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Abstract

Creational patterns, such as Singleton and Factory Method [1],
address object construction and initialization, but do not con-
sider object destruction. In some applications, however, object
destruction is as important as object construction. TheObject
Lifecycle Managerpattern addresses issues associated with
object destruction. Object Lifecycle Manager is also an ex-
ample of acomplementary pattern, which completes or ex-
tends other patterns. In particular, the Object Lifecycle Man-
ager pattern completes creational patterns by considering the
entire lifecycle of objects.

1 Intent

TheObject Lifecycle Managerpattern can be used to govern
the entire lifecycle of objects, from creating them prior to their
first use to ensuring they are destroyed properly at program ter-
mination. In addition, this pattern can be used to replace static
object creation (and destruction) with dynamic object preal-
location (and deallocation) that occurs automatically during
application initialization (and termination).

2 Example

Singleton [1] is a common creational pattern that provides a
global point of access to a unique class instance and defers
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creation of the instance until it is first accessed. If a singleton
is not needed during the lifetime of a program, it will not be
created. The Singleton pattern does not address the issue of
when its instance is destroyed, however, which is problematic
for certain types of applications and operating systems.

To illustrate why it is important to address destruction se-
mantics, consider the following logging component that pro-
vides a client programming API to a distributed logging ser-
vice [2]. Applications use the logging component as a front-
end to the distributed logging service to report errors and gen-
erate debugging traces.

class Logger
{
public:

// Global access point to Logger singleton.
static Logger *instance (void) {

if (instance_ == 0)
instance_ = new Logger;

return instance_;
}

// Write some information to the log.
int log (const char *format, ...);

protected:
// Default constructor (protected to
// ensure Singleton pattern usage).
Logger (void);

static Logger *instance_;
// Contained Logger singleton instance.

// ... other resources that are
// held by the instance ...

};

// Initialize the instance pointer.
Logger *Logger::instance_ = 0;

The Logger constructor, which is omitted for brevity, allo-
cates various OS endsystem resources, such as socket handles,
shared memory segments, and/or system-wide semaphores,
that are used to implement the logging service.
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To reduce the size and improve the readability of its logging
records, an application may choose to log certain data, such as
timing statistics, in “batch” form rather than individually. For
instance, the following statistics class batches timing data for
individual identifiers:

class Stats
{
public:

// Global access point to the
// statistics singleton.
static Stats *instance (void) {

if (instance_ == 0)
instance_ = new Stats;

return instance_;
}

// Record a timing data point.
int record (int id,

const timeval &tv);

// Report recorded statistics
// to the log.
void report (int id) {

Logger::instance ()->
log ("Avg timing %d: "

"%ld sec %ld usec\n",
id,
average_i (id).tv_sec,
average_i (id).tv_usec);

}

protected:
// Default constructor.
Stats (void);

// Internal accessor for an average.
const timeval &average_i (void);

// Contained Stats singleton instance.
static Stats *instance_;

// ... other resources that are
// held by the instance ...

};

// Initialize the instance pointer.
Stats *Stats::instance_ = 0;

When a user-defined threshold is reached, it uses theLogger
singleton to report average timing statistics for an identifier.

Both theLogger andStats classes provide distinct ser-
vices to the application: theLogger class provides general
logging capabilities, whereas theStats class provides spe-
cialized batching and logging of time statistics. These classes
are designed using the Singleton pattern, so that a single in-
stance of each is used in an application process.

The following example illustrates how an application might
use theLogger andStats singletons.

int main (int argc, char *argv[])
{

// Interval timestamps.
timeval start_tv, stop_tv;

// Logger, Stats singletons
// do not yet exist.

// Logger and Stats singletons created
// during the first iteration.
for (int i = 0; i < argc; ++i) {

::gettimeofday (&start_tv);
// do some work between timestamps ...
::gettimeofday (&stop_tv);
// then record the stats ...
stop_tv.sec -= start_tv.sec;
stop_tv.usec -= start_tv.usec;
Stats::instance ()->record (i, stop_tv);

// ... and log some output.
Logger::instance ()->

log ("Arg %d [%s]\n", i, argv[i]);
}

// Logger and Stats singletons are not
// cleaned up when main returns.
return 0;

}

Note that theLogger andStats singletons are are not con-
structed or destroyed explicitly by the application,i.e., their
lifecycle management is decoupled from the application logic.
It is common practice to not destroy singletons at program
exit [3].

Several drawbacks arise, however, from the fact that the
Singleton pattern only addresses thecreationof singleton in-
stances and does not deal with their destruction. In partic-
ular, when themain program above terminates, neither the
Logger nor theStats singletons are cleaned up. At best,
this can lead to false reports of leaked memory. At worst, im-
portant system resources may not be released and destroyed
properly.

For instance, problems can arise if theLogger and/or
Stats singletons hold OS resources, such as system-scope
semaphores, I/O buffers, or other allocated OS resources. Fail-
ure to clean up these resources gracefully during program
shutdown can cause deadlocks and other synchronization haz-
ards. To alleviate this problem, each singleton’s destructor
should be called.

One way of implementing the Singleton pattern that at-
tempts to ensure singleton destruction is to declare a static
instance of the class at file scope [3]. For example, the follow-
ing Singleton Destroyer template provides a destruc-
tor that deletes the singleton.

template <class T>
Singleton_Destroyer
{
public:

Singleton_Destroyer (void): t_ (0) {}
void register (T *) { t_ = t; }
˜Singleton_Destroyer (void) { delete t_; }
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private:
T *t_; // Holds the instance.

};

To use this class, all that’s necessary is to modify theLogger
and Stats classes by defining a static instance of the
Singleton Destroyer , such as the following example
for Logger :

static Singleton_Destroyer<Logger>
logger_destroyer;

// Global access point to the
// Logger singleton.
static Logger *instance (void) {

if (instance_ == 0) {
instance_ = new Logger;
// Register the singleton so it will be
// destroyed when the destructor of
// <logger_destroyer> is run.
logger_destroyer.register (instance_);

}
return instance_;

}

// ... similar changes to Stats class ...

Note how logger destroyer holds the single-
ton and deletes it when the program exits. A similar
Singleton Destroyer could be used by theStats
singleton, as well.

Unfortunately, there are several problem with explicitly
instantiating staticSingleton Destroyer instances. In
C++, for example, eachSingleton Destroyer could be
defined in a different compilation unit. In this case, there is
no guaranteed order in which their destructors will be called,
which can lead to undefined program behavior. In particular, if
singletons in different compilation units share resources, such
as socket handles, shared memory segments, and/or system-
wide semaphores, the program may fail to exit cleanly. The
undefined order of singleton destruction in C++ makes it hard
to ensure these resources are released by the OS before (1)
the last singleton using the resource is completely destroyed,
but not before (2) a singleton that has not exited uses the re-
source(s).

