
Copyright © 1998-1999 Philip Eskelin.
Permission is granted to copy for the PLoP 1999 conference. All other rights reserved.

Component Interaction Patterns
Part of the Component Design Patterns Project

Philip Eskelin
Ernst & Young LLP
750 Seventh Avenue

New York, NY 10019
+1 (212) 733-7638

philip.eskelin@acm.org

SDHS photograph 2405e: Operators, Pacific Telephone
and Telegraph Co., 1920s. Title Insurance Collection.

ABSTRACT
Many projects today use a component-based approach to developing software. Component-Based
Development (CBD) stresses language and platform interoperability, and separation of interface
from implementation. Existing and newly constructed components are being deployed to clients
and servers to build flexible, reusable solutions.
However, assembling a system consisting of custom and pre-built components can be difficult
because of hidden dependencies, complex interactions, and obscure design. This pattern
language has ABSTRACT INTERACTIONS, COMPONENT BUS, COMPONENT GLUE, THIRD-PARTY
BINDING, and CONSUMER-PRODUCER as five patterns that make it easier to assemble components
that communicate, collaborate, and coordinate to get a job done..

Component Interaction Patterns

INTRODUCTION
As with many other technology trends, industry analysts look into their oracles and promise that
CBD is the big silver bullet. While it provides many benefits and can facilitate rapid delivery of
successful solutions with a high return on investment, it's never a drop in the hat. Lack of solid
project management, architecture, and design in CBD can be just as lethal as with any other
technology panacea. Developing software in the context of CBD is not easy, but it can lead to
highly successful results if done using proven techniques.

How do we make it easier for software developers to do it right? Let's take a step back and
explore a historical trend we've seen in software development.

Abstract
Interactions

Component
Bus Consumer-

Producer

Third-Party
BindingComponent

Glue

The Component Interaction Patterns Sub-Language

The following are thumbnails that describe each pattern in the language:

ABSTRACT INTERACTIONS

Reduce a component's dependence on its environment by defining interaction protocols between
components separately from the components themselves. Specify these interactions in terms of
abstract interfaces, and implement components to communicate with each other through them.

COMPONENT BUS

Bind components to an information bus that manages the routing of information between
communicating components to remove explicit dependencies from the components themselves.
Define interaction protocols that not only specify interfaces required for components to
participate, but also the nature of interactions occurring between them.

COMPONENT GLUE

Create "glue" code to act as an adapter for incompatible components, or as a mediator between
peers. Only build full-fledged components when glue doesn't meet all of your requirements.

THIRD-PARTY BINDING

Remove connections established in the implementation of a component by having a third
component bind two interacting components together.

Component Interaction Patterns

CONSUMER-PRODUCER

Provide components a unified interface to multiple, seamless connectivity to heterogeneous
service providers.

Component Interaction Patterns

Page 4

ABSTRACT INTERACTIONS**

Smithsonian Photo by Alfred Harrell

. . . BUY WITH CARE and BUILD FOR THE USER can result in building
or reusing components that provide an abstract design for solutions to a
family of related problems. Large-scale reuse with a LAYERED
COMPONENT FRAMEWORK might be used to reduce development costs.
But using these components and frameworks can be difficult. This
pattern solves the problem of poorly designed interaction protocols
existing between components.

� � � �

While separation of interface from implementation has
many benefits, it can also become your worst nightmare. Poor
design of interaction protocols between collaborating
components can lead to unwanted behavior and internal
dependencies that complicate system architecture.

A frustrating thing about acquiring custom off-the-shelf components
is that vendors often don’t adequately address component behavior and
dependencies upon other components. User manuals, help files, or web
pages will have an API form of documentation having sections like
method name, syntax, description, and return value, but they don't truly
deliver the essence of how they're used.

Component Interaction Patterns

Page 5

Name
 action
Syntax
boolean action (Event, What)

 Event: An Event object specifying the subject.
 What: The Object object from which the event originates.
Description
 Called when an action occurs in a component contained by the
object.
Return Value
 If successful, it returns true, else false.

Many times this is as good as it gets…

While it provides a straightforward format for documenting methods
and properties, it doesn't address the bigger picture. It doesn't tell you
how to interact with the component in question or what each possible
action is, specify underlying behavior, or how it interacts with other
components.

A component could call another component that in turn calls it back.
Or it could depend on a component that conflicts with other components.
Assemblers often don't find out until it hits them in the face. They find
out the hard way that specific versions of support files must be installed
into the environment or the system fails to behave properly.

An obvious solution would be to mandate that documentation
contains more detail. Topics like preconditions, postconditions, and
invariants could be provided to tell you more about design constraints for
a component. A language like OCL1 could be used for this purpose.

