
A Computing Environment Configuration Management Pattern
based on a Software Product Line Engineering Method
Alessandro Ferreira Leite, Safran
Diana Penciuc, IRT SystemX

This paper describes a pattern to configure computing environments based on a software product line engineering (SPLE) method. Con-
figuring computing environment represents a challenging and time-consuming activity, even for skilled DevOps engineers. The challenges
these users usually face include: (a) choosing a configuration management tool to write their configuration management scripts, (b) ensuring
that their computing environments are correctly configured, (c) keeping configuration scripts’ dependencies and relationships up-to-date, and
(d) ensuring that their scripts are both reproducible and idempotent. Furthermore, configuration management tools offer different levels of
abstraction to describe the tasks. Hence, they demand knowledge of various programming languages. Therefore, configuring a computing
environment follows a pattern. The pattern is: (a) describe a target state for the computing environment, (b) identify the software packages
and their required configuration files, (c) create the scripts with the commands to achieve the desired state, and then, (d) execute the scripts.
Thus, a software product line (SPL) based strategy is ideal for this domain, as the products have common characteristics and variable parts.
As a result, this approach demands much less time and effort than the traditional one.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement—Evaluation/
methodology

General Terms: Design pattern, Computing environment configuration

Additional Key Words and Phrases: Infrastructure as Code, DevOps, Software Product Line

1. CONTEXT

Modern computing systems may comprise tens or even hundred of infrastructure elements. In this context, a
recurring question is how to manage these elements efficiently. It means (a) to have a clear understanding
of environment changes, which includes software packages and computing resources (e.g., virtual machines,
storages, and networks); (b) to be aware of the changes that have been applied correctly in order to try to
guarantee consistent system’s state; and (c) to known how to rollback in case of failures [Woods 2016]. Indeed,
this represents a challenging task, specially in the context of cloud computing environment, where it is easy to add
and to remove computing resources [Buyya et al. 2009]. Consequently, the concept of infrastructure as code (IaC)
has come out to help teams dealing with these issues [Hummer et al. 2013]. Infrastructure as code comprises
a set of practices from software development to automate the provisioning, configuration, and management of
computing environments. It aims to improve repeatability of computing environment states [Hüttermann 2012]. As
a result, DevOps1 teams rely on configuration management tools to both describe and provision the resources,
as well as to change their states [Humble and Molesky 2011; Bass et al. 2015]. DevOps intend to reduce the
separation between developers and operations, aiming to reduce the time between committing a change to a
system in a version control system (VCS) and its place into a production environment based on an automated
deployment process [Bass et al. 2015]. Provision means making computing resources ready to use. Computing
resources include physical or virtual machines, storage, and network. Hence, the work depends on the type of
resource.

Nowadays there exist various configuration management tools to aid on achieving this objective. Examples
of tools include Ansible (ansible.com), Docker (docker.com), Chef (chef.io), Puppet (puppet.com), Vagrant (va-

1Short for development and operations

http://ansible.com
http://docker.com
http://chef.io
http://puppet.com
http://vagrantup.com
http://vagrantup.com
http://vagrantup.com


grantup.com), among others. Technically, these tools allow the teams to write the desired state for a computing
through configuration management scripts [Hummer et al. 2013].

A script comprehends a sequence of actions to modify the states of computing resources. On the one hand,
a state consists of (a) software packages that must be installed; (b) network configuration, including inbound
and outbound traffic rules; (c) users’ access permissions; and (d) services that must be running on a computing
environment. On the other hand, actions comprise the commands to execute on the system to achieve the desired
state. Generally, they include the name of the software packages to be installed via a package management
system (e.g., apt, yum, and brew), as well as the corresponding command (e.g., install, update, remove). For
example, a state description may include: a virtual machine with 2 CPU cores and 2GB of RAM memory
running Ubuntu 14.04 and WordPress accessible through HTTP and HTTPS protocols provided by nginx. To
achieve this objective, we can use Vagrant as the configuration management tools to spin up a virtual machine
and to configure it executing the script illustrated in Figure 1. In this case, the actions are (i) load an operating
system (e.g., Ubuntu 14.04); (ii) install a web server (i.e., nginx), (iii) install a database server (i.e., MySQL
server) and a PHP engine required by WordPress; (iv) create a user and a database for WordPress on MySQL;
(v) configure nginx to redirect PHP scripts’ calls to the PHP engine; and (vi) start the applications on the machine.

2. PROBLEM

Configuration management tools target scripts execution, leaving for users the work of creating and combining
various configuration management scripts. Moreover, they leave for users the work of maintaining scripts’ de-
pendencies and relationships up-to-date, which adds a new layer of complexity. Likewise, writing and executing
configuration management scripts represents a time-consuming and error-prone activity even for experienced De-
vOps engineers.

Hence, some of the problems related to computing environment configurations are:

(a) failure handling: unless the configuration management tool supports convergent deployment automation,
the engineers are responsible for manually restart the configuration process when a script fails. Convergent
deployment means that if an error occurs during the execution of a script, and the expected system’s state
is not reached, the script is automatically re-executed until the system’s state converge toward the desired
one [Wettinger et al. 2014]. On the one hand, adopting a tool with this feature frequently leads to vendor
lock-in. On the other hand, implementing convergent deployment is often time-consuming, and it increases the
complexity of writing the configuration management scripts, as they must be composed of idempotent actions.

