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Abstract

The Mayfly pattern describes an implementation approach to constructing interfaces for efficient
data structures. In Nature, the mayfly is a creature well known for its short life span. Similarly, for our
purposes, a Mayfly is a temporary object that resides on the stack or only in registers (never in the heap).
All of its member functions are typically inlined and it is always passed by value. These characteristics
make Mayfly objects ideal for providing lightweight interfaces to efficient array-based data structures
such as compressed matrices, graphs, heaps, and trees. The Mayfly pattern cuts across several other
patterns. For instance, many of the iterators in the Standard Template Library (STL [1, 19]) are Mayflies.
Among the Mayflies described in this paper will be some Adapter [3]1 and Aggregate [3, 14] objects.

1 Intent

Implement lightweight interfaces for efficient data structures using small temporary objects.

2 Motivation

Many times the most efficient implementation of an abstract data type is with a concrete representation that
is quite different than the abstraction it is representing. For instance, even though a heap is a binary tree, the
classical way to efficiently represent a heap is with an array and a special indexing scheme. An example of
a heap with the corresponding array representation is shown in Fig 1.

The problem with using such an array representation is that it is inherently low-level and not user-
friendly. One must constantly translate the problem-level abstraction (such as “parent”) to the array indexed
version ((i � 1)=2). Additionally, one cannot write generic algorithms (ala the STL [19]) using such low
level indexing constructs. The implementation details are hard coded into the algorithm, so each algorithm
will only work with a particular heap data structure. This same problem shows up time and again in the area
of linear algebra, with the wide variety of matrix formats, and also in graph algorithms.

The textbook (e.g., [2]) definition of a heap is that it is an ordered tree, where the ordering is defined
by theheap property. The heap property states that the value of the parent nodep is greater than any of the
children nodes, wherec is a child.

value(p) � maxfvalue(c) j c 2 children(p)g

value(c) � value(parent(c))

�This work was supported by NSF grants ASC94-22380 and CCR95-02710.
yCopyright c1999, Jeremy Siek and Andrew Lumsdaine. Permission is granted to copy for the PLoP 1999 conference. All

other rights reserved.
1There are the two alternate spellings “adapter” and “adaptor”. It seems the design patterns community prefers to use the “e”,

while the generic programming community prefers to use the “o”. For this paper we adopt the spelling “adapter”.
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parent(i) = (i� 1)=2
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leftChild(i) = 2i+ 2

Figure 1: Representation of a binary tree with an array.

This ordering makes the heap an efficient method for implementing a priority queue.
There are two core procedures that are used to operate on a heap:push-heapandpop-heap, which re-

spectively add and remove elements from the heap. The implementation of these operations must update the
heap so that the heap property is maintained. There are two operations that carry out the task of maintaining
the heap. The first isdown-heapwhich moves an element of the heap from the top towards the bottom. The
second isup-heapwhich moves an element from the bottom towards the top. Below is the canonical STL
implementation ofpush-heap(which just does anup-heap).

template <class RandomAccessIterator, class Distance, class T>
void __push_heap(RandomAccessIterator first, Distance holeIndex,

Distance topIndex, T value) {
Distance parent = (holeIndex - 1) / 2;
while (holeIndex > topIndex && (*(first + parent) < value)) {

*(first + holeIndex) = *(first + parent);
holeIndex = parent;
parent = (holeIndex - 1) / 2;

}
*(first + holeIndex) = value;

}

This implementation, strictly speaking, is anabstraction violation. That is, the algorithm accesses
the data structure at a level of abstraction that is lower than appropriate. By explicitly coding the heap
algorithm in terms of array indices or equivalently in terms of iterators, instead of in terms of tree nodes,
the algorithm is committing an abstraction violation. The disadvantages of this is that the algorithm is
unnecessarily complicated, it can not be used as a generic algorithm, and any changes in implementation
(array representation) require changes in the algorithm.

One solution is not to use arrays. The object-oriented approach for building a heap would be to represent
the binary tree with node objects that have pointers to their children and parents. This succeeds in providing
a nice interface but looses efficiency in a number of ways.

1. Storing the parent and child pointers requires additional memory.

2. Accessing the pointer values requires memory accesses, whereas index calculations do not. The
trend on modern microprocessors is that memory accesses are becoming significantly more expensive
relative to ALU operations.
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3. The allocation for each node is often expensive. With the array the allocation is done once and
amortized.

4. The nodes can be spread across the heap, giving poor data-locality and therefore poor cache perfor-
mance and slower access times.