Employee

Person Company

Employer

Employee->forAll(p: Person | p.age >= 18 and p.age <= 65)

The above example shows that a constraint imposed on the
Company component is that the age of all employees must be between
the ages of 18 and 65.

While OCL is useful as a formal standard for documenting
constraints, programmers don't have the desire or ability to follow such
methods, and it still doesn't effectively capture interaction protocols or
dependencies that exist between the components in question.

Another solution is to distribute source code with components.
Source code represents the most detailed specification of component
design that programmers use to codify structure and behavior before
compiling it into binary form. It's the moment of truth for exactly how a
component operates.

Component Interaction Patterns

Page 6

Unfortunately, many vendors are unwilling to relinquish such
proprietary information. And when they do, it's often poorly documented
or difficult to understand. The user could be an assembler without
programming experience, or a programmer who isn't familiar with the
language used to implement it. And getting familiar with the code to
understand how to interact with it can take too long.

So if documentation and formal constraint languages such as OCL
and source code aren't enough, what is? The answer lies in the heart of
the original problem: poor design of interaction protocols. Let's take a
look at an early version of the Java Component class.

Component

action(Event, Action)
deliverEvent(Event)
enable()
disable()

As defined for the Component class in JDK 1.02

public boolean action(Event evt,
Object what)

The intent of the action() method is to notify objects containing
components when events occur. The following code defines a subclass
of Component called ButtonActionTest that receives events
when a user clicks on either of its two buttons.

public class ButtonActionTest extends Applet {
public void init() {

setBackground(Color.white);
add(new Button("Red"));
add(new Button("White"));

}

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button)

changeColor((String)arg);
return true;

}

void changeColor(String color) {
if (color.equals("Red"))

setBackground(Color.red);
else if (color.equals("White"))

setBackground(Color.white);
}

}

When a button is pressed, the action() method as implemented
tests against its color to determine which button was pressed and sets the
component's background to that color. What other events and arguments
are possible? What if other components want to find out when a button
is pressed?

Too much work and too much knowledge of underlying events and
arguments is required to make components interact the way you require
them to. Even if loads of documentation is provided that describes all of

Component Interaction Patterns

Page 7

them, it still lacks clear design that welcomes errors.

The solution is to represent interaction protocols with abstract
interfaces that define them. Many interacting components or complex
interactions justify spending the time to provide component diagrams
showing component relationships and dependencies they have upon their
environment.

Therefore:

Reduce a component's dependence on its environment by
defining interaction protocols between components separately
from the components themselves. Specify these interactions in
terms of abstract interfaces, and implement components to
communicate with each other through them.

Button
Action
Test

Button

MouseListener

ComponentListener

KeyListener
Component

<<interface>>
Component

addComponentListener
addMouseListener
addKeyListener
etc.

An improved design for Component in JDK 1.1

The example above shows listener interfaces that were added to JDK
1.1. While it's true that the action() method had a simple definition,
it didn't provide any detail regarding the interaction protocols
surrounding it. It's virtually impossible to provide a diagram outlining a
design like that.

The listener interfaces are far less obscure, and it's easier to illustrate
the interaction protocols between ButtonActionTest and Button.
It reduces the burden of communicating interactions in documentation,
and implies that every client that uses an object implementing the
Component interface will need to interact with it through listener
interfaces.

In fact, in the JDK, listeners have been included as a common idiom
for allowing listeners of all kinds to be attached and detached to various
classes that send events, including JavaBeans. Now the code for
ButtonActionTest looks like this:

Component Interaction Patterns

Page 8

public class ButtonActionTest extends Applet
implements MouseEvent {

public void init() {
setBackground(Color.white);

Button redbutton = new Button("Red");
redbutton.addMouseListener(this);
add(redbutton);

Button whitebutton = new Button("White");
whitebutton.addMouseListener(this);
add(whitebutton);

}

private boolean mousePressed(MouseEvent e){
if (e.target instanceof Button)

changeColor(e.paramString());
}

private void mouseClicked(MouseEvent e){}
private void mouseReleased(MouseEvent e){}
private void mouseEntered(MouseEvent e){}
private void mouseExited(MouseEvent e){}

void changeColor(String color) {
if (color.equals("Red"))

setBackground(Color.red);
else if (color.equals("White"))

setBackground(Color.white);
}

}

The behavior of the ButtonActionTest component is very
straightforward. It's easy for the reader to see that it reacts to a button
being pressed by changing its background color to the one equating to
the text of the button that was pressed.

We also observe that no behavior has been defined for the other
mouse events, or for that matter, any other kind of listener interface
supported by a subclass of the Component class. Documentation can
then be more concise, providing necessary information about constraints
without describing detail more easily provided in component diagrams
illustrating well-designed interaction protocols.