(b) low-level of reuse: configuration management tools have different domain-specific language (DSL). Even
infrastructure and template definition tools such as CloudFormation (aws.amazon.com/cloudformation),
Heat (wiki.openstack.org/wiki/Heat), Packer (packer.io), and Terraform (terraform.io) have their languages to
describe high-level infrastructure resources and their relationships. As a result, combining scripts from different
configuration management tools result in duplicate code. This occurs, since the configuration tools follow a
procedural approach, which means that the engineers are responsible for defining the work to do and how it
should be done. Furthermore, they have to know the state of the system before the execution of the scripts.
For example, considering that in the scenario described in Section 1, the users decide to use (a) Vagrant to
provision the virtual machine; (b) Ansible to install and configure nginx ; and (c) Docker to run WordPress,
MySQL, and PHP engine as Linux containers [Merkel 2014; Pahl and Lee 2015], as illustrated in Figure 2.
These changes demand the engineers to write different configuration scripts (Figure 3) and to coordinate their
executions. Likewise, the engineers are also responsible for guaranteeing that the scripts chaining leads to the
required state.

(c) guarantee consistent systems’ state: having the configuration scripts do not ensure that running them
leads to a correct system state, as unexpected constraints might have been introduced by third dependencies,
for instance. In other words, having the script does not guarantee reproducible environments states. A

A Computing Environment Configuration Management Pattern based on a Software Product Line Engineering Method — Page 2

http://vagrantup.com
http://vagrantup.com
http://aws.amazon.com/cloudformation
http://wiki.openstack.org/wiki/Heat
http://packer.io
http://terraform.io


concrete example includes Node.js that recently changed its package management address, as can be seen
in [NodeJS 2016]. Thus, this change will soon break2 the configuration scripts that use the previous address.
Another example includes the changes in the general purpose Amazon Elastic Compute Cloud (EC2) instance
types (aws.amazon.com/ec2/instance-types) that now require from the users to firstly configure a virtual private
cloud (VPC) (aws.amazon.com/vpc) network to be able to create a virtual machine (VM). Hence, this has
broken existing configuration management scripts.

Fig. 1: Example of a script with the actions to install WordPress in a machine

Fig. 2: Combining different configuration management tools to run WordPress in a machine

2Nowadays, Node.js shows the following message when referencing the old address. “...you should migrate to a supported version of Node.js
as soon as possible ...” (bit.ly/2clS8GH). Thus, the users have to test their configuration scripts regularly to identify this kind of change.

A Computing Environment Configuration Management Pattern based on a Software Product Line Engineering Method — Page 3

http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/vpc
http://bit.ly/2clS8GH


Fig. 3: Using Ansible, Docker, and Vagrant to provision a computing environment

3. SOLUTION

The solution comprises on embracing a feature-based strategy, where the focus shifts from writing and maintaining
scripts to describe features. Thus, the configuration scripts and the computing environments become both products
of a software product line.

A software product line (SPL) is a strategy to design a family of related products with variations in features, and
with a common architecture [Clements and Northrop 2001; Pohl et al. 2005]. A feature means a user requirement
or a visible system’s function [Kang et al. 1990]. Hence, SPLE helps on developing a platform and to use mass
customization to create a group of similar products that differ from each other in some specific characteristics.
These characteristics are called variation points and their possible values are known as variants [Pohl et al. 2005].
This process can rely on abstract and concrete feature models and on a configuration knowledge (CK) [Czarnecki
and Eisenecker 2000].

On the one hand, a feature model (FM) [Kang et al. 1990; Czarnecki and Eisenecker 2000] consists of a tree,
where each node represents a feature of a solution. Relationships between a parent (or compound) feature and
its child features (i.e., sub-features) are categorized as: mandatory, optional, or (at least one-child feature must
be selected when its parent feature is), and alternative (exactly one-child feature must be selected) [Czarnecki
and Eisenecker 2000]. Besides these relationships, constraints can also be specified using propositional logic to
express dependencies among the features.

On the other hand, configuration knowledge (CK) defines how each feature is instantiated, its requirements and
post-conditions. In practice, this means that the configuration knowledge (CK) makes a mapping between features
and the artifacts that implement them. Figure 4 illustrates the use of a feature model to describe the functional
properties of a virtual machine. In this example, Processor is an abstract feature, while Ivy Bridge is a concrete
feature. As can be seen, a valid configuration description includes {Debian, Ivy Bridge, Dedicated, Ten GB, One
hundred GB, Provisioned, and Server}, whereas an invalid one comprehends {Ivy Bridge, Dedicated, Ten GB, One

A Computing Environment Configuration Management Pattern based on a Software Product Line Engineering Method — Page 4



hundred GB, Provisioned, and Server} as it does not specify an Operating System. Moreover, the constraints c1
and c2 indicate that selecting the feature Bootstrap reduces the configuration space to only the Operating System.