Nevertheless, because this approach is straightforward (in that the concrete representation directly maps
to the data abstractions) many object-oriented libraries have chosen this route, despite the loss in efficiency.
However, as a result, the libraries are not used in situations where high performance is a high priority. For
example, many graph algorithms are still written in Fortran, using low-level array representations [4, 15, 18],
even though there exist many easy to use graph libraries such as LEDA [12].

The second two problems listed above can be fixed using better allocation schemes. The first two
problems concerning pointer overhead is more difficult. What is needed is some way to keep the array based
representation and add an interface layer that makes the data structure easier to work with and suitable for
use in generic algorithms.

The Mayfly pattern provides a solution to this problem. In the case of the heap data structure, we use the
array representation and indexing scheme, but when an algorithm wishes to operate on the heap, temporary
objects are created “on the fly” to provide the same kind of interface one would see from the explicitly stored
node objects mentioned above. The temporary node object consists of a pointer to the array and an integer
for indexing. The methods of the node objects carry out the index calculations. For example, here is the
parent() method of the node class.r is the pointer to the array,(i - 1)/2 is the index of the parent
node, andn is the size of the array.

tree_node tree_node::parent() const {
return tree_node(r, (i - 1) / 2, n);

}

We can now implement the heap algorithms in terms of the tree interface presented by the Mayfly node
objects. Here is the algorithm equivalent to thepush heap() algorithm above.

template <class TreeNode>
TreeNode up_heap(TreeNode x) {

while (x.has_parent() && (x.parent().key() < x.key()))
swap(x, x.parent());

return x;
}

The algorithm is now much easier to understand and looks like pseudo-code. Also it is easy to verify
the correctness of the algorithm in that it maintains the heap propertyvalue(c) � value(parent(c)). In
addition, this algorithm is suitable as a generic algorithm, since it can operate on any data structure imple-
mentation that exports a tree interface.

With the Mayfly approach, the efficiency of the array data structure is retained. The only difference with
using the Mayflies is that there is an extra layer of function calls and the pointers and integers have been
wrapped up in temporary objects. Many C++ optimizing compilers can reduce this overhead to zero, which
will be discussed in more detail in the implementation section.

To summarize, the following characteristics define a Mayfly.

� A Mayfly implements an interface for some data structure.

� A Mayfly is light weight, with few data members (the maximum workable size for a Mayfly depends
on the compiler).
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� It is stored on the stack or even just in machine registers.

� It has no virtual member functions.

� It is passed by value.

� A Mayfly is usually only directly involved with functions that are inlined.

3 Applicability

Use the Mayfly pattern when all of the following are true:

� Execution speed or memory efficiency are high priorities.

� Low level details of a data structure should be hidden, for ease of programming or for constructing
generic algorithms.

� Run-time flexibility is not needed. The Mayfly pattern relies heavily onstatic polymorphism(template
functions) for efficiency, which requires the object types to be completely defined at compile time.
This rules out the extra flexibility that can be had withdynamic polymorphism(virtual functions in
C++).

4 Structure

TemplateMethod1 TemplateMethod3

<<uses>>

<<uses>><<uses>> <<uses>>

<<uses>><<uses>>

Mayfly1 Mayfly3

Low Level

<<interface>>

Mayfly2

Data Structure 1 Data Structure 3

TemplateMethod2

Low LevelLow Level
Data Structure 2

Figure 2: The structure for the Mayfly pattern.

5 Participants

� Interface

– Codifies the minimal set of requirements needed by a Template Method [3] to operate on a
family of data structures. For example, Table 1 shows the set of requirements that could define
a TreeNode interface. We provide thechildren() method instead of theleft child()
andright child() methods to allow for generalization tok-ary trees (instead of just binary
trees).

� Mayfly
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expression return type note

X::children list A Container The type for the children list
X::key type LessThan Comparable The type for the keys to sort by
x.key() X::key type The key value for this node
x.parent() X The parent node of nodex
x.has parent() bool Whether nodex has a parent
x.children() X::children list A list of the children of nodex
swap(x,y) void Swap the position ofx andy in the tree

Table 1:TreeNode interface requirements.X denotes the particularTreeNode class.x andy are objects
of typeX.

– Implements a lightweight interface for an efficient data structure using temporary objects.

� Template Method

– Implements some functionality in terms of the interface.

– Makes few assumptions about the data structures, which allows the interface to be smaller.

– Does not use the data structure directly (no abstraction violations).