JavaBeans, implemented and used in a very similar manner to the
Java Component class, announce events through event listener
interfaces. Individual beans have no knowledge of how its listener
interfaces are implemented.

A popular variation is to codify interaction protocols in a separate
interface definition language. Most commonly used are the Microsoft
Interface Definition Language (MIDL) and OMG's CORBA Interface
Definition Language (IDL). To demonstrate it, let's look at an example
based on Microsoft COM.

Component Interaction Patterns

Page 9

Interactions between an author and publisher…

Author

ISubmissionEvents

IEditor
Publisher

The author connects, binds, and submits text to a publisher
via the IEditor interface. Upon acceptance, rejection, or iterative
feedback during the work-in-progress phase, the publisher sends events
back to the author via the ISubmissionEvents interface. The
interaction protocol2 between author and publisher looks like this:

interface ISubmissionEvents
{

void OnAccept();
void OnReject([in] string reason);
void OnFeedback([in] string comments);

};

interface IEditor
{

long Attach([in] ISubmissionEvents* callback);
void Submit([in] string title, [in] string text);
void Detach([in] long cookie);

};

An IDL compiler is used to generate proxies for components that
invoke methods (the client) and stubs for ones that implement them (the
server). It operates like a factory that receives interface definitions as
input, and generates source code in the desired language as output.

Whether a project uses Microsoft DCOM, OMG CORBA, and
DCE/ONC RPC as middleware solutions for distributed component-
based systems, the IDL compiler is an integral tool for separating
interface from implementation, achieving location transparency, and
maintaining language independence.

Other known uses of this pattern are the Darwin3 and Regis4 projects.
They define component interfaces in terms of provided and required
services, where services are typed. Each service type defined an
interaction protocol to be used between communication endpoints at the
component’s interfaces.

� � � �

Certain themes arise regarding how components can collaborate without
having dependencies hard-coded into their implementation. A
COMPONENT BUS shows how components interact by indirectly
communicating through a common routing mechanism. THIRD-PARTY
BINDING centralizes responsibility of instantiating and binding
components with a third party. And COMPONENT GLUE provides a way

Component Interaction Patterns

Page 10

to link interfaces together in order to fill in any gaps from incompatible
components . . .

Component Interaction Patterns

Page 11

COMPONENT BUS*

The New York Mercantile Exchange.

… ABSTRACT INTERACTIONS describes how to reduce component
dependencies by codifying their interaction protocols as abstract
interfaces. While this goes a long way toward achieving implementation
independence, it doesn't capture binding relationships and runtime
behavior issues that occur between interdependent components. This
pattern describes a way of binding communicating components without
their being explicitly dependent on others.

� � � �

Systems consisting of components with many
interdependencies can behave unpredictably or fail to operate
altogether if explicit bindings they depend upon aren’t
established properly or connections are lost.

Imagine if there was a thousand of them…

When multiple components in a system communicate to get a job
done, it can be very difficult to coordinate the process of instantiating

Component Interaction Patterns

Page 12

and binding them together when there are many explicit dependencies
between them. It can quickly become impossible to manage. For
example, when collaborating components have an explicit dependency
upon one interface in each of the other components, the number of
dependencies is N*(N-1), with N being the number of components
involved.

Dependencies can thwart the ability to plug and play when it's
required to do so. In a distributed system where load balancing is
performed in reaction to unexpected usage volumes, you might want to
migrate components to other servers and instantiated new ones to handle
the extra volume. Hard-coded dependencies on other components can
cause performance bottlenecks and failures that are extremely difficult to
find.

One solution would be to centralize all dependencies. Build a
component that serves as a directory and connection cache for the name
and location of other components that communicate. Each time a
component wants to interact with the other components, it grabs a
connection from the directory.

But what happens when these connections fail without warning?
From the point of failure until the connection is re-established and data is
updated, data and notifications from the failed connection won't occur
and integrity is breached. Reliability can become virtually impossible to
achieve without a more flexible approach that maintains consistency.

Another solution would be one similar to the Java listener concept.
Each component connecting to other components receives notifications
when any attributes are changed in other components. It then has the
opportunity to react and update its state accordingly. But if a large
amount of components exist, and both connections and location are very
dynamic because of system and load requirements, then these explicit
dependencies can be extremely difficult to manage.

The best solution is to allow components to communicate indirectly
through an information "bus". An information bus manages the routing
of information between participating components, from those that
produce information to those that consume it. Routing of information is
managed dynamically, as each participant can attach and detach to and
from the bus without effecting the integrity of others.

When components are attached to the bus, they register interest in
the information they require. When a component places information onto
the bus, it is delivered to those participants that registered interest. Both
the connections, and the data passed around as they communicate, are
centralized. No COMPONENT GLUE is required to adapt between
incompatible interfaces because all participants communicate through the
bus.

