
o not
ed a

e
ok-
da
r

 of
)
ful
nder

cap-
ttle
ing

on it
the

fer-
The Lambda Pattern
Dorin Sandu, Dwight Deugo
School of Computer Science, Carleton University
1125 Colonel By Drive, Ottawa, Canada K1S 5B6
{sandu, deugo}@scs.carleton.ca

Abstract The need often arises to write simple, possibly one-shot behaviors that d
seem to belong in the interface of any class. The behavior can be assign
name and encapsulated in a method in a specific class, but the given nam
would convey little information beyond what can be inferred by directly lo
ing at the code. In such cases it is better to express the behavior as lamb
functions, unnamed behaviors expressed as blocks in Smalltalk and inne
classes in Java.

Problem How do you express simple, possibly one-shot behaviors that do not seem
to belong in the interface of any class?

Context Although the need for simple, one-shot behaviors can arise in other types
programming (such as functional and imperative procedural programming
this pattern applies to object-oriented programming and is particularly use
for use with languages like Smalltalk and Java. Use the lambda pattern u
one or more of the following circumstances:

• You need to express some small, self-evident behavior. You could try to
assign the behavior an Intention Revealing Selector [3] name, and en
sulate it in a method in a specific class, but the name would convey li
additional information beyond what can be inferred by directly inspect
the code.

• You need to save some context for later execution. Behaviors operate on
some local context. This context along with the behavior that operate
have to be saved and evaluated a later time. This can happen under
following conditions:

— You need to encapsulate how certain objects interact. The way
objects interact changes frequently so the objects have to be
expressed such that, in order to minimize coupling, they do not re
ence each other explicitly.
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

sed.
he
ior

-
llee
 a well-
 are
hav-

sed
ocal
osi-

 is

.

hey
ch
tting
 the

 to
such
ill
exity

ers to
e

— You need to configure an object for later access. The configuration is
a one-shot deal and there is little chance that the code will be reu
The configuration code does not really belong in the interface of t
caller or callee, but may require full access to the state and behav
of the former.

Additionally, the following may apply:

• You need to adapt an interface. The client object cannot collaborate with
the object that provides the required behavior due to an interface mis
match. The caller object cannot be modified to the interface of the ca
because it has been designed as a reusable component that expects
defined interface from the objects it interacts with. In other words, you
in a position to make use of the Adapter [1] pattern and the adapter be
ior is not worth its own class or method.

• You need to implement a series of algorithms. The algorithms can be writ-
ten in a couple of lines and have identical interfaces so they can be u
interchangeably. The algorithms do not require access beyond their l
context except for the input parameters. In other words, you are in a p
tion to make use of the Strategy [1] pattern and the strategy behavior
not worth its own class or method.

Forces • Objects should be as simple as possible, but not simpler. An object is
defined as a collection of related behaviors working on the same data
This promotes modularity and information hiding, qualities that tend to
dissipate when the object has either too much functionality, too much
state, or too much of both.

• Classes should have an optimum number of methods. Behaviors in the
public interface are usually implemented as Composed Methods [3]. T
are coded in terms of operations at the same level of abstraction, whi
can be found in the protected/private interface of the same class. Spli
complex methods this way improves the readability of the code but, at
same time, increases its complexity.

A possible solution to express a simple, one-shot behavior, would be
encapsulate the behavior in a private method in some class. If many
behaviors have to be written, the number of private helper methods w
outnumber the rest of the methods, and therefore increase the compl
of the class.