� Low-level Data Structure

– Provides efficient storage and fast access to data. It is the concrete data structure for which
an interface is to be built. Often there are many data structures that can be accessed with the
same interface. Each data structure will needs its own Mayfly (or family of Mayfly objects), to
implement the interface.

6 Collaborations

� A Mayfly uses the Low-level Data Structure.

� The Mayfly implements a particular Interface.

� A Template Method can use many different Mayflies. All the Mayflies that implement the same
interface can be substituted for one another in the Template Method.

7 Implementation

Much of the definition of the Mayfly design pattern relates to its implementation. Specifically, the pattern
describes a way to implement interfaces with zero overhead. In this section we will demonstrate this claim.

The key idea is that we want use implementation techniques that are easy for modern compilers to
optimize. Good optimizing compilers are now quite adept at completely removing the overhead associated
with objects and functions as long as a few conditions are met:

1. The functions are

� small.

� not recursive.

� not virtual.

2. The objects must be on the stack, not dynamically allocated.
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7.1 Performance Optimization Discussion

When these conditions are met, compilers can applyfunction inliningandlightweight object optimization[7,
13] to completely remove the overhead due to the function calls and to the objects. A function call introduces
overhead because it takes on the order of 30 instructions (most of which are loads and stores) to create and
fill a new frame on the stack. This is significant when the function body contains only a few instructions.
The overhead due to objects is a bit more complicated. In modern RISC processors efficient use of registers
is of utmost importance for performance. Compilers for RISC processors have register allocation algorithms
that map variables to registers, which drastically reduces the number of loads and stores needed to access
the variable. The traditionally register allocation algorithms do not attempt to map data within structures (or
objects) to registers. This means that the use of such objects as iterators will cause a significant increase in
the memory traffic for a tight loop. Lightweight object optimization breaks an object up into its individual
parts so that the traditional register allocation algorithms can be effective in the presence of objects. Many
times the presence of objects can interfere with other optimizations as well, such as copy propagation and
loop nest optimizations such as blocking for data locality, loop interchange, and loop fusion [6, 8, 9, 11].

7.2 Compiler Optimization Example

One compiler that does a excellent job with procedure inlining and lightweight object optimization is the
KAI C++ compiler. The result of the optimizations can been seen by examining the intermediate C code
output by the compiler (this is a cfront style C++ compiler that converts C++ to C). The following is the
output from compiling theup heap() function using thearray tree Mayfly class for theTreeNode
template argument. The variable names have been demangled to make the intermediate code easier to read.

int i;
int* array;
int parent;
// ...
while (i && (array[(((-1) + i) / 2)] < array[i])) {

int parent_val;
parent = ((-1) + i) / 2;
parent_val = array[parent];
array[parent] = array[i];
array[i] = parent_val;
i = ((-1) + i) / 2;

}

The result is the same as that of the low-level implementation! This demonstrates how the Mayfly
interface is in fact zero-overhead.

7.3 Language Choice

The number of languages that can be used to create Mayflies is quite small. This is because many languages
introduce significant overhead in object creation and in method dispatch, so much so that there would be
little point in using Mayflies over a straightforward object-oriented approach. For instance, methods in Java
use dynamic dispatch, and object creation (even for small temporary objects) is quite expensive. Similarly,
Mayflies can not be constructed in dynamic languages such as Smalltalk or Lisp for similar reasons. To be
able to use Mayflies and still have some flexibility, the language must have type parameterization. Beyond
the language, the compiler used must also perform the optimization discussed above.
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8 Sample Code

In this section we will go into the details of an implementation for thetree node class, which implements
the tree interface on top of an array using the standard heap indexing scheme. We will also show some
sample code demonstrating the use of Mayflies in the Matrix Template Library [16, 17] and in the Generic
Graph Component Library (GGCL) [10], two high performance libraries that we have developed.

First we show the data contained within atree node object. It contains a pointer to the underlying
array, an index to the location of the node in the array, and the size of the array. We have templated the class
with RandomAccessIterator [19] so thattree node can be used with many different kinds of arrays.

template <class RandomAccessIterator>
class tree_node {

typedef RandomAccessIterator iter;
public:

tree_node(iter array_start, iter array_end, iter pos)
: r(start), i(pos - start), n(end - start) { }

// ...
protected:

iter r; // pointer to the underlying array
difference_type i; // location of this node
difference_type n; // size of the array

};

Next we must implement the methods required by theTreeNode interface. We start with some of the
easier methods to implement. Thekey() method merely returns the key value from the underlying array.
Theparent() method, as we have seen before, calculates the index of the parent node, and creates a new
object to represent the parent. It is important that the parent object be just a temporary object, not allocated
on the heap, so that we do not introduce unnecessary overhead. Thehas parent() method just checks
to see if this node is at the top of the tree.

template <class RandomAccessIterator>
class tree_node {

// ...
reference key() { return r[i]; }
tree_node parent() const { return tree_node(r, (i - 1) / 2, n); }
bool has_parent() const { return i != 0; }
// ...