Therefore:

Component Interaction Patterns

Page 13

Bind components to an information bus that manages the
routing of information between communicating components to
remove explicit dependencies from the components themselves.
Define interaction protocols that not only specify interfaces
required for components to participate, but also the nature of
interactions occurring between them.

Component Bus

Participant

Client

Participants

At runtime, components acting as participants are instantiated and
attached to the bus. Each participant communicates indirectly with other
participants through the component bus. With the bus being used as a
mediator for highly interdependent components, each component only
explicitly depends upon the bus component being present at all times.
This drastically reduces the number of connections required for
communication to occur.

Instead of having N*(N-1) dependencies between communicating
components, we now have 2*N dependencies to manage using the bus.

Participant Component
Bus

<<interface>>
Receiver

Receive(Subject)

Interaction protocol between a participant and the component bus

<<interface>>
Sender

Attach(Participant)
Register(Subject)
Send(Subject, Data)
Get(Subject): Data
UnRegister(Subject)
Detach(Participant)

implements

implementsuses

uses

With the interaction protocol shown above, participants are required
to implement the Receiver interface and the bus implements the
Sender interface. Participants create an instance of the component bus,
attach to it, and register for all subjects in which they are interested.

Component Interaction Patterns

Page 14

When a participant wishes to update the data corresponding to a
subject, it calls the Send() method, passing the subject and its updated
data. When the bus receives this call, it caches the data for that subject
and calls the Receive() method for all participants who have
registered for it. As each participant receives it, it uses calls the Get
method in the component bus to retrieve the updated data.

In addition to specifying the protocol between participants and the
bus, it is important to specify the interaction that occurs amongst
participants. The nature of the interactions in terms of how data flows
between each of the participants and how they react to it can cause a
circular data storm occurring if multiple participants update a subject in
response to an update it received.

Participant
 A

Component
Bus

Possible circular data storm scenario

Participant
 B

subject=ABC
data=123

Object 1

subject=XYZ
data=456

Object 2

Receiver Receiver

Sender

Is registered for
subjects "ABC"
and "XYZ"

Is registered for
subjects "ABC"
and "XYZ"

In the example above, Participant A increments the number
corresponding to subject ABC in response to receiving an update for
subject XYZ. Participant B increments the number corresponding to
subject XYZ in response to receiving an update for subject ABC. The
first update of either subject causes a circular data storm that can cause
the system to crash or bog down the network because of increased traffic.

By specifying the interaction protocol that occurs between
participants, rules can be established that allow programmers and
assemblers to ensure that problems like this don't occur. This is very
important to the success of using this pattern. Otherwise, the architecture
of the system isn't easily visible from the source code or from its
behavior at runtime.

Let us further illustrate the issue in a fictitious scenario involving a
supply chain process between an automobile manufacturer and its
suppliers. A procurement system using a real-time reverse auction
process to allow each supplier to outbid other suppliers is used on
purchase orders for parts used on factory assembly lines. The business
benefit is great cost reduction and a more dynamic partner relationships.

Component Interaction Patterns

Page 15

Requisitioners enter bidding sessions with multiple suppliers using a
COMPONENT BUS to communicate offers back and forth until a deal is
accepted. An invoice is sent from the supplier to the requisitioner,
accounts payable sends electronic payment, and a selected logistics
provider is used to ship the parts in an overnight package to the factory
requesting them.

During the auction, XML documents using a standard markup
language for auctioning could be exchanged through the bus, which acts
as a mediator for communication between suppliers and requisitioners.
When a deal has been accepted, a commerce markup language like
cXML5 for the order payment and fulfillment process.

Interaction between each participant and the bus is simple, providing
a single point of entry for sending and receiving data. But designers
must additionally specify all possible interactions occurring through the
bus via XML documents to ensure that the system meets requirements.

a : Auctioneer s1 : Supplier s2 : Supplier s3 : Supplier

attach(r)

r : Requisitioner

open(25gal paint)

detach()

placeOffer($30)
update(s1,$30)

update(s1,$30)

update(s1,$30)

placeOffer(s3,$29)

update(s3,$29)
update(s3,$29)

update(s3,$29)

close()

placeOffer(s2,$25)
update(s2,$25)

update(s2,$25)

update(s2,$25)
select(s2)

accept()
reject()

reject()

<<participant>> <<participant>> <<participant>> <<participant>><<bus>>

The above sequence diagram shows the interactions that occur in
terms of the bus protocol, and stereotypes specifying each object's role in
the COMPONENT BUS. The requisitioner and three suppliers act as
participants, with the auctioneer acting as the bus. This diagram tells us
a lot more about the interactions that occur through the interfaces defined
by the bus.

