Hold Me, Thrill Me, Kiss Me, Kill Me?

Patterns for Developing Effective Concept Prototypes

Carol L. Stimmel
Broadband Innovation Group
MediaOne Labs
10355 Westmoor Drive, Suite 100
Westminster, CO 80021
CStimmel@mediaone.com

Abstract

The following collection of patterns and one anti-pattern target developers and their
managers who are involved in creating and demonstrating concept prototypes and using the
ubiquitous GUI-development tools to make them (such as Visual Basic, Delphi, and Web-
based development tools, like Sapphire Web). With an increasing emphasis on quick
product turn-around and fast to-market pressures, these concept prototypes feed the
illusion that development cycles can be drastically shortened because, "the GUI is already
done!". These patterns addresses how prototypes can be used as a tool to inform the
developers, managers and clients, and even venture capitalists, rather than an arbitrary
baseline to which all further development must conform.

Pattern Diagram:

This diagram describes how the patterns in this language fit together. Use It And Lose It is
the main theme for this language, with the anti-pattern Prototype to Delivery containing it’s
mirror image. The two gray boxes containing Engage the Client Early and Pride Cometh
Before A Fall are messages to the developer about working with clients and containing their
hubris in forging those relationships. The green colored branch containing Feature-Free
Zone, Come On Baby Light My Fire, and Representative Action describe to the developer a
way to handle the visual characteristics of their prototype. The blue branch containing Self-
Service, One Way Street and High Observability show the developer how to effectively
relate the characteristics of the prototype to the client. Finally, the purple box containing
the pattern Let’'s Make A Deal is an exit strategy from the world of the prototype to a true
development project.

Copyright © 1999, Carol L. Stimmel. Permission is granted to copy for the PloP 1999
conference. All other rights reserved.

Tse It &And Iose It

Let's Male & Deal ﬂ

Use It and Lose It

Richard Teague, legendary creator of the AMC Pacer demonstrated
that a car could be round and actually become airborne at 100MPH.
An example of something that should never have made it out of the
ough sketch stage? 2

Problem:

Prototypes live beyond their intended purposes. How can you ensure that a concept
prototype is perceived and utilized in the manner for which it was intended?

Context:

Developers and their managers are using GUI prototypes as a method for getting client buy-
in and funding for a project.

Forces:

Developers can quickly create extensive GUI’s using Rapid Application Development
tools

Clients and Managers are looking for ways to compress the development cycle

GUI prototypes are an effective means of communicating a potential solution and
gathering input

Feature rich prototypes look production ready
Feature rich prototypes generate excitement in the client
Solution:

Design the prototype in a manner that underscores the transient nature of it. Discard the
prototype after you establish client buy-in.

Use the supporting patterns Feature Free Zone, Come On Baby Light My Fire, Engage The
Client Early, and Representative Action as ways to generate excitement for your idea, while
keeping the prototype simple and lightly functional. Make your idea work for you, using
One Way Street, High Observability, and Self-Service. Move beyond the prototype phase by
employing Let’'s Make a Deal.

Resulting Context:

The prototype is not confused for a nearly finished product, nor does it live on like an
albatross around the necks of the developers who feel the need to conform to any ill-
conceived constraints. This may also be confusing to clients who don’t necessarily
understand that buggy products result from a prototype-driven development process and he
or she may be downright unimpressed with your efforts. Use Light My Fire as a way to
combat this lack of enthusiasm.

Design Rationale:

The idea for this pattern stems from the oft heard complaint about a software development
cycle expressed in the Anti-Pattern Prototype to Delivery; the result of a client (who holds
the purse strings) seeing a prototype, getting excited about it, and wanting it right away.
It’s my belief that the polished nature of these prototypes create the illusion that the
system is ‘practically done’, when often the requirements for the system haven’t even been
generated yet. The developer is then in a jam, and will use the prototype as a proxy for
actually doing the necessary work to create useful requirements for both the user interface
and the underlying system itself.

The result, especially for complicated or real-time systems, is a poorly designed system that
reflects badly on the development team and an unhappy client who is left with an
unreliable, difficult to use piece of software. Or perhaps just as likely, a dead idea.

