
notification server, page 1 of 8

Notification Server

Robert Hirschfeld
hirschfeld@windwardsolutions.com

Jeff Eastman
jeff@windwardsolutions.com

28. July 1998

Abstract

In enterprise information systems based on a two-tier distribution architecture, there are
several clients working with shared resources. When designing the system you have to
ensure that each client has a consistent view on the current state of the shared resource. If
the resource in question is passive, i.e. the resource is not able to notify interested clients
about changes of its (internal) state, attaching a Notification Server to that passive
resource helps achieve a consistent view for each client.

Name

Notification Server

Aliases

Remote Dependents Collection

Context

You are developing an application for a distributed enterprise information system where
desktop clients will access or modify shared resources (usually located within a passive1

database server). You have decided to design your application based on a two-tier
distribution architecture (figure 1).

UI - User Interface

BL - Business Logic
[R] DBMS

(Resource)

Clients

Resource-Server

BL

UI

Client 1

BL

UI

Client 2

BL

UI

Client n

Figure 1

1 To my mind the context can be widened to passive resources in general ...

notification server, page 2 of 8

Problem

How can you ensure that each client has a consistent view of the current state of the
shared passive resource so that all users are in sync while working with the shared
information?

Forces

Passivity. Passive resources (e.g., traditional databases) can not inform their clients about
changes of the information they hold.

Consistency. Clients that are sharing a passive resource have to update their views to
consider the current state of the resource while performing their responsibilities. This may
require continuous checking (i.e. polling) of the server to detect changes, resulting in extra
network load (figure 2). Depending on the polling time-frame/frequency clients become
temporarily inconsistent with the database or may be affected by network traffic
problems.

DB-Server
(Resource)

Client nClient 2Client 1

testIfChanged

fetch

testIfChanged

testIfChanged

testIfChanged

testIfChanged

testIfChanged

fetch

fetch

changeContents ∆ t-1

∆ t-2

∆ t-n

∆ t-n polling time-frame of Client n

Figure 2

Generalization & Reusability. To be independent from a specific resource and its API, a
possible solution should be lightweight by having no interaction with the resource itself.

Solution

Introduce a Notification Server into your system architecture. This Notification Server is a
system infrastructure component that is separate from and independent of each client and
the shared resource, too. It is known to all clients, so every client may access the

notification server, page 3 of 8

Notification Server in order to register and unregister for change notifications, to notify
other clients about changes the client caused in the database or to receive and react on
change notifications any other client caused.

Participants

Shared Passive Resource. A shared resource is a part of the system that might be used by
several potential clients. This resource is called passive if it is unable to notify its
environment (the potential clients) about changes of its state.

Clients. Clients have to have access to the shared resource to fulfill their responsibilities.
They may read as well as modify the resource’s state.

Notification Server. A Notification Server is an entity attached to a shared resource. It
allows clients to register to receive notifications when the state of the shared resource
changes.

Structure

Figure 3 shows the basic structure of a system based on the Notification Server.

UI - User Interface

BL - Business Logic

NS - Notification Server

[R] DBMS
Resource)

Clients

Notification- &
Resource-
Server

BL

UI

Client 1

BL

UI

Client 2

BL

UI

Client n

NS

Figure 3

Dynamics

Every client can join a group of clients sharing certain resources (that is a database or a
part of a database) by registering itself on the Notification Server responsible for these
resources. After a client has changed a database resource, it informs the Notification
Server about that change and the Notification Server in turn informs all the other
registered clients (figure 4). A client that was notified about some changes may react on
this notice by refetching information from the database. If a client isn’t interested in

notification server, page 4 of 8

change notifications related to some resources anymore, it leaves the group by
unregistering itself from the responsible Notification Server.

DB-Server
(Resource)

Client nClient 2Client 1 Notification Server

register

register

register

changeContents

notifyChange

fetch

notifyChange

fetch

notifyChange

unregister

unregister

unregister

Figure 4

Consequences

Network Traffic. Because all registered clients are notified after a change, there may be
high network traffic while these clients access information that was probably affected by
the change.

Clients’ Responsibility. It is difficult to require all possible clients of a shared resource to
use its associated Notification Server(s). Therefore all system parts sharing a resource
have to agree to use its Notification Server(s) to coordinate notification of possible
resource modifications.

Implementation

Granularity. The application of a Notification Server is not limited for a database as a
whole. Instead you could divide your database conceptually into smaller parts that can be
handled even as passive resources with their own Notifications Servers. You should try to
divide every resource into disjoint parts to avoid additional and sometimes useless
notifications. If you are not able to obtain a disjoint division, you have to ensure that
clients working with those resources are registered by all Notification Servers of the joint
set of resources.

Communication. If your applications are intended to run within a distributed
heterogeneous environment, you should decide to apply standards like CORBA and
CORBAservices from the Object Management Group (OMG) as much as possible
([OMG94, OMG95, OMG96]).

notification server, page 5 of 8

Notification. It will take some time to inform all registered clients about recent changes if
there are many of them registered with the Notification Server. Do not use a synchronous
communication model to avoid the blocking of the notifying client or the Notification
Server - not only from the client to the Notification Server but also from the Notification
Server to the other clients. The Event Notification Service will work best for an
asynchronous decoupled communication ([OMG96]).

Callbacks. When you implement the callback mechanism that notifies a client about
notifications multicasted by the Notification Server, apply the concepts of the Command2

pattern to construct a simple and flexible client interface ([GHJV94]).

Initial Connection. If a desktop client wants to establish an initial connection to the
Notification Server (e.g. for registration purposes), it has to look for it. Here the Naming
Service may help by supporting you to access the Notification Server by a
symbolic/meaningful name ([OMG96]).