A popular variation is one that uses a COMPONENT BUS that's not a
component itself. TIBCO Rendezvous6 is a popular alternative for bus
architectures. A large investment bank uses a component framework
providing publishers and subscribers used from Microsoft Excel
spreadsheets and custom-developed applications for real-time data
solutions.

Component Interaction Patterns

Page 16

Each component links to a static library that interacts with a local
Rendezvous daemon that communicates to central multicasting services.
These services use IP Multicast at the lowest level, which provides a
huge performance advantage over point-to-point or broadcast-based
alternatives, when communicating messages between publishers and
subscribers.

Other known uses include the following: The Java InfoBus7

architecture implements a COMPONENT BUS for JavaBeans that exist in
the same address space. Messaging middleware such as iBus8, and tuple
spaces such as Linda9 or IBM TSpaces10 and JavaSpaces can be used as a
distributed COMPONENT BUS.

Other known names for this pattern are: Software Bus, Coordination
Model of Distribution, and Tuple Space.

� � � �

THIRD-PARTY BINDING can be used to instantiate all participants and
bind them to the component bus. When incompatible components need
to interact with the bus, COMPONENT GLUE can be used as an
intermediary. CONNECTION SINGLETON can be used if many participants
exist in one local address space to interact with the component bus. If
connections are remote, CONNECTION OBSERVER can be used to allow
each participant to observe changes in the state of its connection to the
bus.

Component Interaction Patterns

Page 17

COMPONENT GLUE*

Falls Mill, Belvidere, TN. By Dennis Keim

… ABSTRACT INTERACTIONS describes how to reduce component
dependencies by codifying their interaction protocols as abstract
interfaces. COMPONENT BUS provides a solution for allowing
components to communicate indirectly. Both patterns assume the
assembler has full control over interaction protocols and implementations
provided by all components. This pattern shows how to make
incompatible components work together without sacrificing
independence.

� � � �

Assembling components that are incompatible in the way
they communicate or interact can be time consuming and
inevitably complicates system architecture.

Components using services provided by other components
sometimes exist in different operating environments. Other times, they
play incompatible roles, are compatible but reference slightly different
type signatures, or were decoupled from other components by design.

Component Interaction Patterns

Page 18

Each component resides in a different world…

A B

COM Environment CORBA Environment

??

With clients and servers running different operating systems, and
with components from outside the organization being acquired and
reused, a common problem in distributed systems is that components
operating in one environment need to communicate with components
operating in another.

How do you make them communicate?

Implements
Bar Interface

Requires
Bar2 Interface

A B

Even when in the same component environment, often
incompatibilities come down to type incompatibilities. Above,
component B expects interface Bar2 from A, which implements Bar.
They play compatible roles, but A implements an interface that is not
compatible with B.

Furthermore, while loose coupling between components is a positive
design trait, a side effect is that components are designed to be
autonomous and don't interact with their peers. Components used to
build GUIs (e.g., buttons, text fields, and lists) send events to their
containers and receive messages from them but don't interact with each
other.

Other times, data needs to be joined together from multiple sources
and sent to a component for processing. Data retrieved by executing a
query against a database, legacy data, or data from other components are
often combined and sent to a component because it wasn't implemented
to do so itself.

How do you connect incompatible components in situations like
these? One solution is to build a third component acting as an ADAPTER
which implements the interface required by the client, and performs a
translation to the interface the server implements.

Component Interaction Patterns

Page 19

A third comes in and saves the day…

Bar2

Bar
A B

C

Above, C intercepts B's binding to A, implements B's required
interface, and translates to A. This adds additional interactions to a
system's architecture, and could result in performance or reliability
problems.

The problem is that developing, integrating, and testing new
components can be too time consuming to be considered a viable
solution. For example, building a component that acts as a container for
components which is itself embedded into the original container can
overcomplicate design or be impossible in some cases. Let's look at a
web page containing a form as an example.

<HTML>
<BODY>

<FORM action="/scripts/sendaddr.dll">
Name: <INPUT name="name" value="" size=40>

Address: <INPUT name="address" value="" size=80>

City: <INPUT name="city" value"" size=40>
State: <INPUT name="city" value"" size=5>
Zip: <INPUT name="zip" value"" size=10><P>
<INPUT type="submit" value="Send">

</FORM>
</BODY>
</HTML>

The HTML script above displays five text fields that allow the user
to enter his or her name and address information. Below that, a "Send"
button allows the user to submit their information to the web server for
processing.

The "Send" button has no knowledge of the existence of name and
address fields. Buttons don't have any knowledge of the existence of the
text fields, and vice versa. The browser doesn't perform any validation
check on the contents of the text fields. What if we don't want the user to
submit any information until they've entered data in all text fields?