• Systems should have an optimum number of classes. Classes in a system
represent either concepts in the problem domain, or are used as help
glue the problem domain classes to platform-specific frameworks. Th
number of helper classes has to be minimized in order to increase the
communicability of the system.
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

uld
ew

.

 the
 class
ce
class
],

es
uta-

s or
n is
e the
ed.

po-

les of
d this

-
a-

strac-
avior
c-
here
e
s are
appli-
c-
es, or

g the

Another possible solution to express a simple, one-shot behavior, wo
be to create a class to store the behavior. This, however, introduces n
helper classes, and therefore increases the complexity of the system

• Classes, methods, and variables should have meaningful names. Good
names provide insight into the purpose and design of a system, they
reveal its inner workings, and communicate themes and variations of
present abstractions. Class names should convey the purpose of the
in the system, while its subclasses names should convey the differen
from the base class (see Simple Superclass Name and Qualified Sub
Name [3]). Methods should be given Intention Revealing Selectors [3
according to which the name describes what the method is trying to
accomplish. Similarly, variables should be given Role Suggesting
Instance Variable Names or Role Suggesting Temporary Variable Nam
[3] such that the name reflects the role the variable plays in the comp
tion.

• Abstractions are sometimes self-evident in certain contexts. For many
abstractions, any one name can only hint at how the abstraction work
how it might be useful. Full understanding comes when the abstractio
used in a specific context. In some cases, there is little benefit to nam
abstraction; its meaning is self-evident from the context in which is us

• Behaviors need access to local and context state. Behaviors are defined as
methods in some class. They have access to local state stored in tem
rary variables, and to context state stored in the instance/class variab
the class and its superclasses. Small, self-evident behaviors also nee
kind of access if they are to replace full-fledged methods.

Solution Write the behaviors as lambda functions.

The notion of lambda functions comes from Lambda Calculus [4][5], a lan
guage developed in the 1930s by Alonzo Church to help with the formaliz
tion of programming languages and programming in general. Lambda
functions are used to introduce abstractions into a system, where each ab
tion is defined by some state (bound and/or free variables) and some beh
(sequences of expressions that may recursively include other lambda fun
tions). These abstractions can be evaluated in either applicative order, w
the occurrences of the variables in the function's body are replaced by th
value of the argument expressions, or in normal order, where the variable
replaced by the unevaluated argument expressions. In the context of the
cation, the functions are considered first class objects, in other words fun
tions can be passed as arguments to other functions, used for return valu
assigned to variables.

Lambda functions can be named by assigning them to a variable and usin
variable as a placeholder for the entire function. The decision whether to
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

the
 it is
 are
are
.

al
ct-
 in

ler

 be
 The
y

s
ack-
A fur-
e
 nor-
n the
 only
fore,

nment
as

cts,

ide
s the
name the function or not stems from how the behavior is to be used. One
names a function only when that function can be reused in other parts of
application or in future applications; when the behavior is used only once,
not necessary to assign it a name. Since, by definition, lambda functions
nameless sequences of actions declared and used in the context where
needed, they are particularly suited to express simple one-shot behaviors

Although primarily used as a model for functional languages and function
programming, variants of lambda functions have been introduced in obje
oriented languages, most notably Smalltalk, and recently Java, as shown
Table 1. Smalltalk supports such functions via blocks, a way to represent
deferred sequences of actions. These actions are compiled by the compi
into executable objects stored in the body of the method where they are
defined. Block objects have full access to the context of the method, can
assigned to variables, or can be passed as arguments to other methods.
code inside blocks is evaluated at a later time, when requested to do so b
sending the messages value, value:, value:value:, or valueWithArguments:.

Java can simulate lambda functions through anonymous inner classes. A
opposed to a top-level class which has to be defined in the context of a p
age, an inner class can be defined in the context of a class or a method.
ther refinement of the inner class, the anonymous inner class, can only b
defined in the context of an expression. Inner classes can be declared as
mal classes, i.e., they can have a name and be instantiated many times i
context where they have been defined, but anonymous inner classes are
instantiated once, in the expression where they have been defined. There
anonymous inner classes are either declared as right-hand sides in assig
expressions or as arguments in method calls, in much the same fashion
blocks are declared in Smalltalk.

Although both Smalltalk blocks and Java inner classes are first class obje
provide deferred code execution, and can be used as language specific
lambda functions, they are not entirely similar. They differ in two aspects:
interface signature granularity and return behavior. Smalltalk blocks prov
the equivalent of a one method interface whereas a Java inner class allow

Table 1: Lambda-Function equivalents in different programming languages.