Sharing & Concurrency. A Notification Server is usually shared among many clients. So,
if you don’t use the Event Notification Service ([OMG96]) you are responsible for
coordinating concurrent access to the shared Notification Server to avoid race conditions.
Here you can apply the OMG Concurrency Control Service to serialize access
([OMG96]).

Location. A Notification Server should be located on a reliable system because it must be
available as much as the resource server. One solution could be to co-locate Notification
Server with its associated resource.

Availability. If a Notification Server goes down for any reason, you should handle the
situation. One way to do this is the application of a Strategy ([GHJV94]), where one
strategy deals with the normal case - the available Notification Server - and another
Strategy addresses that case where no Notification Server is alive, e.g. by polling the
database as if there was no Notification Server.

Related Patterns

Observer3 ([GHJV94]): In the context of the Observer pattern the Notification Server
would play the role of the Subject and all registered clients are Observers. In opposition to
the Observer pattern the subject observed by all clients is not the Notification Server but
the shared resource - the database. So there is a separation between the “real” Subject
observed and the notification mechanism used to propagate changes. Moreover in the
Observer pattern the Subject notifies all Observers about the changes including the
Observer that has initiated this notification. This additional notification is not desired in
the context of a Notification Server. The Notification Server is different from the Observer
pattern both in its structure and behavior.

2 Command(233): Encapsulate a request as an object, thereby letting you parameterize clients with different requests,
queue or log requests, and support undoable operations.
3 Observer(293): Define a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically ([GHJV94]).

notification server, page 6 of 8

Publisher-Subscriber4 ([BMRSS96]): Like in the Publisher-Subscriber scenario the
Notification Server (the Publisher) publishes events about changes of a shared resource it
relates to. All clients (the Subscribers) that are interested in those information registers
themselves with the Notification Server. If applied to the Notification Server the Publisher
would send unnecessary or even undesired notifications to the Subscribers. The example
makes use of the Event Channel as a variation of the Publisher-Subscriber.

Asynchronous Completion Token 5([PHS98]): T.B.D.

Example

The following example was implemented in a CORBA-based environment. It makes use
of CORBAservices like Naming and Event Notification ([OMG96]). Here all clients that
are working on a shared database notify each other about the changes they made within
the database by using the same Notification Server (figure 5). There are synchronous and
asynchronous communications between the clients and the Notification Server in both
directions. Synchronous communication is used by the client to register with and
unregister from the Notification Server and, in certain circumstances, by the Notification
Server to instruct a client to unregister. Asynchronous communication is used to
propagate change notifications. Notifications from the clients to the Notification Server
are concentrated via an event channel, here an n-to-one connection, and will be forwarded
to each client by using an event channel as a one-to-one connection. The Notification
Server registers itself in the Naming Service, so it can be found and accessed easily by
new clients for registration issues.

4 Publisher-Subscriber(339): The Publisher-Subscriber design pattern helps to keep the state of cooperating
components synchronized. To achieve this it enables one-way propagation of changes: one publisher notifies any
number of subscribers about changes to its state ([BMRSS96]).
5 Asynchronous Completion Token: To efficiently associate state with the completion of asynchronous operations
([PHS98]).

notification server, page 7 of 8

PCPS

BL

(Notification-)
Client n

PCPS

BL

(Notification-)
Client 2

EC

NS

PC

EC EC EC

Notification Server

PS PS PS

[R] DBMS
(Resource)

Clients

Notification- &
Resource-
Server

PCPS

BL

(Notification-)
Client 1

BL - Business Logic
PS - Push Supplier
PC - Push Consumer
EC - Event Channel
NS - Notification Server

Async Communication
Sync Communication
Database Access

Figure 5

The following IDL interface descriptions are used for synchronous communication. A
client uses the Notification Server via its NotificationServerIF and, in the other direction,
the Notification Server can communicate with a client over the NotificationClientIF.

// NotificationServer
// IDL

module NotificationServer {

interface ConstructionInfoIF {

attribute CosEventChannelAdmin::DSTEventChannel channelToNS;
attribute CosEventChannelAdmin::DSTEventChannel channelFromNS;

#pragma class byValue ConstructionInfo
struct byValue { // cOOl :-)

CosEventChannelAdmin::DSTEventChannel channelToNS;
CosEventChannelAdmin::DSTEventChannel channelFromNS;

};
};

interface NotificationServerIF {

readonly attribute string name;

ConstructionInfoIF::byValue registerClient (in NotificationClientIF aNotificationClient);
void unregisterClient (in NotificationClientIF aNotificationClient);

};

interface NotificationClientIF {

notification server, page 8 of 8

readonly attribute string name;

void unregisterFrom (in NotificationServerIF aNotificationServer);
};

};

Acknowledgments

Thanks are due to Steven Abell, Donald Griffin, and Brad Appleton for giving helpful
hints for improvement.

References

[BMRSS96] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M.:
Pattern-Oriented Software Architecture: A System of Patterns.
Jon Wiley & Sons, 1996

[GHJV94] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.:
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994

[OMG94] Object Services Architecture.
Object Management Group, December 1994

[OMG95] The Common Object Request Broker: Architecture and Specification
Object Management Group, July 1995

[OMG96] CORBAservices: Common Object Services Specification.
Object Management Group, March 1996

[PHS98] Pyarali, I.; Harrison, T.; Schmidt, D.C.:
Asynchronous Completion Token.
In: Pattern Languages of Program Design 3.
Addison-Wesley, 1998