Obviously, building a third component that contains the text fields
and button would be too complicated. It would need to interact with the
web browser to send and receive messages and notifications to allow or
disallow sending the request to the web server for processing. It would
be difficult and completely coupled to the browser in question.

A popular Internet solution is for web servers to return an error page
highlighting the problem once it receives the processing request.
However, this is not always viable. Performance issues due to the

Component Interaction Patterns

Page 20

amount of data or the complexity of server-side data validation can be
too expensive.

In addition, problems with incompatible components don't always
involve the web or web pages, which further complicates the issue when
component reuse is taken into account.

Another way of solving component incompatibilities is by using type
coercions11. While they seem like a clever way to create components
that are more flexible, they hinder the ability for the architectural view of
the system to emphasize the behavior of this kind of interface adaption.

The Arian 5 disaster12 is an example of a bug caused by type
coercion. The code in question was perfectly valid in the software for
the Arian 4 but was made invalid when other parts of the system were
modified for the Arian 5.

In all of these cases, it's easier to utilize an available and appropriate
scripting or programming language to create "glue" code that mediates or
adapts between disparate components. Glue code ties them together
without increasing coupling, and prevents designers from having to
introduce protocols riddled with adapters into the architecture.

Since the glue code isn't implemented as components, they don't plug
into the framework themselves; instead, they facilitate the plugging of
existing components into the framework.

In certain cases, however, replacing glue code with components is
appropriate. For example, when you find yourself writing the duplicate
glue code in many parts of the system, it is important to consider the
value of refactoring the design to implement a component as a substitute.

Therefore:

Create "glue" code to act as an adapter for incompatible
components, or as a mediator between peers. Only build full-
fledged components when glue doesn't meet all of your
requirements.

Button Text
Field

Container

The container has
scripting code embedded
in it that allows it to
handle events and send
messages to the
components it contains.

Web pages requiring validation checks prior to submitting a request

Component Interaction Patterns

Page 21

to the web server for processing can use client-side scripting to react to
the click event. Each text field can be checked for data, and an error
message could be displayed instructing the user to enter data and the
request cancelled if any one of them is missing data.

In addition to acting as an adapter or mediator between components,
glue code can be used as a strategy to parameterize components with
application-specific actions. Therefore, instead of glue code connecting
disparate components being embedded in a third party, it is embedded
directly in the components themselves.

Anything's possible…

Client

The service sends
scripting code that
adapts the client
to the service.

When the client wants
to invoke the service, it
passes the glue code to
the scripting engine.

Scripting
Engine

Service

The scripting engine
does whatever the
server told it to do.

In the above example, a service passes scripting code to a client
component, which is executed in place of calling the service directly.
The location of parameterization via glue code depends on the
requirements of the application in question.

This is similar to how Jini clients and services interact. A Jini
service discovers and joins a network by uploading its services as a
proxy onto the Lookup Services. Clients who then come along and join
the network through discover/join protocols and use the Lookup service
to invoke the Jini service download glue code to allow for direct
communication with the service via the proxy13.

Tcl/Tk components use Tcl scripts as glue to tie the components into
an application. Components evaluate scripts in the Tcl intepreter to
announce events. The interpreter therefore acts as a mediator between
components, and scripts act as application-specific strategies used to
parameterize components.

JavaBeans development tools generate anonymous inner classes to
act as glue between components, routing events announced by one
component to the method(s) of another component that can handle the
events.

� � � �

Component Interaction Patterns

Page 22

If components support INTERFACE DISCOVERY, glue code can be
generated automatically from the interface definitions of the components
it sits between. If this pattern is implemented using scripting, the script
engine acts as a MEDIATOR between components and the scripts used to
react to a components events can be thought of as STRATEGIES
modifying the behavior of that component.

Component Interaction Patterns

Page 23

THIRD-PARTY BINDING*

Source: The U.S. Embassy and Information Service in Israel

… ABSTRACT INTERACTIONS describes how to reduce component
dependencies and improve design by codifying their interaction protocols
as abstract interfaces. COMPONENT BUS describes how to bind them
together without being directly connected to each other. This pattern
provides a solution for both cases where components are attached and
detached by a separate component.

� � � �

Changing bindings in components that have internal
dependencies to other components inside their implementation
can make system maintenance a nightmare and reuse virtually
impossible.

When a client component binds to a server component, often there is
an explicit binding programmed into the implementation of the
component that can introduce problems, bottlenecks, or a single point of
failure once the system is a living, breathing animal.

If maintainers or programmers who are reusing components
containing these bindings wish to replace it with a binding to a different
component, the brittleness of the system can make it impossible to make
changes while maintaining reliability.

