
VIRTUAL SINGLETON

Author: Gerard Meszaros
Object Systems Group
Gerard@osgcanada.com
Phone: 403-210-2967

Context
Your are building a multi-user system or application that will provide service to many users concurrently,
or you are converting a single-user system to support multiple users. The system may be either a multi-
client server or a thin-client system such as a terminal server or mainframe.
Additionally, you may be retrofitting security onto an existing multi-user system.
Multi-user systems add a host of problems beyond those faced by single-user systems. These include
• the need to restrict the activities of users to those they have permission to carry out,
• the need to prevent accidental interactions or “race conditions” between the activities of the various

concurrent users
Many of these activities require information about the user on who’s behalf processing is taking place to
ensure that their activities are kept separate.

Problem
How do you access information specific to a particular user’s session context from software that must be
shared by various parts of the application?

Forces
• The sessionContext is often required by infrastructure software in the deepest parts of the application.

Passing the necessary information explicitly requires modifications to all the parts of the application
between the parts aware of the sessionContext and the infrastructure that requires the information. This
“signature pollution” adds significant overhead to each level of method call by adding one or more
extra parameters and also requires that the application know which information will be required by the
infrastructure software.

• Forcing the application to be aware of the needs of the multi-user part of the infrastructure increases
the complexity of the application software which distracts the developer from the task of understanding
the business processes being automated by the application.

• Using a Singleton [GOF] would provide an easy way for software deep in the system to access the
information via a well-known global object, but the information to be accessed is unique to each user
thus a normal singleton cannot be used.

Solution
Define a Virtual Singleton which can be used by infrastructure software to access information about the
current sessionContext. The Virtual Singleton is a global variable which holds an object which acts as a
gateway to per-session information about the current user which is stored in a dictionary indexed by the
current session, process or thread. Name the global variable as though it were truly a singleton. This hides
from the application software (and its developer) whether a single or multi-user implementation of the
infrastructure is behind the interface.

Resulting Context
The infrastructure on which the application is built becomes more complex, but this should only have to be
built or acquired once. Most application code is simplified because it does not need to be aware of the need
for per-sessionContext information. This can be left to the parts of the system that care about this
information. This simplifies the application software by removing the need to be aware of multi-user data
access issues. Other issues related to multi-user servers are discussed in the Related Patterns section.

Related Patterns
Virtual Singleton is an extension to the Singleton pattern to allow it to be used in multi-user systems for
per-sessionContext information. The signature of the Virtual Singleton should be identical to the equivalent
Singleton but the implementation deals with the issue of keeping separate information for each
sessionContext. For example, the class method SoleInstance provided in Smalltalk by Singletons to return a
reference to the only instance of the singleton could return the instance of the Virtual Singleton specific to
the current sessionContext.

“Thread-Specific Storage for C/C++” is a C/C++ solution to the problem solved by Virutal Singleton. The
solution described in [Schmidt97] combines aspects of Virtual Singleton and Property List (or Registry) to
act as a central facility for storing various bits of sessionContext-specific information. It is not necessarily
interface-compatible with the single-context version of the equivalent functionality.

This pattern is one of a set of patterns used to provide application developers with a much simpler
environment in which to implement business logic. This environment strives to hide as much of the multi-
user nature of the system as possible from application software and its developers. Other aspects of multi-
user behavior needs to be handled to achieve a true “virtual single-user system” capability include:
• Object Concurrency protection (mutual exclusion for updates to objects)
• Private Object Copies for transactional changes prior to transaction commit.
.
Self-Protecting Object [undocumented] is used to provide concurrency management when objects are
shared between user sessions. It replaces the concept of database locks in the object world.
Per-SessionContext Object Instance [undocumented] is used to provide each transactional context with its
own copy of any objects which it modifies.

Implementation Notes

The following describes ways to implement the Virtual Singleton in both OO languages and procedural
langauges. In all cases, we care about the sessionContext using the current process or thread in which we
are executing. This definition of “current” works equally well whether we are running in a single processor
system or a multi-processor system and whether we are using a thread-per-session or thread-per-request
model of distributed processing. We use the identity of the process/thread in which the Virtual Singleton is
accessed as the key to locating the right copy of the Virtual Singleton. When using a Thread-Per-Object
model (a.k.a. Active Object), we must be able to determine the sessionContext which initiated the request
currently being processed

Object Systems
There are two basic approaches (plus at least one hybrid) to implementing a Virtual Singleton in an Object
Oriented programming language. These are:
1) Pure Object Approach: Use a real Singleton which looks up the current user or thread and uses it to

determine to which per-sessionContext object it should delegate the request. The Singleton and the
sessionContext-specific objects should both implement the same interface that a true singleton would
have provided. Structurally, this looks like a limited form of Composite, but behaviorally, it is more of
a Selector or Dispatcher.

2) Updated Global Variable Approach: Use a global variable which points directly to a per-
sessionContext object. The global variable must be updated whenever a sessionContext swap is
executed. This requires “hooking” the process scheduler to update the variable and it only works in
single-processor systems. In multi-processor systems, the global variable would have to be at least one
instance per processor.