Language Lambda-Function equivalent

Smalltalk blocks

Java anonymous inner classes

Lisp/Scheme lambda-functions

C/C++ function pointers
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

ck

s

ns.
s.
ck-
-shot

pro-
ith-

mon
avior
 is

e to
bda

their
ite-
 the

lass
s
r a
 sec-
ong
definition of more than one method. A hardcoded return in a Smalltalk blo
causes execution to jump in the context of the method where the block is
defined, whereas in Java, an explicit return in the method of an inner clas
resumes execution in the caller of that method.

Some languages offer a very restrictive implementation of lambda functio
In C and C++, lambda functions can be approximated by function pointer
However, the use of function pointers voids the benefits of static type che
ing done by the compiler, and still forces the user to represent simple one
behavior in a named function, removed from the context where it makes
sense.

Example One recurring problem in the design of good container classes is how to
vide a way to sort the elements of the container in some specified order w
out revealing the underlying representation of the container, and without
having to create subclasses specialized by the sorting algorithm. One com
approach is to use a single container object that can delegate sorting beh
to a sort-policy object which is provided by the client. The main difference
how the sort-policy objects are implemented. While some libraries choos
implement them as distinct classes, some implement them using the lam
function equivalent of the chosen implementation language.

Lisp and Scheme, both functional languages using Lambda Calculus as
underlying model, use a lambda function to directly specify the sorting cr
ria for a list, as shown in the following example, which returns (1 2 3 4) as
sorted list:

(sort (lambda (a b) (< a b)) '(4 2 1 3))

In Smalltalk, the same result can be accomplished by using blocks:

#(4 2 1 3) asSortedCollection: [:a :b | a < b]

In Java, the same result can be achieved by using an anonymous inner c
that implements the Comparator interface. The comparator interface provide
protocol for comparing two objects and returns a negative integer, zero, o
positive integer if the first object is less than, equal to, or greater than the
ond. The anonymous inner class can then be passed to a sort method al
with the collection that needs sorting:

Vector collection = new Vector();
collection.add(new Integer(4));
collection.add(new Integer(2));
collection.add(new Integer(1));
collection.add(new Integer(3));

Comparator comparator = new Comparator() {
 public int compare(Object source, Object target) {
 int sourceInt = ((Integer)source).intValue();
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

fied
ainer
fig-

r
ystem

um-
s a
ed to
.

ritten
uld
od

 in a
red,

ove,
s of
 int targetInt = ((Integer)target).intValue();
 return(sourceInt<targetInt ? -1
 : (sourceInt==targetInt ? 0 : 1));
 }}

Collections.sort(collection, comparator);

As you can see from the above example, a sorting criterion can be speci
inline, as an argument to the sort method. The service provider is the cont
object which can be configured with a sort criterion by its clients. This con
uration is done without extra classes or methods, in a way that keeps the
design simple and understandable.

Resulting Context • By expressing behavior with blocks in Smalltalk and anonymous inne
classes in Java instead of creating helper methods and classes, the s
as a whole becomes more understandable and maintainable. This is
mainly because the system complexity is reduced by minimizing the n
ber of classes and methods. However, lambdas should not be seen a
substitute for helper methods and classes; lambdas should only be us
express behavior that is self-evident in the context where it is needed

• The use of the lambdas may not simplify the system, because code w
in lambda function format can be difficult to read. Such code use sho
be limited to those functions that are very small (no more than a meth
or two) and whose use is well-understood. If the meaning of the code
lambda function is not self-evident, then it maybe needs to be refacto
an opportunity to create either new classes or methods.

For example, in the Java version of the sorted collection presented ab
we can clean up the code by moving the comparison logic into the clas
the argument objects of the compare method, in this case Integer:

...
// Source in client class.
Comparator comparator = new Comparator() {
 public int compare(Object source, Object target) {
 return ((Integer)source).compareTo((Integer)target);
 }}
Collections.sort(collection, comparator);
...
// Source in Integer class.
public int compareTo(Integer target) {
 int sourceInt = this.value;
 int targetInt = target.value;
 return(sourceInt<targetInt ? -1
 : (sourceInt==targetInt ? 0 : 1));
}
...
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

er-
hing

ation

mall-

ro-

 the

pro-

e-
g

,

lass
.

rs

tem.

s
the
pt to

 oth-
com-
 to a
This, however, will not work if the source and target objects are of diff
ent classes. In this case, a different approach, such as double dispatc
[3][1], must be used.