In summary, the key forces that are not resolved in these
examples above are: (1) ensuring resources allocated by a sin-
gleton are ultimately released when a program exits, (2) man-
aging the order of creation and destruction of static instances,
and (3) providing a framework that encapsulates these details
within a well-defined interface.

3 Context

An application or system where full control over the lifecycle
of the objects it creates is necessary for correct operation.

4 Problem

Many applications do not handle the entire lifecycle of their
objects properly. In particular, applications that use creational
patterns, such as Singleton, often fail to address object destruc-
tion. Similarly, applications that use static objects to provide
destruction often suffer from inconsistent initialization and ter-
mination behavior. Both of these problems are outlined below.

Problems with singleton destruction: Singleton instances
may be created dynamically.1 A dynamically allocated sin-
gleton instance becomes a resource leak if it is not destroyed,
however. Often, these types of leaks are ignored because (1)
they aren’t significant in many applications and (2) on most
multi-user general-purpose operating systems, such as UNIX
or Windows NT, they are cleaned up when a process termi-
nates.

Unfortunately, resource leaks can be troublesome in the fol-
lowing contexts:

� When graceful shutdown is required [3]: A singleton
may be responsible for system resources, such as system-wide
locks, open network network connections, and shared mem-
ory segments. Explicit destruction of these singletons may
be desirable to ensure these resources are related at a well
defined point during program termination. For instance, if
theLogger class in Section 2 requires system-wide locks or
shared memory, theLogger must release these resources as
soon as theLogger is not needed.

� When singletons maintain references to other single-
tons: Explicitly managing the order of destruction of sin-
gletons may be necessary to avoid problems due to dangling
references during program termination. For example, if the
Stats class in the example above uses theLogger instance
in its report method, this method could be invoked during
theStats instance destruction, which renders the behavior of
the program undefined. Likewise, to support useful behaviors,
such as logging previously unreported values during program
shutdown, the termination ordering of these singletons must
be controlled.

� When checking for memory leaks: Memory leak de-
tection tools, such as NuMega BoundsCheck, ParaSoft In-
sure++, and Rational Purify, are useful for languages, such as
C and C++, that require explicit allocation and deallocation of
dynamic memory. Such tools will identify singleton instances
as leaked memory, which make it hard to identify the relevant
memory leaks.

1Singleton is used as an example in much of this pattern description be-
cause (1) it is a popular creational pattern and (2) it highlights challenging
object destruction issues nicely. However, Object Lifecycle Manager can
complement other creational patterns, such as Factory Method, and does not
assume that its managed objects are singletons or homogeneous types.
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For instance, if a large number of identifiers is used to
recordStats data in our running example, it may appear that
a sizeable amount of memory is leaking during program op-
eration. In large-scale applications, these “leaks” can result
in numerous erroneous warnings, thereby obscuring the actual
memory leaks and hindering system debugging.

� Dynamic memory allocation may be from a global
pool: Some real-time operating systems, such as Vx-
Works [4] or pSOS [5], have only a single, global heap for
all applications. Therefore, application tasks must release dy-
namically allocated memory upon task termination; otherwise,
it cannot be reallocated to other applications until the OS is
rebooted. For instance, failure to explicitly release memory
that was dynamically allocated by theLogger andStats
singletons in our running example represents actual resource
leaks on such OS platforms.

Problems with static object lifecycle: Some objects must
be created prior to any use. In C++, such instances tradition-
ally have been created asstatic objects, which are intended to
be constructed prior to invocation of the main program entry
point and destroyed at program termination. However, there
are several important drawbacks to static objects:

� Unspecified order of construction/destruction. C++
only specifies the order of construction/destruction of static
objectswithin a compilation unit (file); the construction order
matches the declaration order and destruction is the reverse
order. However, there is no constraint specified on the order
of construction/destructionbetweenstatic objects in different
files. Therefore, construction/destruction ordering is imple-
mentation dependent.

For example, the versions of theLogger and Stats
classes that use theSingleton Destroyer in Section 2
illustrate the problems that arise due to the undefined order of
destruction of theStats andLogger singleton instances.

It is difficult to write portable C++ code that uses static ob-
jects possessing initialization dependencies. Often, it is sim-
pler to avoid using static objects altogether, rather than trying
to analyze for, and protect against, such dependencies. This
approach is particularly appropriate for reusable components
and frameworks, which should avoid unnecessary constraints
on how they are used and/or initialized.

On some platforms, explicit singleton management is nec-
essary for correct program operation because some platforms
destroy singletons prematurely. For instance, the garbage col-
lector in older Java Development Kits (JDKs) may destroy an
object when there are no longer any references to it, even if
the object was intended to be a singleton [6]. Though this
deficiency has been fixed in later JDKs, the Object Lifecycle
Manager could solve it, under application control, by main-
taining singleton references.

Another problem in Java applications is the sharing of
namespaces, which allow sharing (intended or otherwise) be-
tween singletons in separate applets [7]. Again, the Object
Lifecycle Manager could be used to register singleton in-
stances. Applets would then access their singletons from this
registry.

� Poor support by embedded systems. Embedded
systems have historically used C. Therefore, they do not al-
ways provide seamless support for OO programming lan-
guages features. For instance, the construction/destruction of
static objects in C++ is one such feature that often compli-
cates embedded systems programming. The embedded OS
may have support for explicit invocation of static construc-
tor/destructor calls, but this is not optimal from the program-
mer’s perspective.

Some embedded operating systems do not support the no-
tion of a program that has a unique entry point. For exam-
ple, VxWorks supports multipletasks, which are similar to
threads because they all share the address space. However,
there is no designatedmain task for each application. There-
fore, these embedded systems platforms can be configured
to call static constructors/destructors at module (object file)
load/unload time, respectively. On such platforms, it is not
otherwise necessary to unload and load between repeated exe-
cutions. To properly destroy and construct static objects, how-
ever, the static object destructors/constructors must either be
called manually, or the module unloaded and loaded again,
which hinders repeated testing.

In addition, placement of data in read-only memory (ROM)
complicates the use of static objects [8]. The data must be
placed in ROM prior to run-time; however, static constructors
are called at run-time. Therefore, embedded systems some-
times do not support calls of static constructors and destruc-
tors. Moreover, if they are supported it may be under explicit
application control, instead of by implicit arrangement of the
compiler and run-time system.

One or more of these drawbacks of static objects typically
provides sufficient motivation for removing them from a pro-
gram. Often, it is better not use them in the first place, but to
apply the following solution instead.