Engage the Client Early

In the world of your idea, the prototype is potential life —
an unfertilized concept that is waiting for an external force,
the client, to give it meaning.3

Problem:

You are using a very simple GUI-based prototype to explain an idea. How can you get the
client involved in developing the idea further?

Context:

Developers are building concept prototypes to describe a new concept or to solve a
perceived problem.

Forces:
Extensive prototypes distract the user from seeing other possible solutions

GUI models help the client visualize the solution that you have in mind for solving the
problem

Functional GUI prototypes are simple and quick to design with RAD tools
Clients that are engaged in the process early on lead to overall project success
Solution:

Use the prototype as a baseline for discussions with the client about how he can help you
solve his problem, rather than as a platform for demonstrating your personal programming
prowess. Consider creating a family of prototypes that express different ways to solve the
same problem and demonstrate your openness to various solutions, using Representative
Action to show you are working to understand their needs. Specifically ask the Client if you
are understanding, and be prepared to actively listen to his responses. Take notes.

Resulting Context:

If the client can be hooked into your solution, you can use the client to help drive your
development efforts. They will be more patient in helpful throughout the whole process, and
they become an integral part of the solution rather then just an "end user”. Use Let’s Make
A Deal as the next step in cementing a relationship with your client.

Design Rationale:

There are reasons other than the psychological reasons for having a client engaged in your
development process. They are absolutely essential to developing a tool that fits the
computing environment and user’s skill set and ultimately the acceptance of your solution.
Successfully using Engage The Client Early, means your team will have an early start at
building a relationship with the client that allows for more frequent check-pointing during
the design and development process. Of course, client involvement is risky if the client
attempts a hostile takeover of the whole process and is generally difficult to work with.

Pride Cometh Before a Fall

Jimmy Swaggert learned that
there are times to be humble.*

Problem:

High Tech people are motivated by new technology. How can you, as a developer, create
simple, feature-light prototypes and still remain excited about your work?

Context:

You are a developer (or a savvy manager of developers) who understands the need for a
Feature-Free Zone and Self-Service to help Engage the Client Early.

Forces:
Developers need to stay on the cutting-edge to remain competitive
Clients and Managers don’t always understand or care about the latest technology
Developers have a desire to show how bright and clever they are
Using the newest technology often means dealing with unexpected events
Solution:

Avoid the desire to use the latest tool or technology just for the sport of using it, when
creating concept prototypes. You may be undermining your own efforts to secure a new
project or understand the product domain fully to the client’s benefit. Focus on choosing
the most appropriate tool to accomplish your task.

Resulting Context:

You may spend some up-front work time doing research on the problem domain and some
very unglamorous prototype building, but your up-front efforts will bring you sanity and
time for creative thought down the line. Developers love to try the latest technology and
often don’t mind if their clients become beta-testers for a new technology, but may lose the

6

credibility gained in appearing very clever when the product fails to perform as advertised.
Design Rationale:

It is important to do creative work when you are a developer — for many of us, that is our
only source of personal satisfaction in our field. The prototype phase, though, is really a
time to be collecting information on the problem domain for which you are providing a
solution. | have seen developers, like myself, who just want to get back to the keyboard,
bang away and throw the results over the wall and forget about it. In a world where so
many of our development efforts end up in the bit-bucket, through cancelled projects or
design changes, perhaps we can save a few personal cycles and have a more enriching
professional experience if we take the time up-front to listen and understand our client’s
needs. Consider the projects you may have worked on that have been cancelled, because
ultimately, they didn’t meet the requirements (that were never fully defined in the first
place). Managing expectations starts with setting the bar at a realistic height, unless you
like the pain of falling mid-span on a hurdle.

Feature-Free Zone

The Classic Beetle: A limited set of functions, but it met the
needs and desires of a generation of drivers. And you could fix it. °

Problem:

Engaging a client’s interest with a flashy GUI prototype is a valuable way to plug a new
concept. How can you keep the prototype from distracting the client into thinking you are
displaying a nearly completed product?

Context:

You are using tools to build GUI-based concept prototypes to demonstrate your new idea to
a new or potential client.

Forces:

Clients want fast turn-around from project conception to delivery

Feature-rich models create expectations

GUI models look finished and well thought out

GUI models generate excitement for the product

Clients hire you because you generate excitement
Solution:

Introduce a prototype that demonstrates a limited set of functions that demonstrate the
core functionality. Provide supporting documentation and consider packaging your prototype
using a presentation tool, such as Macromedia Director or even HTML, as opposed to a
compiled executable.