One possible solution is to design the code around the connection to
be generic by building an object, perhaps an adapter, which encapsulates
the connection to the server component. The problem with this is that
the solution is still centered inside the component's implementation, and

Component Interaction Patterns

Page 24

the architecture must include a coupled relationship between the client
and server components.

A better way to solve this problem is to allow a third component (or
outside party such as a runtime application initializer) to instantiate each
component in the correct order and bind them to the appropriate services.
Maintenance involving modification of bindings between components
becomes much easier.

Therefore:

Remove connections established in the implementation of a
component by having a third component bind two interacting
components together.

The dependencies between components are visible at a higher level,
making it easier to specify component interactions in the architecture,
and easier to maintain the system. It becomes easier to reuse
components, because they don't have implicit dependencies on other
components in their environment.

Because interactions between components are made explicit, it is
easier to model and reason about the behavior of the system in terms of
the behavior of those components.

It is impossible to remove all implicit dependencies. Components
will always be dependent on one or more component frameworks that
define the interactions between them and other components. For
example, a third-party can be used to bind and attach components to a
COMPONENT BUS.

Microsoft's DirectShow media API implements stream filters as
COM objects that expose one or more "pins" through which media
frames flow. Frames are passed into a filter through input pins and out of
a filter through output pins. Filter graphs are created to perform stream
processing and rendering by instantiating components and connecting the
output pins of up-stream filters to the input pins of down-stream filters.

A real-time market data component and distributed systems
management component are bound together by a third-party in a project
developed in-house at a large global investment bank. That third party
can be Microsoft Excel or any other user of the components building
COM-compliant systems.

Many architecture description languages describe system
architectures in terms of only instantiated components and
provide/require/use relationships between those components.

� � � �

In each of the components that are bound to others via this pattern, using
the NULL OBJECT can be useful in defining an implementation-centric
object that serves as a placeholder "null" connection to the server

Component Interaction Patterns

Page 25

component until the third-party attaches it.

Component Interaction Patterns

Page 26

CONSUMER-PRODUCER*
[[[[insert picture here]]]]

… ABSTRACT INTERACTIONS describes how to reduce component
dependencies by codifying their interaction protocols as abstract
interfaces. While this goes a long way toward achieving implementation
independence, it doesn't capture how to loosely coupled components to
service providers providing similar services. This pattern describes a
way of using service providers without being explicitly dependent on
them.

� � � �

Forcing programmers and assemblers to explicitly depend
upon components providing system services can complicate
maintenance, limit reuse and acclerate the process of systems
being classified as "legacy" systems.

Dependency management only worsens as new
systems emerge…

Provider
A

Provider
B

Consumer

Core system services are utilized in virtually every application in one
way or another. Heterogeneous databases, naming and directory
interfaces, and other services are used throughout systems in various
components.

Major problems with this is that there is no consistent way to
interface with these services, programmers and assemblers must re-learn
new APIs each time new services and/or platforms are accessed, and as
those services change or become obsolete, the value, reusability
maintainability decreases rapidly.

One way to solve the problem is to build an abstract factory that
centralizes the creation of objects that represent system services. The
problem with this is that factories have the tendency to be embedded in
every single component requiring these services, and reuse is difficult.
In addition, the problem of different interfaces for different programmers
and services still exists.

Another idea is to build a separate component for each system that
encapsulates direct access to all system services used by an application,
providing interfaces for each system accessed. The problem with this is

Component Interaction Patterns

Page 27

that the component needs to be developed and maintained separately,
resulting in different levels of quality, and again each programmer is free
to roll their own custom interfaces for each system, making consistency
impossible.

The ultimate solution to this problem is to build a producer
component that sits in between consumers and providers. It provides a
single, generic interface that programmers can reuse for all services. By
building back-end providers for each service, reuse on both sides can be
accomplished in a far more consistent manner.

Therefore:

Provide components a unified interface to multiple,
seamless connectivity to heterogeneous service providers.

Provider
A

Provider
B

Provider
C

ProducerConsumer

Consumer utilizes unified interface for access to services…

The design of this solution includes a component (see Producer
above) that fills the pivotal role of service manager. It manages
connections to providers and provides a single point of access for
components that use it (Consumer above).

From the consumer's point of view, an application programming
interface (API) is defined that allows programmers to access a unified
interface for all service access. On the provider's side, a service provider
interface (SPI) is defined that allows programmers building service
providers to conform to a proven producer and immediately allow
existing consumers access to it.

In the middle, sitting between the API and SPI, is a manager that
manages connections, instantiates and binds to services, caches data, etc.

There are many known uses for this pattern. Java Naming &
Directory Services (JNDI) provides a common interface for obtaining
metadata information about where objects and services can be found14.

