Stacks and FIFO Queues. The
interface of OrderedCollection specifies the operations that it must support, and the
semantics of those operations with respect to the contained elements. Any implementation
which satisfies both the syntax and semantics of the operations can be used to satisfy the
functional requirements, but different implementations may have different non-functional
requirements such as response time (time required to insert or delete an element), capacity
(number of elements), reliability (e.g. persistence), etc.

The choice of implementation is based on these non-functional requirements of the
application. E.g. You can use an array-based implementation of OrderedCollection when
you know the maximum size of the collection when it is created or the cost of extending
the collection by copying to a larger array is acceptable in exchange for much faster
traversal time. (This is because you do not expect extension to be done frequently.)

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 31

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

2.7.3 Interfaces Optimized Out

Context:

You have defined your system and implemented it. Upon measuring the real-time
performance of the system, you find that it is too slow (that is, it uses more processing
time than is allowed by the specification.)

Problem:

How do you improve the performance of the system so that it meets the spec?

Forces:

• A highly flexible implementation will handle a lot of different situations, but the
interfaces required to support the flexibility add processing cost.

• When you don’t need the flexibility, it would be good to not have to pay the run-time
price (whether memory usage or processing time.)

• Removing lower level interfaces could reduce future reuse potential if the low level
interface is not preserved.

• In-lining the implementation of an interface you use increases your coupling to that
implementation and increases the amount of code which needs to be maintained
(because now it exists behind the original interface and in the optimized
implementation into which it was “in-lined”.)

Solution:

One way to improve performance of a system is to remove unnecessary interfaces that add
run-time overhead. This removes the cost of delegating through a number of layers of
software, each of which adds value by providing a higher level interface. This can be
achieved by combining two or more layers of software (which built upon each other) as
long as yours was the only client of the removed interface. If that interface had other
clients, you will either have to in-line the functionality into all other clients, or preserve
the original interface for their use.

It is preferable to have tools do the in-lining so that you do not have to manually manage
the multiple copies of the code which was in-lined.

Ensure you do this behind another interface so that your optimizations do not increase the
coupling of applications to the implementation of the components they use. If at all
possible, do not remove the “front-line” interface that hides the TechnicalInfrastructure
from the application.

Related Patterns:

There are, of course, other ways to speed up a system. Examples include the patterns

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 32

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

described in [AuerBeck96], [Meszaros96] and [Petriu97].

3. Concluding Remarks

I hope the reader has found these patterns useful and for the most part understandable. I
would welcome comments directed to me by e-mail. I would also invite other architects to
extend this pattern language with their own experiences by providing alternate patterns,
more detailed (or lower level) patterns or by improving upon the exposition of these
patterns.

3.1 Future Plans

In future versions of this language, I hope to include more introductory material as well as
better cross-referencing between the patterns in this language as well as more references
to related patterns in other pattern languages.

3.2 Acknowledgments

I would like to thank my PLoP97 shepherd Robert Hirschfeld who made extensive
comments on the very rough initial drafts of the manuscript and who generously provided
several pages of material for inclusion in the pattern language. I would also like to thank
Brad Appleton who provided comments as well as useful references to related material
and spent much time feeding material into his fax machine.

4. References

[AuerBeck96] Ken Auer, Kent Beck, “Lazy Optimization: Patterns for Efficient Smalltalk
Programming” in PLoPD96.

[Catalysis96] Desmond D'Souza, Alan Wills. CATALYSIS--Practical Rigor and
Refinement. URL: http:/www.iconcomp.com

[Change] Doug Bennett, A Technique for Evaluating Designs, OOPSLA'94 Tutorial

[Cockburn96] Alistair Cockburn, “Structuring Use-Cases with Goals”

[Cope95] Jim Coplien, “A Generative Process Pattern Language” in PLoPD95

[Fowler96] Martin Fowler, “Analysis Patterns - Reusable Object Models”

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-
2.

[Hopley96] Allan Hopley "Decision Capture and Deferral Pattern Language" in
[PLoPD96]

[HOPP95] Gerard Meszaros, “Half-Object Plus Protocol” in PLoPD95

12Aug97 Archi-Patterns: A Process Pattern Language for Defining Architectures

Page 33

Copyright 1997, Gerard Meszaros

Permission granted to copy for PLoP '97 Conference. All other rights reserved.

[Meszaros96] Gerard Meszaros, “Patterns for Improving the Capacity of Reactive
Systems” in PLoPD96.

[Meyer9?] Bertrand Meyer, “Object Oriented Software Engineering???”

[OopsArch96] Gerard Meszaros et al, “Workshop Report - Patterns in System
Architecture” in Addendum to the Proceedings of OOPSLA96

[Petriu] Dorina Petriu, Gurudas Somadder, “A Pattern Language For Improving the
Capacity of Layered Client/Server Systems with Multi-Threaded Servers” in proceedings
of EuroPlop97.

 [PLoPD95] Jim Coplien, Doug Schmidt Eds. “Pattern Languages of Program Design”
published by Addison-Wesley in 1995.

 [PLoPD96] John Vlissides, Jim Coplien, Norm Kerth, Eds. “Pattern Languages of
Program Design 2” published by Addison-Wesley in 1996.

[PLoPD97] ???? Eds. “Pattern Languages of Program Design 3” to be published by
Addison-Wesley in 1997.

[PWP97] Gerard Meszaros and James Doble, “Patterns for Pattern Writing” in
[PLoPD97]

 [Shaw95] Mary Shaw, Patterns in Software Architecture. In [PLoPD95]

 [Siemans96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Pattern-Oriented Software Architecture - A System of Patterns. John Wiley
& Sons ISBN 0-471-95869-7

[UML97] Rumboochatory, “UML 1.0 Specification” URL: www.rational.com