5 Solution

Define anObject Lifecycle Manager, which is a singleton that
contains a collection ofPreallocated Objectsand Managed
Objects. The Object Lifecycle Manager is responsible for con-
structing and destroying the Preallocated Objects at program
initialization and termination, respectively. It is also responsi-
ble for ensuring all of its Managed Objects are destroyed prop-
erly at program termination.
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6 Applicability

Use Object Lifecycle Manager when:

Singletons and other dynamically created objects must be
removed without application intervention at program ter-
mination: Singleton and other creational patterns do not
typically address the question of when the objects they cre-
ate should be removed, or who should remove them. Object
Lifecycle Manager provides a convenient, global object that
deletes dynamically created objects. Creational pattern objects
can then register with the Object Lifecycle Manager for dele-
tion, which usually occurs at program termination.

Static objects must be removed from the application: As
described in Section 4, static objects can be troublesome, espe-
cially in some languages and on some platforms. Object Life-
cycle Manager provides a mechanism to replace static objects
with Preallocated Objects. Preallocated Objects are dynami-
cally allocated before the application uses them, and deallo-
cated at program termination.

The platform does not support static object construc-
tion/destruction: Some platforms, such as VxWorks and
pSOS, do not always construct static objects at program start
and destroy them at program termination.2 I general, it is best
to remove all static objects,e.g., to support repeated testing of
a program. Another situation where static objects can cause
difficulty is when they are placed in ROM. Objects in ROM
cannot be initialized at run-time, because they cannot be mod-
ified at all.

The underlying platform does not provide a notion of a
program, though the application needs it: The root cause
for lack of support for static object construction/destruction on
some platforms is their lack of support for the notion of a pro-
gram, as discussed in Section 4. The Object Lifecycle Man-
ager pattern can be used to emulate programs by partitioning
this address space. The scope of each Object Lifecycle Man-
ager delineates a program, from the application perspective.

Destruction order must be specified by the application:
Dynamically created objects can beregisteredwith the Object
Lifecycle Manager for destruction. The Object Lifecycle Man-
ager can be implemented to destroy objects in any desired or-
der.

The application requires explicit singleton management:
As described in Section 4, singletons may be destroyed pre-
maturely, for example, on earlier Java platforms. The Object

2On certain platforms, such as VxWorks and pSOS, static objects can be
constructed when the module is loaded and destroyed when it is unloaded.
After loading, an entry point can be called more than once before unloading.
Therefore, aprogramcan be run more than once after constructing static ob-
jects, without ever destroying them. Conversely, static object constructors and
destructors can be invoked explicitly.

Lifecycle Manager delays singleton destruction until program
termination.

7 Structure and Participants

The structure and participants of the Object Lifecycle Manager
pattern are shown using UML in Figure 1 and described below.

Application

Preallocated Object

Singleton*

*
*

*
Manager

Object Lifecycle

fini ()
static starting_up ()
static shutting_down ()
static at_exit ()
static instance ()
at_exit_i ()

init ()

static instance_

Figure 1: Object Lifecycle Manager Pattern Structure

Object Lifecycle Manager: EachObject Lifecycle
Manager is a singleton that contains collections of Managed
Objects and Preallocated Objects.

Managed Objects: Any object may beregisteredwith an
Object Lifecycle Manager, which is responsible for destroying
the object. Object destruction occurs when the Object Lifecy-
cle Manager itself is destroyed, typically at program termina-
tion.

Preallocated Objects: An object may be hard-coded for
construction and destruction by an Object Lifecycle Manager.
Preallocated object have the same lifetime as the Object Life-
cycle Manager,i.e., the lifetime of the process that executes
the program.

Application: The Application initializes and destroys its
Object Lifecycle Manager s, either implicitly or ex-
plicitly. In addition, the application registers its Managed Ob-
jects with anObject Lifecycle Manager , which may
contain Preallocated Objects.

8 Dynamics

The dynamic collaborations among participants in the Object
Lifecycle Manager pattern are shown in Figure 2. The diagram
depicts four separate activities:
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OObbjjeecctt
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LLiiffeeccyyccllee
MMaannaaggeerr

init ()
SSTTAACCKK  IINNIITT,,  EEXXPPLLIICCIITT  IINNIITT

PPrreeaallllooccaatteedd
OObbjjeecctt

PPRREEAALLLLOOCCAATTEEDD  OOBBJJEECCTTSS

OOBBJJEECCTT  OOPPEERRAATTIIOONN
method ()

create ()

DDLLLL  OOPPEENN,,  SSTTAATTIICC  IINNIITT,,

create ()

at_exit ()

MMAANNAAGGEEDD  OOBBJJEECCTTSS
instance ()

OOBBJJEECCTT  CCLLEEAANNUUPP

method ()

destroy ()

destroy ()fini ()

instance ()

Figure 2: Object Lifecycle Manager Pattern Collaborations

1. Object Lifecycle Manager creation and initialization,
which in turn creates the Preallocated Objects;

2. Managed Object creation by the Application, and regis-
tration with the Object Lifecycle Manager;

3. Use of Preallocated and Managed Objects by the Appli-
cation; and

4. Destruction of the Object Lifecycle Manager, which in-
cludes destruction of all Managed and Preallocated Ob-
jects.

Within each activity, time increases down the vertical axis.

9 Implementation

The Object Lifecycle Manager pattern can be implemented us-
ing the steps presented below. This implementation is based
on the Object Manager provided in the ACE framework [9],
which motivates many of the interesting implementation is-
sues in this section. ACE is written in C++, so some of the
steps discussed below are language specific. Appendix A il-
lustrates even more concretely how the Object Lifecycle Man-
ager pattern has been implemented in ACE.

1. Define the Object Lifecycle Manager. This component
provides applications with an interface with which to regis-
ter objects whose lifecycle must be managed to ensure proper
destruction upon program termination. In addition, this com-
ponent defines a repository that ensures proper destruction of
its managed objects. TheObject Lifecycle Manager
is a container for thePreallocated Object s and for
the Managed Object s registered for destruction at termi-
nation.

The following substeps can be used to implement the
Object Lifecycle Manager .

� Migrate common interfaces and implementation de-
tails into a base class: Factoring common internal details
into an Object Lifecycle Manager Base class can
make theObject Lifecycle Manager implementation
simpler and more robust. Defining anObject Lifecycle
Manager Base class also supports the creation of multiple
Object Lifecycle Manager s, each of a separate type.
To simplify our discussion, we only touch on the use of multi-
ple Object Lifecycle Manager s briefly. They do not
add consequences to the pattern, but are useful for partitioning
libraries and applications.