Microsoft's Universal Data Access15 initiative includes a component
framework called Microsoft Data Access Components (MDAC) that
implements this pattern. Its producer component is called ActiveX Data
Objects (ADO), and each service provider is implemented as an OLEDB
provider.

Component Interaction Patterns

Page 28

� � � �

This pattern benefits from the use of CONNECTION SINGLETON and
CONNECTION OBSERVER, since it requirements can depend heavily on
providing connection management services to its consumers.

CONCLUSION
While many middleware platforms and component object models provide a nice way for clients
and servers to communicate in a langauge- and implementation-independent manner, they don't
focus on recurring themes and best practices that are present on real projects.

The Component Interaction Patterns focus on present themes that are seen on component-based
projects where programmers implement interaction protocols between components based on
abstract interfaces and connections that provide just the right amount of coupling between
components and cohesion to meet the needs of its users.

ACKNOWLEDGEMENTS
Nat Pryce initially documented many of the Component Interaction Patterns and actively
participated in follow-on discussion.

Joshua Kerievsky provided valuable input and was instrumental in convincing us that it was best
to use the Alexander form to document them. He was the pattern shepherd for PLoP'99. Ken
Auer was the Program Committeeperson who also provided comments and introduced it to the
Triangle Pattern Language User's Group for review.

And thanks to Dafydd Rees, Brad Appleton, Mike Krajnak, and others who contributed to the
Wiki Wiki Web discussion and evolution of the patterns in this language.

REFERENCES
[Alexander+77] C. Alexander, S. Ishikawa, M. Silverstein with M. Jacobson, I. Fksdahl-King, and

Shlomo Angel. A Patterns Language: Towns, Buildings, Construction. Oxford
University Press, New York, 1977.

[Booch+99] G. Booch, I. Jacobson, J. Rumbaugh. The Unified Modeling Language User Guide,
Addison-Wesley Longman, Reading, MA. 1997.

[Gamma+95] E. Gamma, R. Helm, R. Johson, J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley Longman, Reading, MA, 1995.

[Szyperski97] C. Szyperski. Component Software, ACM Press/Addison-Wesley Longman, 1997.

1 Object Constraint Language (OCL) is a formal specification for expressing object constraints. It is an
integral part of UML and was used to formally denote its metamodel semantics. For more information, see
http://www.rational.com/uml/resources/documentation/ocl.
2 The IDL format is used for semantic simplicity. With MIDL, different parameter and return value types,
metadata, the concept of a "coclass", GUIDs, and dispatch IDs are included that clutter up examples.

Component Interaction Patterns

Page 29

3 Darwin is an architecture description language that was used as a configuration language for the Regis
distributed programming environment. See http://groucho.doc.ic.ac.uk/research/darwin/darwin.html for
more details.
4 Regis is a distributed programming environment distributed as a set of class libraries, frameworks, and
tools for the development of component-based concurrent and distributed systems. It was used on the
Management of Multiservice Networks project at Imperial College in the United Kingdom. See
http://groucho.doc.ic.ac.uk/~np2/regent/regent.html for more information.
5 The Commerce Extensible Mark-up Language (cXML) is an open, standard application of XML to the
procurement and order resource management process. See http://www.cxml.org for more information.
6 Rendezvous is a cross-platform, scalable, high-availability data exchange platform that can be used over
LANs or across the Internet. It includes the option of using IP Multicast as a means for efficiently
notifying listening subscribers of data updates. See http://www.rv.tibco.com for more information.
7 InfoBus enables the dynamic exchange of data between JavaBeans by defining a small number of
interfaces between cooperating Beans and by specifying the protocol for use of those interfaces based on
the notion of an information bus. See http://java.sun.com/beans/infobus for more information.
8 iBus is a scalable, flexible set of enterprise products that deliver messages and business events among
application through various supported network protocols in near real-time. See
http://www.softwired.ch/products/ibus for more information.
9 Linda is a coordination language consisting of a half-dozen operations and a tuple space (an ordered
collection of typed data objects) that can be accessed from a Linda program. See
http://www.sca.com/lfaq.html for more information.
10 IBM TSpaces is a network communication buffer with database capabilities. See
http://www.almaden.ibm.com/cs/TSpaces for more information.
11 The VARIANT type commonly used with COM components to allow for variable type coercion.
12 See http://www.cnn.com/TECH/9710/30/ariane.launch for coverage of this event. Also, see the Ariane
home page at http://www.arianespace.com.
13 S. Ilango Kumaran, A Quick Look At Jini, Java Report. Vol. 4, No. 8, August 1999.
14 J.P. Morgenthal. Understanding Enterprise Java APIs. Component Strategies. Vol. 2, No. 2, August
1999. Also see http://java.sun.com/products/jndi for more information on JNDI.
15 See http://www.microsoft.com/data for more information on UDI and MDAC.