• When switching between lambda functions and classes, a Java applic
needs not be modified extensively because the interface of top-level,
inner, or anonymous classes is the same to all clients. However, in S
talk, since blocks can only be evaluated using a fixed protocol (value,
value:, value:value:, or valueWithArguments:), two possibilities exist:

— The block protocol can be added to the new class. The methods value,
value:, value:value:, or valueWithArguments: are added to the new
class to implement the desired behavior directly or to call the app
priate methods. This is better in the short run, while prototyping,
because it avoids changing all the methods that used to evaluate
block.

— The methods that evaluate the blocks can be modified to use the
tocol of the new class. This is better in the long run because the
implementation of these methods can be more easily grasped, sp
cially if the methods in the new class are given Intention Revealin
Selector [3] names.

• In Smalltalk, blocks cannot inherit from other blocks whereas, in Java
inner classes can subclass any class in the current scope.

• In Java, all variables and parameters accessed from within an inner c
must be declared final because of potential synchronization problems

Rationale Lambda functions resolve the forces mentioned above as follows:

• Objects should be as simple as possible, but not simpler. Lambda func-
tions are defined as first class objects, a collection of related behavio
working on some data. The encapsulated state and behavior promote
modularity and information hiding, as does any other object in the sys

• Classes should have an optimum number of methods. By encapsulating
state and behavior in lambda functions, the number of helper method
otherwise required to express the same functionality is reduced, and
complexity of the class that would have had to store the methods is ke
a minimum.

• Systems should have an optimum number of classes. By encapsulating
state and behavior in lambda functions, the number of helper classes
erwise required to express the same functionality is reduced and the
plexity of the system that would have had to store the classes is kept
minimum.
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

 and
gful

stood
ext

ined.
k

 vari-
bal

t-

 to
ple-

e
eth-

on
 but

e its
nt

n be
will
n
• Classes, methods, and variables should have meaningful names. The
behavior expressed with lambda functions is meant to be self-evident
this is accomplished by keeping the code short and assigning meanin
names to the classes, methods, and variables referenced within the
lambda.

• Abstractions are sometimes self-evident in certain contexts. Lambda func-
tions are nameless sequences of actions whose intent is better under
by looking at the encapsulated state and behavior directly, in the cont
where is needed, rather than at some name that describes it.

• Behaviors need access to local and context state. Lambda functions have
full access to the behavior and state of the context where they are def
For example, in Smalltalk, a block has access to a local context (bloc
temporary variables), the method context in which is defined (method
temporary variables, method arguments), the class context (instance
ables, class variables, instance methods), and the global context (glo
variables).

Related Patterns The following patterns from [1] can be implemented using the lambda pa
tern:

• Adapter. The Adapter pattern is used to convert the interface of a class
another interface that client objects expect. In this case, rather than im
ment an Adapter class, the interface adaptation can be done using a
lambda function. In Java, interfaces with more than one method can b
easily adapted using anonymous inner classes containing multiple m
ods. In Smalltalk, however, this can only be accomplished by using a
block for each of the method to be adapted (for example, the Pluggable-
Adaptor example in Section “Smalltalk Model View Controller” on
page 9 provides blocks for getting, setting, and updating the model).

• Bridge. The Bridge pattern is used to decouple an abstraction from its
implementation so the two can vary independently. The implementati
of the abstraction, as described in [1], is provided in concrete classes
can also be provided as lambda functions.