� Define a cleanup function interface: The Object
Lifecycle Manager should allow applications to regis-
ter arbitrary types of objects. When a program is shut down,
the Object Lifecycle Manager cleans up these ob-
jects automatically.

The following example illustrates a specialized
CLEANUPFUNC used in ACE to register an object or
array for cleanup:

typedef void (*CLEANUP_FUNC)(void *object,
void *param);

class Object_Lifecycle_Manager
{
public:

// ...
static int at_exit (void *object,

CLEANUP_FUNC cleanup_hook,
void *param);

// ...
};

The static at exit method registers an object or ar-
ray of objects for cleanup at process termination. The
cleanup hook argument points to a global function or
static member function that is called at cleanup time to de-
stroy the object or array. At destruction time, theObject
Lifecycle Manager passes theobject andparam ar-
guments to thecleanup hook function. Theparam ar-
gument contains any additional information needed by the
cleanup hook function, such as the number of objects in
the array.

Another alternative to registering aCLEANUPFUNCwith
the object manager would be to use the C-libraryatexit
function to invoke the termination functions at program exit.
However, not all platforms supportatexit . Furthermore,
atexit implementations usually have a limit of 32 registered
termination functions.

� Define a cleanup base class interface:This allows
applications to register for destruction with theObject
Lifecycle Manager any object whose class derives from
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aCleanup base class. TheCleanup base class should have
a virtual destructor and acleanup method that simply calls
delete this; , which in turn invokes all derived class de-
structors.

The following code fragment illustrates the interface used
for such registrations in ACE:

class Object_Lifecycle_Manager
{
public:

// ...
static int at_exit (Cleanup *object,

void *param = 0);
// ...

};

This staticat exit method registers aCleanup object
for cleanup at process termination. At destruction time, the
Object Lifecycle Manager calls the theCleanup
object’scleanup function, passing in theparam argument.
The param argument contains any additional information
needed by thecleanup function.

� Define a singleton adapter: Although it is possible to
explicitly code singletons to use theObject Lifecycle
Manager this is tedious and error-prone. Therefore, it is use-
ful to define aSingleton adapter class template that en-
capsulates the details of creating singleton objects and regis-
tering them with theObject Lifecycle Manager . In
addition, theSingleton adapter can ensure the thread-safe
Double-Checked Locking pattern [10] is used to construct and
access an instance of the type-specificSingleton .

The following code fragment illustrates how a singleton
adapter is implemented in ACE:

template <class TYPE>
class Singleton : public Cleanup
{
public:

// Global access point to the
// wrapped singleton.
static TYPE *instance (void) {

// Details of Double Checked
// Locking omitted ...
if (singleton_ == 0)

singleton_ = new Singleton<TYPE>;

// Register with the Object Lifecycle
// Manager for destruction.

Object_Lifecycle_Manager::
at_exit (singleton_);

return &singleton_->instance_;
}

protected:
// Default constructor.
Singleton (void);

// Contained instance.
TYPE instance_;

// Instance of the singleton adapter.

static Singleton<TYPE> *singleton_;
};

The Singleton class template is derived from the
Cleanup class. This allows theSingleton instance to reg-
ister itself with theObject Lifecycle Manager . The
Object Lifecycle Manager then assumes responsibil-
ity for dynamically deallocating theSingleton instance and
with it the adaptedTYPEinstance.

� Define a termination function interface: Lifecycle
management functionality has been discussed so far in terms
of destruction of objects at program termination. However,
the Object Lifecycle Manager can provide a more
general capability – the ability to call a function at program
termination – using the same internal implementation mecha-
nism. For example, to ensure proper cleanup of open Win32
WinSock sockets at program termination, theWSACleanup
function must be called. This capability is described in more
detail in Appendix A.

� Define a preallocation mechanism: Some application
resources, such as synchronization locks, must be created be-
fore their first use in order to avoid race conditions. En-
capsulating their creation within theObject Lifecycle
Manager ’s own initialization phase ensures this will occur,
without adding complexity to application code. TheObject
Lifecycle Manager should be able to preallocate objects
or arrays. TheObject Lifecycle Manager can either
perform these preallocations statically in global data or dy-
namically on the heap.

� Determine the destruction order of registered objects:
As noted in Section 6, theObject Lifecycle Manager
can be implemented to destroy registered objects in any de-
sired order. For example, priority levels could be created, and
destruction could proceed in decreasing order of priority. An
interface could be provided for objects to set and change their
destruction priority.

We have found that destruction in reverse order of registra-
tion has been a sufficient policy. An application can, in effect,
specify destruction order by controlling the order in which it
registers objects with theObject Lifecycle Manager .

2. Determine the set of Preallocated Objects. Preallocated
Objects must always be created before the application’s main
processing begins. Thus, these objects must be hard-coded
into eachObject Lifecycle Manager class. An effi-
cient implementation is to store each Preallocated Object in
an array. Certain languages, such as C++, do not support ar-
rays of heterogeneous objects, however. Therefore, in these
languages pointers must be stored instead of the objects them-
selves. The actual objects are dynamically allocated by the
Object Lifecycle Manager when it is instantiated,
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and destroyed by theObject Lifecycle Manager de-
structor.

The following substeps should be used to implement preal-
located objects:

� Limit exposure: To minimize the exposure of header
files, identify the Preallocated Objects by enumerated literals,
e.g.,

enum Preallocated_Object_ID
{

ACE_FILECACHE_LOCK,
ACE_STATIC_OBJECT_LOCK,
ACE_LOG_MSG_INSTANCE_LOCK,
ACE_DUMP_LOCK,
ACE_SIG_HANDLER_LOCK,
ACE_SINGLETON_NULL_LOCK,
ACE_SINGLETON_RECURSIVE_THREAD_LOCK,
ACE_THREAD_EXIT_LOCK,

};

� Use cleanup adapters: Next, use template functions or
macros for allocation/deallocation,e.g.,

#define PREALLOCATE_OBJECT(TYPE, ID) {\
Cleanup_Adapter<TYPE> *obj_p;\
obj_p = new Cleanup_Adapter<TYPE>;\
preallocated_object[ID] = obj_p;\

}

#define DELETE_PREALLOCATED_OBJECT(TYPE, ID)\
cleanup_destroyer (\

(Cleanup_Adapter<TYPE> *)
preallocated_object[ID], 0);\

preallocated_object[ID] = 0;

The Cleanup Adapter adapts any object to use the
simpler Object Lifecycle Manager registration in-
terface, discussed in Appendix A. Similarly,Cleanup
Destroyer uses theCleanup Adapter to destroy the
object.

An analogous array, enum, and macro pair can be supplied
for preallocated arrays, if necessary.