Resulting Context:

The client’s expectations are managed by the fact that he doesn’t see everything he desires
in your prototype, but sees the potential for a system that may meet his needs. As Use It
and Lose It, you may seem unimpressive or seem to demonstrate a lack of understanding
for the client’s problem domain. Use Come On Baby, Light My Fire and Representative
Action to address these concerns.

Design Rationale:

Products that are developed from the GUI down (using the prototype as a baseline for the
system design) result in spaghetti code that is difficult to maintain and may be unreliable.
These concerns are exacerbated in real-time systems that require high availability and
resiliency. Clients may assume, after viewing a functional prototype, that someone can flip a
switch somewhere and the system will become available — when in actuality the system
does not even exist, and there is no evidence that it could actually be delivered!

One of the most effective concept prototypes I've seen was developed at MediaOne Labs
and is a prototype of video email using a high-speed data connection and your television.
The prototype was done completely in Director, using pre-generated video. The prototype
is small, highly visual, simple and can be carried on a floppy disk.

Come On Baby, Light My Fire

In the world of rock, sex appeal creates
attraction. But true excitement for music
comes from sharing something in the music
that touches you personally.

Problem:

You are using a very simple GUI-based prototype to explain an idea. How can you excite the
client about your idea?

Context:

Developers are building prototypes to describe a new concept or to solve a problem. You
understand how to employ Representative Action in creating your prototype.

Forces:
Clients are excited by flashy, rich graphical environments

Extensive prototypes distract the user from understanding the problem you are trying to
solve

GUI models help the client visualize the solution that you have in mind for solving the
problem

Functional GUI prototypes are simple and quick to design with RAD tools

Solution:

Develop the prototype GUI, knowing that you are working to convey the essential core
principles of your solution. Use a structure that lends itself to Representative Action and
that avoids the need for the user to switch context, such as occurs with multiple window
pile-ups, pull-down menus or any need for extra work to get going, as described in Self
Service. A prototype doesn’t need a splash screen, or even a logical starting point; cut to
the quick and provide just a few screens that show the user how a core session with your
product might progress. If you are developing your prototype for a known creature, spend

some time finding out what turns that person on -- do they think browsers are the windows
to the soul? Deliver you concept via a web interface. Whatever platform you choose,
ensure that it makes sense in terms of how the ultimate product will be delivered -- Don’t
use a Macintosh if your company has banned them.

An example that demonstrates a core principle; the user clicks on a button that says get my
data, and the system gets the data and displays it in a list. The user clicks another button
that sorts the list. If the client has never been able to access data like this without going to
5 different data sources and poring over printouts, she will be excited, and the fire will have
been lit.

Resulting Context:

The client can clearly see how the direction you would take to solve her problem, without
distracting her with particular interface issues that aren’t appropriate at this stage. By
knowing the kind of environment your client is most comfortable with, she will immediately
perceive you as an ally or even brethren in her personal struggles. It helps to remember
that Pride Cometh Before A Fall, when you are tempted to flex your coding muscles during
prototype development.

Design Rationale:

Concept prototypes are a great way to get people’s juices flowing about the possibilities of
solving a problem The prototype does more to help express the nature of the problem, than
provide a solution in and of itself. Developers are tempted to churn out complicated
interfaces to describe their idea, when they really only serve as distractions and
impediments towards the real task at hand, which is to provide a workable solution to a real
problem that the client has.

10

Representative Action

In the US, we elect our representatives
to address complex problems. But,
like a concept prototype, it helps if they
look good. ’

Problem:

Your don’t want your prototype to over-simplify the complexity of the problem you are
trying to solve. How can you communicate this?

Context:

You understand the need for a Feature Free Zone within your prototype. You are trying to
Engage the Client Early.

Forces:
Effective prototypes make the solution look easy
Clients want fast turn-around for their products
Everyone thinks their problems are tough
Solution:

Demonstrate a solution for a single problem from the client's domain, which while limited in
scope, demonstrates that you understand the true nature of the problem. Finding this
problem involves taking the time to understand the issues that the Client is actually facing
and most importantly, what she is doing NOW to solve the problem. This often involves
investigative work and sleuthing. Analyze your discoveries, and find something the client
will immediately recognize to use as the heart of your prototype.