• State. The State pattern permits an object to alter its behavior when its
internal state changes in such a way that the object appears to chang
class. This is accomplished by having the object keep track of a curre
state object that can be substituted with different other state objects.
Rather than have a hierarchy of state classes, a single state object ca
used. This state object can be configured with lambda functions that
execute on state transitions (see Section “Smalltalk HotDraw Tools” o
page 10 for an example).
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

-
c-

as a

pt-
ro-
 of
hich

ol-

ns

 due
s to
ect
e

dd-
hods
er-
• Strategy. The Strategy pattern is used to define a series of interchange
able algorithms. These algorithms can be implemented as lambda fun
tions rather than full classes. For example, the criterion for sorting
collections from Section “Example” on page 5 has been represented
lambda function rather than as a class.

Known Uses Smalltalk Model View Controller
The Model View Controller framework in VisualWorks Smalltalk uses ada
ers (variations on the Adapter Pattern [1] which are presented in [2]) to p
vide a level of indirection between the view, controller and the model. Two
the most used adapters are the ProtocolAdaptor and PluggableAdaptor w
convert the messages value and value: sent by the view/controller pair to the
interface of the model. The AspectAdaptor, a concrete subclass of Protoc
Adaptor, translates value and value: into protocol understood by the model,
whereas the PluggableAdaptor converts the messages into arbitrary actio
defined by blocks.

To illustrate this concept, consider the issue of unit conversion. Suppose,
to internationalization constraints, that the height of a person object need
be converted in the user interface from inches to meters. The person obj
provides the protocol height and height: to access and modify the height valu
in inches only. One possible solution is to implement the methods heightIn-
Meters and heightInMeters: that perform the conversion and then call the
height and height: methods. Then, the person object can be adapted to the
input field via an instance of AspectAdaptor as follows:

anInputFieldView model: (
 AspectAdaptor
 accessWith: #heightInMeters
 assignWith: #heightInMeters:)

However, this solution complicates the interface of the person object by a
ing the methods necessary to do the conversion. Furthermore these met
do not belong in the application model, they are an artifact of the user int

heightInMeters
heightInMeters:

value
value:

aPerson

anAspectAdaptor

anInputFieldView

height
height:

value
value:

aPerson

aPluggableAdaptor

anInputFieldView
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

y,
e
n

s.
 user

der
oci-

s
a, or
tton
own
ol-
ch

t of
 the
n
face. A better solution would be to express heightInMeters and heightInMe-
ters: as lambda functions using an instance of PluggableAdaptor. This wa
the conversion itself is done in blocks, with the blocks being defined in th
context of the class that creates and links the user interface to the domai
model:

anInputFieldView model: (
 PluggableAdaptor new
 getBlock: [:model | model height * 0.3]
 putBlock: [:model :value | model height: (value / 0.3)]
 updateBlock: [:model :aspect :param | "do nothing"])

Smalltalk HotDraw Tools
HotDraw is a framework that helps with the construction of drawing editor
Such editors usually provide a tool palette and a drawing area where the
can manipulate graphic figures in different ways based on the currently
selected tool. Internally, tools make use of a finite state machine in which
transitions are made based on the current mouse event and the figure un
the mouse cursor. Transition into a new state causes the action block ass
ated with that state to be evaluated.

For example, consider the implementation of the selection tool. Using thi
tool, the user can select or unselect figures by clicking in the drawing are
move the currently selected figures by dragging the mouse with the left bu
pressed. In order to implement the finite state machine for the tool, as sh
in the figure above, the developer constructs the state machine out of To
State and TransitionTable objects, and provides a command block for ea
state, as follows:

• State 1: Compute the figure under the cursor. Add this figure to the se
currently selected figures if SHIFT is pressed, else make this figure be
current selection set. Also remember the current mouse cursor locatio
lastPoint.

leftButtonDown

leftButtonUp

leftButtonUp

mouseMove

mouseMove

1 2 3
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

 any
ts,
,
n

d the
ara-
yer
st
ace.
Tool states
 at: 'Selection Tool Select'
 put: (ToolState
 name: 'Selection Tool Select'
 command: [:tool :event |
 | drawing lastPoint figure |
 drawing := tool drawing.
 lastPoint := tool cursorPointFor: event.
 tool valueAt: #lastPoint put: lastPoint.
 figure := drawing figureAt: lastPoint.
 tool sensor shiftDown
 ifTrue: [drawing toggleSelection: figure]
 ifFalse: [(drawing isSelected: figure)
 ifFalse: [drawing selection: figure]]]).