� Define an accessor interface to the Preallocated Ob-
jects: Applications need a convenient and typesafe interface
to access Preallocated Objects. The following code fragment
illustrates how this interface is provided via a class template
adapter in ACE:

template <class TYPE>
class Managed_Object
{
public:

static TYPE *
get_preallocated_object

(Object_Lifecycle_Manager::
Preallocated_Object_ID id)

{
// Cast the return type of the object
// pointer based on the type of the
// function template parameter.

return &((Cleanup_Adapter<TYPE> *)
Object_Lifecycle_Manager::

preallocated_object[id])->object ();
}
// ... other methods omitted.

};

3. Determine how to manage the lifecycle of the Object
Lifecycle Manager itself. The Object Lifecycle
Manager is responsible for initializing other global and static
objects in a program. However, that begs the important boot-
strapping question of how this singleton initializes and de-
stroys itself. The following are the alternatives for initializing
theObject Lifecycle Manager singleton instance:

� Static initialization: If an application has no static ob-
jects with constraints on their order of construction or de-
struction, it’s possible to create theObject Lifecycle
Manager as a static object. For example, ACE’sObject
Lifecycle Manager can be created as a static object. The
ACE library has no other static objects that have constraints on
order of construction or destruction.

� Stack initialization: In this approach, create the
Object Lifecycle Manager on the stack of the main
program thread. This approach to initializing theObject
Lifecycle Manager assumes that there is one unique
main thread per program. This thread defines the program: it is
runningif, and only if, the main thread is alive. This approach
has a compelling advantage: theObject Lifecycle
Manager instance is automatically destroyed via any path out
of main .3

Stack initialization is implemented transparently in ACE
via a preprocessor macro namedmain . The macro renames
themain program entry point to another, configurable name,
such asmain i . It provides amain function that creates the
Object Lifecycle Manager instance as a local object (on the
stack) and then calls the renamed application entry point.

There are two drawbacks to the Stack initialization ap-
proach:

1. main (int, char *[]) must be declared with ar-
guments, even if they’re not used. All of ACE is con-
verted to this, so only applications must be concerned
with it.

2. If there are any static objects that depend on those that
are destroyed by theObject Lifecycle Manager ,
their destructors might attempt to access the destroyed
objects. Therefore, the application developer is respon-
sible for ensuring that no static objects depend on those
destroyed by theObject Lifecycle Manager .

3On platforms such as VxWorks and pSoS that have no designated
main function, we simulate the main thread by instantiating theObject
Lifecycle Manager on the stack of one thread, which is denoted by con-
vention as themain thread.
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� Explicit initialization: In this approach, create the
Object Lifecycle Manager explicitly under applica-
tion control. TheObject Lifecycle Manager init
andfini methods allow the application to create and destroy
the Object Lifecycle Manager when desired. This option was
provided primarily to alleviate complications when using dy-
namically loaded libraries. However, it should not be used
frequently, given the availability of the dynamically loaded li-
brary initialization mechanism, below.

� Dynamically loaded library initialization: In this ap-
proach, create and destroy the Object Lifecycle Manager when
its dynamic library is loaded and unloaded, respectively. Most
dynamic library facilities include the ability to call an initial-
ization function when the library is loaded, and a termination
function when the library is unloaded.

10 Example Resolved

The discussion in Section 9 demonstrates how the Object Life-
cycle Manager pattern can be used to satisfy a variety of de-
sign forces related to managing object lifecycles. In particular,
the unresolved forces described in Section 2 can be adequately
addressed by applying the Object Lifecycle Manager pattern.

The following example shows how the Object Lifecycle
Manager pattern can be applied to the originalLogger and
Stats examples from Section 2. Using theSingleton
adapter template described in Section 9 greatly simplifies man-
aged object implementations by encapsulating key implemen-
tation details, such as registration with the Object Lifecycle
Manager. For instance, the originalStats class can be re-
placed by a managedStats class, as follows.

class Stats
{
public:

friend class Singleton<Stats>;

// Destructor: frees resources.
˜Stats (void);

// Record a timing data point.
int record (int id,

const timeval &tv);

// Report recorded statistics
// to the log.
void report (int id) {

Singleton<Logger>::instance ()->
log ("Avg timing %d: "

"%ld sec %ld usec\n",
id,
average_i (id).tv_sec,
average_i (id).tv_usec);

}

protected:
// Default constructor.

Stats (void)
{

// Ensure the <Logger> instance
// is registered first, and will be
// cleaned up after, the <Stats>
// instance.
Singleton<Logger>::instance ();

}

// Internal accessor for an average.
const timeval &average_i (void);

// ... other resources that are
// held by the instance ...

};

Notice that the singleton aspects have been factored out
of the original Stats class and are now provided by the
Singleton adapter template. Similar modifications can
be made to the originalLogger class so that it uses the
Singleton adapter template.

Finally, the following example shows how an application
might use theLogger andStats classes.

int main (int argc, char *argv[])
{

// Interval timestamps.
timeval start_tv, stop_tv;

// <Logger> and <Stats> singletons
// do not yet exist.

// <Logger> and then <Stats> singletons
// are created and registered on the first
// iteration.
for (int i = 0; i < argc; ++i) {

::gettimeofday (&start_tv);
// do some work between timestamps ...
::gettimeofday (&stop_tv);

// then record the stats ...
stop_tv.sec -= start_tv.sec;
stop_tv.usec -= start_tv.usec;
Singleton<Stats>::instance ()->

record (i, stop_tv);

// ... and log some output.
Singleton<Logger>::instance ()->

log ("Arg %d [%s]\n", i, argv[i]);
}

// <Logger> and <Stats> singletons are
// cleaned up by Object Lifecycle Manager
// upon program exit.
return 0;

}

The following key forces are resolved in this example: (1)
ensuring resources allocated by an instance are subsequently
released, (2) managing the order of creation and destruction
of singletons, and (3) providing a framework that encapsulates
these details within a well-defined interface.
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11 Known Uses

Object Lifecycle Manager is used in the Adaptive Commu-
nication Environment (ACE) [9, 11] to ensure destruction of
singletons at program termination and to replace static objects
with dynamically allocated, managed objects. ACE is used on
many different OS platforms, some of which do not support
static object construction/destruction for every program invo-
cation. ACE supports placement of objects in ROM. There-
fore, it cannot contain any objects that must be initialized at
run-time.

Gabrilovich [12] augmented the Singleton pattern to per-
mit applications to specify destruction order. A local static
auto ptr 4 is responsible for the destruction of each single-
ton instance. Destruction of singleton instances proceeds by
phase; an application may optionally register its singleton in-
stances for destruction in a specific phase.