};
void swap(tree_node x, tree_node y) {

value_type tmp = x.key();
x.key() = y.key();
y.key() = tmp;
y.i = x.i;

}

Next we implement thechildren() method. First we show an example of how thechildren()
method is used. The following algorithm,down heap() , is the mirror image of theup heap() algorithm
described in the motivation.
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template <class TreeNode>
TreeNode down_heap(TreeNode x) {

while (x.children().size() > 0) {
typename TreeNode::children_list::iterator child_iter;
child_iter = std::max_element(x.children().begin(), x.children().end());
if (x.key() < child_iter->key())

swap(x, *child_iter);
else

break;
}
return x;

}

The children() method returns achildren list which behaves just like and STL container,
complete with iterators. Here we use them in the STL functionmax element() . We can implement
thechildren list as another kind of mayfly, nested within thetree node . The data items from the
tree node must be duplicated within thechildren list . This is not an overhead problem since the
list is just a temporary object and the copy propagation will eliminate the extra copying. The following code
shows most of the implementation for thechildren list .

template <class RandomAccessIterator>
class tree_node {

// ...
struct children_list {

struct iterator { ... };
children_list(iter rr, difference_type ii, difference_type nn)

: r(rr), i(ii), n(nn) { }
iterator begin() { return iterator(r, 2 * i + 1, n); }
iterator end() { return iterator(r, 2 * i + 1 + size(), n); }
size_type size() const { ... }

protected:
iter r;
difference_type i;
difference_type n;

};
children_list children() { return children_list(r, i, n); }
// ...

};

We have shown the implementation of aTreeNode based on an array, but there are several other data
structures that can be used to implement heaps, such as binomial heaps, Fibonacci heaps, and binary-trees
(pointer based). One can implement theTreeNode interface for any of these structures, and then use them
with the generic heap algorithms defined above.

9 Known Uses

There are many uses of Mayflies under the guise of the Iterator, though there are also many iterators that
are not Mayflies. Iterators that use virtual functions or that are allocated on the heap are not Mayflies.
Mayfly iterators are used in the Standard Template Library, our libraries – the Matrix Template Library
(MTL) [17, 16] and the Generic Graph Component Library (GGCL) [10] — and a host of others.

We use Mayflies in the MTL to represent rows of a matrix, submatrices, and different views of matrices
themselves (such as the transpose of a matrix or the lower triangle of a matrix). In GGCL we use Mayflies
to represent vertex and edge objects for graph representations where the vertices and edges are encoded
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in some data structure but not stored as explicit objects, such as in adjacency list and adjacency matrix
representation.

A much different type of Mayfly is used with a technique called expression templates [20], which pro-
vide an efficient implementation of operator overloading for arrays operations. Each arithmetic expression
operating on an array object is explicitly turned into an object so that the evaluation of the expressions can
be customized. The expression objects can be considered a Mayfly. Again, with a good optimizer these
Mayfly objects disappear. The Blitz++ [21] and POOMA [22, 5] libraries make heavy use of expression
templates.

Many of the classes associated with the C++ Standardvalarray class are also Mayflies. Theslice
andslice array are examples of such Mayfly classes.

Numeric classes, such as the Standardcomplex<T> , the extended precisiondoubledouble class,
and theinterval<T> class that we constructed, are all Mayfly objects. In these cases the underlying
data structure is trivial, but each of these classes provide the same “numeric” interface for their underlying
representations. They also fulfill the other requirements for Mayflies.

10 Related Patterns

Iterator: Mayfly is a generalization of Iterator, combined with a specific implementation method.

Adapter: One can view Mayflies as Adapters for data structures, though the purposes are somewhat differ-
ent. In addition, various kinds of adapters can be implemented as Mayflies.

Composite: Mayflies can provide a lightweight interface for Composite structures. In addition, some
lightweight Composite structures (such as thechildren list ) can be Mayflies.

Template Method: A Template Method (implemented with template functions instead of virtual functions)
is implemented in terms of an abstract interface, which is implemented by the Mayfly.
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