3) Hybrid Approach: A hybrid of these two approaches involves extending the run-time environment to
provide for per-sessionContext (either per-process or per-thread) variables.

Note that in languages like Java which do not have global variables, we need to create a Class to act as the
Singleton. This class should have the same name as we would have used for the global variable such as
TheXxx or CurrentXxx. It would have a class variable which points to the “current” instance which might
be of the same class (approach 2) or an interface-compatible class (approach 1). Each method on the class
side would delegate to the corresponding instance method of the instance referred to by the class variable..

Procedural Systems
When implementing the Virtual Singleton in a procedural language, we can use:
1) A global procedure which does the user lookup and continues processing using that data as a context.
2) Use a global variable to point to a particular record in a data structure which contains the bits of

information we need to access about the user. Various procedures and functions could use the global
variable as an implicit argument. The global variable must be updated whenever a sessionContext
swap is executed. This requires “hooking” the process scheduler.

3) A variant of these two approaches involves extending language definition and the run-time
environment to provide for per-sessionContext (either per-process or per-thread) variables. A variable
declared with the “per-context” modifier would be guaranteed to have the desired semantics.

The best approach is determined largely by whether we have control over the runtime environment
(required for approaches 2 and 3).

Deallocating Storage

A key issue when storing information for each session (as opposed to just accessing information such as the
sessionId) is when to throw away the information. (Creation is not so much of a problem since one can use
Lazy Initialization pattern to create a new entry upon the first access on behalf of a user not already
known.) Ideally, the global singleton would use the Observer Pattern to be informed whenever a
sessionContext is terminated. It could then delete the corresponding entry in its dictionary. An alternative is
to use an “aging” algorithm (i.e. timeouts) to discard entries that have not be accessed in last x minutes.
This necessitates timestamping the dictionary entry each time it is accessed. This approach must be used
when clients do not maintain a connection to the server between accesses such as in Web-based
applications.

Example
The following diagrams illustrates the Pure Object Approach to implementing the Virtual Singleton. We
focus on the behavior when the Virtual Singleton is sent a message. (The other object approaches would be
hard to differentiate from a normal singleton; most of the difference is hidden somewhere in the bowels of
the runtime system.)

We illustrate the Virtual Singleton using the globally visible currentTransaction object which is a standin
for the actual transaction associated with the current thread. We could have just as easily illustrated the
pattern using currentUser to access the access permissions of the currently logged-in user.

The classes TransactionManager and RealTransaction both implement the Transaction interface (see Figure
1.) The Transaction Manager implements the interface by finding the RealTransaction for the current
OSContext and delegating the action to it. We don’t care whether the OSContext is a Process, Thread,
VirtualMachine or some other concurrency concept; we only care that it is unique.

Figure 1. Structure of the Virtual Singleton implemented using the Pure Object Approach

TransactionImp

Transaction

begin()
commit()
rollback()

<<Interface>>

Thread Process

TransactionManager

getTxForCurrentContext()

getTxForContext()

<<implements>>

context : OSContextcontext : OSContext

<<implements>>

OperatingSystem

currentlyExecutingContext()

OSContext

In Java, we would invoke the methods on the TransactionManager as class (static) methods since we have
no way of refering to an instance. These class methods would delegate to instance methods of the
appropriate RealTransaction.

The sequence diagram in Figure 2 shows the flow of control from the client to the RealTransaction for the
clients OSContext via the TransactionManager.

Figure 2. Flow of control using Pure Object Approach

theOS :
OperatingSystem

client currentTx :
TransactionManager

myTx :
RealTransaction

curCntxt

commit ()

commit ()

getTxForCurrentContext ()

CurCntxt = currentlyExecutingContext ()

myTx = getTxForContext
(C)

Known Uses

In the OMG’s Object Transaction Service, the “psuedo object” called “current” is a Virtual Singleton
which gives Transactional Servers access to the current transaction context. Similarly, “control” is a Virtual
Singleton which gives application software access to the outer-most transaction for the current processing
context. It is left to the ORB vendors to decide which implementation approach to use to implement these
Virtual Singletons.

In the DMS-100 telephone switch, all three procedural language approaches were used at least as far back
as 1990 with several approaches already being present in 1981.
1. Multi-user security was added to a previously internal-only user interface for modifying switch data by

using a Virtual Singleton procedure to access the userid of the logged-in user so that security checks
could be made thus restricting visibility of certain data to authorized users. This implementation
corresponds fairly closely to the approach described in Thread-Specific Storage for C/C++.

2. The global variable CCB refers to the Call Control Block for the call being processed in the current
thread. Any software which wants access to the current call context merely “USES” the module
CCBINST which contains the global variable CCB. Call process scheduling software ensures that this
variable is updated to point to the appropriate instance of CCB whenever the call processing context is
changed.

3. Per-Process variable declaration is supported by the Protel language. This avoid passing commonly
used data structures with every procedure call.

In the Jericho Business Object Framework developed at Nova Gas Transmission in 1995-1998, Virtual
Singletons were used to provide access to the current transaction and the security permissions of the current
user.

Acknowledgments
Thanks to Erich Gamma for his helpful comments on early versions of this pattern description and for
taking on extra shepherding load to allow it to be considered for PloP98.