An interesting example of a “small” Object Lifecycle Man-
ager is thestrong pointer[13, 14].5 A strong pointer man-
ages just one object; it destroys the object when its scope
is exited, either normally or via an exception. There can be
many strong pointers in a program, behaving as Function-as-
Owner (or Block-as-Owner). Moreover, the strong pointers
themselves have transient lifetimes,i.e., that of their enclosing
blocks.

In contrast, there is typically just one Object Lifecycle Man-
ager per-program (or per-large-scale-component). Likewise,
Object Lifecycle Managers live for the duration of the pro-
gram invocation. This reflects the specific intent of the Object
Lifecycle Manager to destroy objects at program termination,
but not sooner. Such objects may be used after the current
block or function has been exited, and destruction/creation cy-
cles are not possible or desired.

12 See Also

The Object Lifecycle Manager pattern is related to the Man-
ager [15] pattern. In both patterns, a client application uses a
collection of objects, relying upon a manager to encapsulate
the details of how the objects themselves are managed. This
separation of concerns makes the application more robust, as
potentially error-prone management aspects are hidden behind
a type-safe interface. Using these managers also makes the
application more extensible, as certain details of the managed
objects can be varied independent of the manager implemen-
tation. For example, a manager for a certain class can be used
to manage objects of classes derived from that base class.

4Theauto ptr is a local static object in the singleton instance accessor
method.

5A C++ auto ptr is an implementation of a strong pointer.

The Object Lifecycle Manager pattern differs from the Man-
ager pattern in the types of the managed objects. Where
the Manager pattern requires that the managed objects have
a common base type, the Object Lifecycle Manager pattern
allows objects of unrelated types to be managed. The Man-
ager pattern relies on inheritance for variations in the manager
and managed object classes. In contrast, the Object Lifecycle
Manager relies on object composition and type parameteriza-
tion to achieve greater decoupling of the manager from the
managed objects.

The Object Lifecycle Manager pattern also differs from the
Manager pattern in the management services it provides the
application. The Manager pattern provides search, iteration,
and deletion services for managed objects, which the Object
Lifecycle Manager pattern does not provide. The application
can register a pre-existing object with the Object Lifecycle
Manager, which then assumes responsibility for the remaining
lifecycle of the managed object. The Manager pattern only
allows on-demand creation of objects, so that the lifecycle of
objects is managed in an “all-or-none” manner. Fundamen-
tally, the Manager pattern focuses on the repository aspects of
object management, while the Object Lifecycle Manager pat-
tern emphasizes the lifecycle aspects instead.

Object Lifecycle Manager complements creational patterns,
such as Singleton, by managing object instance destruction.
Singleton addresses only part of the object lifecycle because it
just manages instance creation. However, destruction is usu-
ally not an important issue with Single because it does not
retainownershipof created objects [3]. Ownership conveys
the responsibility for managing the object, including its de-
struction. Singleton is the prototypical example of a creational
pattern that does not explicitly transfer ownership, yet does
not explicitly arrange for object destruction. Object Lifecycle
Manager complements Singleton by managing the destruction
portion of the object lifecycle.

Object Lifecycle Manager can complement other creational
patterns, such as Abstract Factory and Factory Method. Im-
plementations of these patterns could register dynamically al-
located objects for deletion at program termination. Alterna-
tively (or additionally), they could provide interfaces for object
destruction, corresponding to those for object creation.

Cargill presented a taxonomy of the dynamic C++ object
lifetime [16]. The Localized Ownership pattern language
includes patterns, such as Creator-as-Owner, Sequence-of-
Owners, and Shared Ownership, which primarily address
object ownership. Ownership conveys the responsibility for
destruction.

Creator-as-Owner is further subdivided into Function-as-
Owner, Object-as-Owner, and Class-as-Owner. The Single-
ton destruction capability of Object Lifecycle Manager may
be viewed as new category of Creator-as-Owner: Program-as-
Owner. It is distinct from Function-as-Owner, because static
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objects outlive the program entry point (main ). Object Life-
cycle Manager’s Preallocated Objects similarly can be viewed
logically, at least, as outliving the main program function.

When Singleton is used on multi-threaded platforms, a mu-
tex should be used to serialize access to the instance pointer.
Double-Checked Locking [10] greatly reduces the use of this
mutex by only requiring it prior to creation of the singleton.
However, the mutex is still required, and it must be initial-
ized.6 Object Lifecycle Manager solves the chicken-and-egg
problem of initialization of the mutex by preallocating one for
each singleton.

Object Lifecycle Manager uses Adapter for type-safe
storage of objects of any class. By using inline func-
tions, the Managed Object Adapter should have no
size/performance overhead. We confirmed this with the
GreenHills 1.8.9 compiler for VxWorks on Intel targets. How-
ever, some compilers do not inline template member functions.
Fortunately, the size overhead ofManaged Object is very
small,i.e., we measured 40 to 48 bytes with g++ on Linux and
LynxOS. The ACECleanup Adapter template class has
a bit higher size overhead, about 160 bytes per instantiation.

13 Consequences

The consequences of using Object Lifecycle Manager de-
rive from its complete control over the entire object lifecy-
cle. Object Lifecycle Manager may retain this control,i.e., for
Preallocated Objects. Or, it may provide control only for the
destruction portion of the lifecycle. In the latter case, it works
in concert with other creational patterns, such as Singleton or
Factory Method.

The benefits of using Object Lifecycle Manager include:

Destruction of Singletons and other Managed Objects at
program termination: The Object Lifecycle Manager al-
lows the program to shut down cleanly, releasing memory for
these objects along with the resources they hold at program
termination. All heap-allocated memory can be released by
the application. This supports repeated testing on platforms
where heap allocations outlive the program.7 It also elimi-
nates reports of memory in use for singletons at program end
by memory access checkers.

Specification of destruction order: The order of destruc-
tion of objects can be specified. The order specification mech-
anism can be as simple or as complex as desired. As noted in

6POSIX 1003.1c [17] mutexes can be initialized without calling a static
constructor. However, they are not available on all platforms.

7On some operating systems, notably some real-time operating systems,
there is no concept of aprogram. There are tasks,i.e., threads, but no one task
has any special, main identity. Therefore, there is no cleanup of dynamically
allocated memory, open files,etc., at task termination.

Section 9, simple mechanisms are generally sufficient in prac-
tice.

Removal of static objects from libraries and applications:
Static objects can be replaced by Preallocated Objects. This
prevents applications from relying on the order in which static
objects are constructed/destructed. Moreover, it allows code
to target embedded systems, which sometimes have little or
no support for constructing/destructing static objects.