• State 2: Compute the current mouse location newPoint. Move the set of
currently selected figures by the amount of newPoint - lastPoint. Make
lastPoint be the value of newPoint.

Tool states
 at: 'Selection Tool Move Figure'
 put: (ToolState
 name: 'Selection Tool Move Figure'
 command: [:tool :event |
 | delta newPoint |
 newPoint := tool cursorPointFor: event.
 delta := newPoint - (tool valueAt: #lastPoint).
 tool valueAt: #lastPoint put: newPoint.
 tool drawing selections
 do: [:each | each translateBy: delta]]).

• State 3: Do nothing.

Tool states
 at: 'End State'
 put: (EndToolState
 name: 'End State' command: [:tool :event |]).

As seen from above, the entire tool behavior is realized without extending
of the HotDraw code. Tools are constructed from already available objec
which are configured with one-shot behaviors in the form of block objects
which are provided by the developer inline, in the context of the applicatio
that makes use of the HotDraw framework.

Java Abstract Windowing Toolkit
Java uses anonymous inner classes in the Abstract Windowing Toolkit an
Swing user interface frameworks. These frameworks provide a clear sep
tion between the application and the user interface via an intermediary la
that links the two. This layer consists of callbacks that the application mu
register with the framework in order to respond to events in the user interf
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

ub-
e

rch-
s an
class.
lled

 Pat-
ley,

ity
This layer is implemented with inner classes in order to avoid having to s
class the user interface classes for every application and having to handl
events in huge case statements.

Consider, for example, the following code which shows a portion from the
implementation of a search dialog:

public class SearchDialog {
 private Frame frame;
 private Button searchButton;
 ...
 private addSearchButton() {
 searchButton = new Button("Search"));
 searchButton.setActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 search();
 }
 });
 frame.add(searchButton);
 }
 ...
 private void search() {...};
}

The method addSearchButton() is called during the initialization of a Sea
Dialog instance. This method creates the "Search" button to which it bind
action listener, which happens to be an instance of an anonymous inner
Now, whenever the user presses the button, actionPerformed() will be ca
by the framework to execute the search() method.

References [1] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
terns: Elements of Reusable Object-Oriented Software, Addison-Wes
1995.

[2] Sherman R.Alpert, Kyle Brown, Bobby Woolf. The Design Patterns
Smalltalk Companion, Addison-Wesley, 1998

[3] Kent Beck. Smalltalk Best Practice Patterns, Prentice-Hall, 1998.

[4] Greg Michaelson. An Introduction to Functional Programming through
Lambda Calculus, Addison-Wesley, 1988.

[5] Alonzo Church. The Calculi of Lambda Conversion, Princeton Univers
Press, 1941.
Copyright © 1999 by Dorin Sandu and Dwight Deugo.
Permission is granted to copy and distribute for the purposes of the PLoP 1999 conference.

	The Lambda Pattern
	Abstract
	Problem
	Context
	Forces
	Solution
	Table 1: Lambda-Function equivalents in different programming languages.

	Example
	Resulting Context
	Rationale
	Related Patterns
	Known Uses
	Smalltalk Model View Controller
	Smalltalk HotDraw Tools
	Java Abstract Windowing Toolkit

	References
	[1] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of Reusab...
	[2] Sherman R.Alpert, Kyle Brown, Bobby Woolf. The Design Patterns Smalltalk Companion, Addison-W...
	[3] Kent Beck. Smalltalk Best Practice Patterns, Prentice-Hall, 1998.
	[4] Greg Michaelson. An Introduction to Functional Programming through Lambda Calculus, Addison-W...
	[5] Alonzo Church. The Calculi of Lambda Conversion, Princeton University Press, 1941.