Resulting Context:

The client trusts that you understand their biggest worries and can help them solve her
toughest problems. You have demonstrated how your concept will help her solve her
problems, by showing how you will solve one of them. She can understand that, because

11

you are using their own domain to establish common ground. No one thinks his or her own
problems are easy, and subsequently with your use of Let’s Make A Deal, she won’t over-
estimate your prototype. With the use of Come On Baby, Light My Fire, she won’t
underestimate it either.

Design Rationale:

I worked on a project where the client had many problems. One of them was a process that
required paper to flow back and forth and required each party to change numbers in a
spreadsheet. Our client would apply certain formulas to the original spreadsheet and then
pass the spreadsheet back. This resulted in a number of iterations. We simply took her
formulas and put them into a GUI web-based calculator that allowed her customers to solve
the problem themselves and then push a button that would submit them to her for
approval. By demonstrating how we could solve one small problem in her problem space,
we suggested a change that improved a 2-week bottleneck and encouraged the client to
trust our ability to solve tough problems.

Self Service

In 1714, Henry Mill was granted a patent for “...an artificial
machine or method for the impressing or transcribing of letters,
singly or progressively one after the other, as in writing...." He
hit on an incredibly simply way of solving a complicated problem,
that still lives on today in the context of word-processing.

And he never needed to look for an electrical outlet. ©

Problem:

You are using a concept prototype to help sell your solution for solving a complicated
problem. How can you ensure that your prototype will run well anytime, anywhere?

12

Context:

You realize from your use of High Observability, that your prototype needs to be available,
even when your operating environment is not.

Forces:

The availability of supporting infrastructure, like databases and network connections are
not 100% reliable.

You want your customer to concentrate on your ideas, strengths, and not idiosyncratic
details.

You have created a prototype GUI that doesn’t rely on a strong, underlying
infrastructure.

Solution:

Package your prototype in a manner that allows it to be self-sustaining and completely free
of reliance on any other entity outside of its immediate operating environment. Avoid
conditions that require your user to set-up their machine in any specific manner to operate
your prototype, such as resetting screen resolutions or changing configuration files. You will
need to use your imagination to fill in some of the ‘blanks’ — for example, if your prototype
assumes that the user will have some sort of a visual streaming feed, mock it up with an
inline animation or loop that shows how that would look.

Resulting Context:

When your prototype is run, it will behave in a completely expected way that allows you to
concentrate on the ideas you are trying to convey rather than having unrelated distractions
that are mere side-effects of using RAD tools to generate GUI. At the same time, this does
not allow the customer to consider issues like latency or other real-time factors that would
occur in a finished product. It is also sometimes impossible or prohibitive to simulate
elements that exist outside of the prototype itself, such as a broadcast signal.

Design Rationale:

I worked on a team that developed a new way to deal with the radically disparate data
feeds, sources and types inherent in weather data. The heart of the new product was a GUI
that tied all these different forms together in one coherent interface. Since this was
federally funded work, the client was the US Congress. You can imagine the embarrassment
that occurred when our demonstration failed to connect to our database. The screen was
blank; there was no data to depict. We learned from that fiasco, that canned datasets are
not to be denied. Not only were we relieved of the pressure of ensuring a fast, reliable
network connection, but we could hand pick data that looked exciting and our demonstrator
always new what to expect. He was able to concentrate on describing the power of our
solution, rather than having to worry about things going awry.

13

One Way Street

In software, as in driving, being able to follow the
. . . 9
signs is the key to survival.

Problem:

Letting a client drive a concept prototype helps engage his interest. How can you ensure
that he isn’t distracted or confused by the interface?

Context:

You are using a GUI to generate excitement, using the principles learned in Come On Baby
Light My Fire, for your new idea and you want the client to give it a test drive. You know
that hands on experience is a great way to get people to really understand a product. We
know that we want to Engage the Client Early to aid our ultimate success.