The following liabilities must be considered when using the
Object Lifecycle Manager pattern:

Lifecycle of the manager itself: The application must en-
sure that is respects the lifecycle of the Object Lifecycle Man-
ager, and does not attempt to use its services outside that life-
cycle. For example, the application must not attempt to access
Preallocated Objects prior to the complete initialization of the
Object Lifecycle Manager. Similarly, the application must not
destroy the Object Lifecycle Manager prior to the application’s
last use of a managed or preallocated object. Finally, the im-
plementation of the Object Lifecycle Manager is simplified if
it can assume that it will be initialized by only one thread. This
preclude the need for a static lock to guard its initialization.

Use with shared libraries: On platforms that support load-
ing and unloading shared libraries at run-time, the application
must bevery careful of platform-specific issues that impact
the lifecycle of the Object Lifecycle Manager itself. For ex-
ample, on Windows NT, the Object Lifecycle Manager should
be initialized by the application or by a DLL that contains it.
This avoids potential a deadlock situation due to serialization,
within the OS, of DLL loading.

A related issue arises with singletons that are created in
DLLs, but managed by an Object Lifecycle Manager in the
main application code. It the DLL is unloaded before program
termination, the Object Lifecycle Manager would try to de-
stroy it using code that is no longer linked into the application.
For this reason, we have added an unmanagedSingleton
class to ACE. An unmanaged Singleton is of the conventional
design,i.e., it does not provide implicit destruction. ACE uses
a managed Singleton by default because we found the need for
unmanaged Singletons to be very unusual.

14 Concluding Remarks

Many creational patterns specifically address only objectcre-
ation. They do not consider when or how todestroyobjects
that are no longer needed. Object Lifecycle Manager pro-
vides mechanisms for object destruction at program termina-
tion. Thus, it complements many creational patterns by cover-
ing the entire object lifecycle.
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The Singleton pattern provides a notable example where co-
ordinated object lifecycle management is important. In partic-
ular, deletion at program termination ensures that programs
have no memory leaks of singletons. Moreover, applications
that employ the Object Lifecycle Manager pattern do not re-
quire use of static object constructors and destructors, which
is important for embedded systems. In addition, the Object
Lifecycle Manager pattern supports replacement of static ob-
jects with dynamically Preallocated Objects, which is useful
on embedded platforms and with OO languages, such as C++.

One of Object Lifecycle Manager’s more interesting aspects
is that it addresses weaknesses of another pattern, at least in
some contexts. Our initial motivation was to remedy these
weaknesses by registering and deleting singletons at program
termination. The utility, applicability, novelty, and complexity
of Object Lifecycle Manager seemed to be on par with those of
Singleton, so we felt that it deserved consideration as a pattern.
Because it can address just part of the object lifetime, however,
we consider Object Lifecycle Manager to be acomplementary
pattern.

Another interesting question was: “how do we categorize
Object Lifecycle Manager?” It was not (originally) a Cre-
ational pattern, because it handled only object destruction, not
creation. Again, it seemed appropriate to refer to Object Life-
cycle Manager as complementing Singleton.

During the shepherding process, it became apparent that
Object Lifecycle Manager had another use that was very re-
lated to destroying singletons. Static objects create problems
similar to those of singletons,i.e., destruction, especially on
operating systems that have no notion of a program, and or-
der of construction/destruction. Object Lifecycle Manager’s
Preallocated Objects were added to support removal of static
objects. Our first Preallocated Object was the mutex used for
Double-Checked Locking [10] in the ACE implementation of
. . . Singleton.

Current development efforts include breaking the one in-
stance into multiple Object Lifecycle Managers, to support
subsetting. Each layer of ACE,e.g., OS, logging, threads, con-
nection management, sockets, interprocess communication,
service configuration, streams, memory management, and util-
ities, will have its own Object Lifecycle Manager. When any
Object Lifecycle Manager is instantiated, it will instantiate
each dependent Object Lifecycle Manager, if not already done.
And similar, configured-in cooperation will provide graceful
termination.

A highly portable implementation of the Object Life-
cycle Manager pattern and theSingleton adapter
template is freely available and can be downloaded from
www.cs.wustl.edu/ �schmidt/ACE-obtain.html .
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A Detailed Implementation

This section provides an example of a concrete Object Life-
cycle Manager implementation in C++ described in Section 9.
It is based on the The ACE [9, 11] Object Lifecycle Manager
implementation. The ACE implementation reveals some in-
teresting design issues. Its most visible purpose is to man-
age cleanup of singletons at program termination, and cre-
ate/destroy Preallocated Objects. In addition, it performs other
cleanup actions, such as shutdown of services provided by the
ACE library, at program termination.

The Object Lifecycle Manager Base abstract
base class, shown in Figure 3, provides the initialization and
finalization mechanisms for an Object Lifecycle Manager.
Subclasses must specialize and provide implementations, de-
scribed below.

In addition, Object Lifecycle Manager Base
supports chaining of Object Lifecycle Managers. Object
Lifecycle Managers are Singletons, each with its own locus
of interest. An application may have a need for more than
one Object Lifecycle Manager,e.g., one per major compo-
nent. Chaining permits ordered shutdown of the separate
components.

Figure 4 shows an exampleObject Lifecycle
Manager class. It is a Singleton, so it provides a
static instance accessor. In addition, it provides static
starting up and shutting down state accessors. An
enumeration lists identifiers for the Preallocated Objects that
it owns.

An interesting detail is the (boolean) reference count logic
provided by the derived classinit andfini methods. There
are several alternatives for constructing an Object Lifecycle
Manager, discussed in Section 9. The reference count ensures
that an Object Lifecycle Manager is only constructed once,
and destroyed once.

The implementations of theinstance , init , andfini
methods are shown in Figure 5 and Figure 6. Theinstance
method is typical of Singleton instance accessors, but includes
logic to support static placement instead of dynamic alloca-
tion. In addition, it is not thread safe, requiring construction
before the program spawns any threads. This avoids the need
for a lock to guard the allocation.

The init and fini methods show creation and de-
struction of Preallocated Objects, respectively. They show
application-specific startup and shutdown code. Finally, they
show maintenance of the Object Lifecycle Manager state.8

8This should be moved up to the base class.

class Object_Lifecycle_Manager_Base
{
public:

virtual int init (void) = 0;
// Explicitly initialize. Returns 0 on success,
// -1 on failure due to dynamic allocation
// failure (in which case errno is set to
// ENOMEM), or 1 if it had already been called.

virtual int fini (void) = 0;
// Explicitly destroy. Returns 0 on success,
// -1 on failure because the number of fini ()
// calls hasn’t reached the number of init ()
// calls, or 1 if it had already been called.

enum Object_Lifecycle_Manager_State {
OBJ_MAN_UNINITIALIZED,
OBJ_MAN_INITIALIZING,
OBJ_MAN_INITIALIZED,
OBJ_MAN_SHUTTING_DOWN,
OBJ_MAN_SHUT_DOWN

};

protected:
Object_Lifecycle_Manager_Base (void) :

object_manager_state_ (OBJ_MAN_UNINITIALIZED),
dynamically_allocated_ (0),
next_ (0) {}

virtual ˜Object_Lifecycle_Manager_Base (void) {
// Clear the flag so that <fini>
// doesn’t delete again.
dynamically_allocated_ = 0;

}

int starting_up_i (void) {
return object_manager_state_ <

OBJ_MAN_INITIALIZED;
}
// Returns 1 before Object_Lifecycle_Manager_Base
// has been constructed. This flag can be used
// to determine if the program is constructing
// static objects. If no static object spawns
// any threads, the program will be
// single-threaded when this flag returns 1.

int shutting_down_i (void) {
return object_manager_state_ >

OBJ_MAN_INITIALIZED;
}
// Returns 1 after Object_Lifecycle_Manager_Base
// has been destroyed.

Object_Lifecycle_Manager_State object_manager_state_;
// State of the Object_Lifecycle_Manager;

u_int dynamically_allocated_;
// Flag indicating whether the
// Object_Lifecycle_Manager instance was
// dynamically allocated by the library.
// (If it was dynamically allocated by the
// application, then the application is
// responsible for deleting it.)

Object_Lifecycle_Manager_Base *next_;
// Link to next Object_Lifecycle_Manager,
// for chaining.

};

Figure 3: Object Lifecycle Manager Base Class
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class Object_Lifecycle_Manager :
public Object_Lifecycle_Manager_Base

{
public:

virtual int init (void);

virtual int fini (void);

static int starting_up (void) {
return instance_ ?

instance_->starting_up_i () : 1;
}

static int shutting_down (void) {
return instance_ ?

instance_->shutting_down_i () : 1;
}

enum Preallocated_Object
{

# if defined (MT_SAFE) && (MT_SAFE != 0)
OS_MONITOR_LOCK,
TSS_CLEANUP_LOCK,

# else
// Without MT_SAFE, There are no
// preallocated objects. Make
// sure that the preallocated_array
// size is at least one by declaring
// this dummy.
EMPTY_PREALLOCATED_OBJECT,

# endif /* MT_SAFE */
// This enum value must be last!
PREALLOCATED_OBJECTS

};
// Unique identifiers for Preallocated Objects.

static Object_Lifecycle_Manager *instance (void);
// Accessor to singleton instance.

public:
// Application code should not use these
// explicitly, so they’re hidden here. They’re
// public so that the Object_Lifecycle_Manager
// can be onstructed/destructed in <main>, on
// the stack.
Object_Lifecycle_Manager (void) {

// Make sure that no further instances are
// created via <instance>.
if (instance_ == 0)

instance_ = this;
init ();

}

˜Object_Lifecycle_Manager (void) {
// Don’t delete this again in <fini>
dynamically_allocated_ = 0;
fini ();

}

private:
static Object_Lifecycle_Manager *instance_;
// Singleton instance pointer.

static void *
preallocated_object[PREALLOCATED_OBJECTS];

// Array of Preallocated Objects.
};

Figure 4: Object Lifecycle Manager Class

Object_Lifecycle_Manager *
Object_Lifecycle_Manager::instance_ = 0;
// Singleton instance pointer.

Object_Lifecycle_Manager *
Object_Lifecycle_Manager::instance (void)
{

// This function should be called during
// construction of static instances, or
// before any other threads have been created
// in the process. So, it’s not thread safe.
if (instance_ == 0) {

Object_Lifecycle_Manager *instance_pointer =
new Object_Lifecycle_Manager;

// instance_ gets set as a side effect of the
// Object_Lifecycle_Manager allocation, by
// the default constructor. Verify that . . .
assert (instance_pointer == instance_);

instance_pointer->dynamically_allocated_ = 1;
}
return instance_;

}

int
Object_Lifecycle_Manager::init (void)
{

if (starting_up_i ()) {
// First, indicate that this
// Object_Lifecycle_Manager instance
// is being initialized.
object_manager_state_ = OBJ_MAN_INITIALIZING;

if (this == instance_) {
# if defined (MT_SAFE) && (MT_SAFE != 0)

PREALLOCATE_OBJECT (mutex_t,
OS_MONITOR_LOCK)

// Mutex initialization omitted.

PREALLOCATE_OBJECT (recursive_mutex_t,
TSS_CLEANUP_LOCK)

// Recursive mutex initialization omitted.
# endif /* MT_SAFE */

// Open Winsock (no-op on other
// platforms).
socket_init (/* WINSOCK_VERSION */);

// Other startup code omitted.
}

// Finally, indicate that the
// Object_Lifecycle_Manager instance
// has been initialized.

object_manager_state_ = OBJ_MAN_INITIALIZED;
return 0;

} else {
// Had already initialized.
return 1;

}
}

Figure 5: Object Lifecycle Method Implementations
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int
Object_Lifecycle_Manager::fini (void)
{

if (shutting_down_i ())
// Too late. Or, maybe too early. Either
// fini () has already been called, or
// init () was never called.
return object_manager_state_ ==

OBJ_MAN_SHUT_DOWN ? 1 : -1;

// Indicate that the Object_Lifecycle_Manager
// instance is being shut down.
// This object manager should be the last one
// to be shut down.
object_manager_state_ = OBJ_MAN_SHUTTING_DOWN;

// If another Object_Lifecycle_Manager has
// registered for termination, do it.
if (next_) {

next_->fini ();
// Protect against recursive calls.
next_ = 0;

}

// Only clean up Preallocated Objects when
// the singleton Instance is being destroyed.
if (this == instance_) {

// Close down Winsock (no-op on other
// platforms).
socket_fini ();

// Cleanup the dynamically preallocated
// objects.

# if defined (MT_SAFE) && (MT_SAFE != 0)
// Mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (mutex_t,

MONITOR_LOCK)

// Recursive mutex destroy not shown . . .
DELETE_PREALLOCATED_OBJECT (

recursive_mutex_t,
TSS_CLEANUP_LOCK)

# endif /* MT_SAFE */
}

// Indicate that this Object_Lifecycle_Manager
// instance has been shut down.
object_manager_state_ = OBJ_MAN_SHUT_DOWN;

if (dynamically_allocated_)
delete this;

if (this == instance_)
instance_ = 0;

return 0;
}

Figure 6: Object Lifecycle Method Implementations, cont’d.
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