Forces:

A GUI can be confusing the first time it’s used

Using pull-down menus and pop-ups makes a user hunt for information

An intuitive GUI makes the user feel good about using the system

You sell software because it makes the user feel smart, not because you look smart
Solution:

Design your prototype so that it leads the user from action to action, by only providing one
obvious direction. This can be accomplished by building a prototype that operates like a
circular buffer; once you go all the way around, you automatically end up at the beginning.
Think about designing the prototype like one might design a presentation, using simple,
recognizable icons for going forward, backwards, and executing an action. Be mindful of
always providing a way for the user to gracefully recover if they get in too deep; much like
the "Home" button that a browser implements. One example of this, when successful, is
the Wizard found in some Windows applications, that leads the user through potentially
complex tasks in an instructional way.

14

Resulting Context:

Your client is able to immediately use your prototype to create an action. She feels smart
and you can leverage the good feelings your client has for predicting the success of your
product.

Design Rationale:

There are many clever things that we can do as developers in solving complex problems.
It’s always nice to be thought of as clever, and in this case, we want to make our prototype
user feel clever and satisfied.

High Observability

The B-2 Bomber is the most survivable aircraft
because of it's low observability. When the goal
is getting noticed, take care to avoid stealth

elements.™®

Problem:

You are using a very simple GUI-based prototype to explain an idea. How can you ensure
that your GUI doesn’t need you around to explain it?

Context:

Developers are using rapidly developed GUIs as a way to describe a new system to
management or non-technical clients.

Forces:
Non-technical clients and managers are excited by flashy, rich graphical environments

Extensive prototypes distract the user from understanding the problem you are trying to
solve

GUI models help the client visualize the solution that you have in mind for solving the
problem

Functional GUI prototypes are simple and quick to design with RAD tools

15

Complex, unusable GUI prototypes are simple and quick to generate with RAD tools
You want your GUI to be presentable without your presence
Developers are protective over their work and like to show it with pride
Developers are not around when business decisions get made
Developers are motivated by technology
Solution:

Develop a few cohesive screens that can be dumped out, mailed around, or stuffed in a
business plan, most importantly, each screen in your prototype should be able to stand on
it’s own merits without any further context being required. There are no stealth GUI
elements in the prototype, such as pull-down menus or pop-ups (you can’t see these in a
screen dump) -- All elements are highly observable and immediately obvious.

It is important that the prototype is accompanied with enough of a framework (e.g. written
problem statement, supporting documentation) that, especially if it is very complicated, the
depth of the problem itself is not lost.

Resulting Context:

Other non-technical personnel are comfortable describing your idea to someone else, who
may have some influence on whether your idea moves forward or not. Developing this kind
of a prototype is personally risky to the developer whose pride is bound up in their work,
resulting in the need to display his cleverness at problem solving. Use the pattern, Pride
Cometh Before A Fall to help manage this feeling.

Design Rationale:

Developers can often excite technical people with their great ideas, but then they die there.
A project may not get funded because the business people don’t understand the work of the
developer. If a non-technical person can describe the system, then it has a better chance of
surviving. You have effectively grown your sales force, without spending a dime.

16

Let’s Make a Deal

In architecture, clients may purchase the services of an

architect based on preliminary plans of the structure they want
built. A competent builder, on the other hand, will wait for
plans with actual measurements before breaking ground.*

Problem:

You have successfully used a concept prototype to establish client buy-in for your solution.
How can you ensure that you and your client both understand the expected functions of the
new system?

Context:

You know from Use It and Lose It that you want to discard your prototype and avoid any
substantial use of it.

Forces:
Prototypes are sometimes used as a proxy for requirements gathering
There is a desire for those funding the project to compress the project cycle
Solution:

In developing a successful concept prototype, you have avoided the traditional tasks of
requirements generation, but now the time has come. Using what you learned in Engage
The Client Early and Representative Action, you should have some sort of a rapport with
your client; if not amity, at least a basic understanding of their needs. After the client has
agreed that she likes your solution and wants to go further, sanctify the relationship. By
agreeing to produce the appropriate Requirements documentation in a traditional reciprocal,
iterative manner with the Client, you will have the basis for the building of a deployable
system.

17

Resulting Context:

By generating a requirements document, you can be sure that you and your clients have an
understanding about the features of your new system and you will have successfully
avoided the traps often laid by the use of prototypes. You will also have a usable artifact
that will contribute to the creation of a deployable system that meets the needs of the
client.

Design Rationale:

How does one move successfully beyond the concept prototype stage, without getting
caught in the trap you were working to avoid — your prototype being perceived as
something more than it was every intended to be? It seems that while creating the
opportunity to produce the more formal kind of documentation that every successful project
requires, this juncture of the process allows you to move to a new level that casts both the
client and the development team as actual stakeholders in the development process.
Without a Requirements document process, the ontological framework for the project may
become muddy and confusing, resulting in a failed product.

Author: Monica Marics as suggested to Carol Stimmel

Prototype To Delivery: (An Anti-Pattern)

On January 28, 1986 the space shuttle Challenger
exploded. The cause was in part determined to
be due to a hurried cold weather launch and a
subsequent seal failure in the solid rocket booster.
O-Rings do not seal properly in cold weather, even
when commanded to by politicians.*?

18

Problem:

After showing a prototype to a potential client, the client is excited about your idea and
wants it as soon as possible. How can you use the work you’ve already done to give you a
jump-start?

Context:

Developers are using tools and techniques that allow them to produce flashy looking
prototypes with the appearance of extensive functionality and rich graphical elements in
exceedingly short time spans.

Forces:
Clients want quick turn-around on their projects
Developers like to be fast and effective
Speed of product delivery can supercede quality
A compressed development cycle can squeeze out design and testing phases
There are two kinds of developers: The Quick and The Dead
Solution:

Build prototypes that are as close to your vision of the finished product as possible. Use
that as the baseline for your development effort. The development timeline will be
compressed because you will have already created the user interface and you won’t need to
be concerned with a Ul design phase, since you already have the client’s buy-in.

Resulting Context:

The development team will look heroic for producing a product of such complex nature in a
shorter-than-average period of time (hopefully). The client will look good for getting well
within budget and for getting the most for the company’s money. Although, the users will
have inordinate troubles using your system that has such a minimal amount of thought put
into the interface and how it interacts with your system (and it will probably crash and burn
with great regularity), these issues can be addressed in further iterations of the software.

Design Rationale:

It’s important to cater to the whims of your client, since they provide your bread and butter.
Your development team should be proud of how quickly they can produce complicated
software save cycles in the development process. Your client will learn to trust you as a
real go-getter with the ability to get the job done on time. Anyway, trying to fix your code
will be a great task for the new college graduate.

19

REFERENCES:

James O. Coplien, A Development Process Generative Pattern Language available at
http://www.bell-labs.com/people/cope/Patterns/Process/index.html

ACKNOWLEDGEMENTS:

Don Olson, of AG Communications for his encouragement at ChiliPLoP '99 and shepherding
of this paper. His ability to help find the nugget of truth in my disparate collection of
thoughts is appreciated.

Mary Lynn Manns, of University of North Carolina, Asheville, for introducing me to patterns
and her comments on the early iterations of this work.

Robin A. Seidner, The Copy Diva http://www.copydiva.com for her brilliant editing eye

Lyn Bain, of U S West Advanced Technologies, for introducing me to the fact that users even
exist.

ENDNOTES:

1 "Hold Me, Thrill Me, Kiss Me, Kill Me", isasingle by U2, 1995 for the soundtrack to Batman Forever.

2 Picture courtesy of Jeni, proud Pacer owner with a dedicated site at
http://mww.lightstream.net/~j eni/pacer/jeni.html

% This photo courtesy of Public Domain Images http://www.pdimages.com.

* Used without the permission of Jimmy Swaggart Ministries. http:/www.jsm.com

® Picture courtesy of Dan Dunn, President of the Beetle Farm, http://www.thebeetl efarm.com

® This picture of Jim Morrison is ubiquitous on the Internet (and probably a lot of walls) and | have no ideawho to
cite for its usage, though | suspect Annie Liebowitz and Rolling Stone own this one. If you know, let me know.

7| found this photo at http://www.students.bucknell.edu/bbaker/jfk.html. It isunquoted and there was no contact
information available.

8 Photo courtesy of Public Domain Images http://www.pdimages.com

® This photo is from the movie, Thelma and Louise, MGM Home Entertainment 1991, Ridley Scott, Director.
19 photo Courtesy of the U.S. Air Force/Northrop Grumman.

! Photo from MediaOne Group collection of photos for Microsoft Word.

12 Photo courtesy of the United States Government. Permission unobtained.

20