Ivy Bridge
Xeon
Sandy Bridge
Shared
Dedicated

One GB
Ten GB
One TB
One hundred GB

EBS
ProvisionedStorage type

Storage

Memory

Processor type

Server

Cluster
Bootstrap

Placement group
Purpose usage

HardwareVirtual machine

CentOS

Debian

Ubuntu

Operating System

Processor

Mandatory

Optional

Or

Alternative
Abstract
Concrete

Legend:

c1: Bootstrap ⇒ Shared ∧ EBS ∧ One GB ∧ One Hundred GB ∧ ¬ Cluster

c2: Ivy Bridge ∨ Sandy Bridge ⇔ ¬ Shared

Fig. 4: Example of a feature model with Optional, Mandatory, Or, Alternative features, and two constraints

Thus, a SPLE helps on moving from a procedural strategy to a reactive one. In this context, Figure 5 presents a
pattern that enables us to configure computing infrastructure following a product line approach. In this case, the
activities of the pattern are:

(a) create a repository of features: in this activity, the DevOps engineers use feature model to describe the
features, including their relationships and constraints. Feature model has the advantage of being technology
independent, and it is normally understood by ordinary users. Figure 7 shows a feature model with the features
to set up WordPress. Thus, selecting the features Ubuntu and WordPress, leaves to users the option to select
a database, web server, and a PHP version. In this stage, it is also defined the product line. In other words,
the assets and the outputs of the software product line, as depicted in Figure 6. In this context, the assets
represent the configuration management tools, whereas the outputs comprise the artifact demanded by each
tool.

(b) define the configuration knowledge (CK): this step comprises the working of describing how each feature
is instantiated, as well as in defining their binding points. Binding points are runtime informations that must
be set by the system. This enables artifacts reuse and allow the engineers to delegate dependencies to be
resolved at runtime.

(c) instantiate the products: this activity comprises the work of instantiating the products based on the users
requirements. The products include the configuration management scripts and the computing environments.
Thus, the engineers do not need to write scripts, but to generate them.

4. ACKNOWLEDGE

We would like to thank our shepherd, Fernando Lyardet, for his insightful comments that significantly improved this
paper.

A Computing Environment Configuration Management Pattern based on a Software Product Line Engineering Method — Page 5



Fig. 5: A feature-based pattern to provision computing infrastructure

PlaybookBash

InfrastructureConfigurationPL

Vagrant DockerCompose DockerfileDocker Ansible

Output

Vagrantfile

Asset

DockerComposeFile ShellScript

Vagrantfile ⇒ Vagrant

Dockerfile ⇒ Docker

Playbook ⇒ Ansible

DockerComposeFile ⇒ DockerCompose

DockerCompose ⇒ Docker

ShellScript ⇒ Bash

Legend:

Mandatory

Optional

Or

Abstract

Concrete

Fig. 6: Feature model representing the infrastructure configuration product line

A Computing Environment Configuration Management Pattern based on a Software Product Line Engineering Method — Page 6



OperatingSystem

v5_6 v7

Jekyll

Connector

v1_9

Platform

PostgreSQL php5_mysqlDebian

Language

epel_release

Database

PHP

v2_0

RubyUbuntu php5_fpmnginx software_packageMySQL5

CMS

MariaDB httpd

WebServer

WordpressCentOS

Package

Wordpress ⇒ PHP

Wordpress ⇒ MariaDB ∨ MySQL5

Jekyll ⇒ Ruby ∧ nginx

php5_fpm ∨ php5_mysql ⇔ Ubuntu

epel_release ⇒ CentOS

software_package ⇒ Ubuntu

nginx ∧ CentOS ⇒ epel_release

php5_fpm ⇔ nginx ∧ Wordpress ∧ Ubuntu

Legend:

Or

Alternative

Abstract

Concrete

Fig. 7: Using feature model to describe the requirements and configuration options to set up a platform for a CMS

REFERENCES

BASS, L., WEBER, I., AND ZHU, L. 2015. DevOps: A Software Architect’s Perspective. Addison-Wesley Professional.
BUYYA, R., YEO, C. S., VENUGOPAL, S., BROBERG, J., AND BRANDIC, I. 2009. Cloud computing and emerging IT platforms: vision, hype, and

reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 599–616.
CLEMENTS, P. AND NORTHROP, L. 2001. Software Product Lines: Practices and Patterns. Addison-Wesley.
CZARNECKI, K. AND EISENECKER, U. W. 2000. Generative Programming: Methods, Tools, and Applications. ACM Press/Addison-Wesley.
HUMBLE, J. AND MOLESKY, J. 2011. Why enterprises must adopt devops to enable continuous delivery. Cutter IT Journal 24, 8, 6.
HUMMER, W., ROSENBERG, F., OLIVEIRA, F., AND EILAM, T. 2013. Testing idempotence for infrastructure as code. In 14th International

Middleware Conference. Springer Berlin Heidelberg, 368–388.
HÜTTERMANN, M. 2012. Infrastructure as code. In DevOps for Developers. Springer, 135–156.
KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E., AND PETERSON, A. S. 1990. Feature-oriented domain analysis (FODA) feasibility

study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute. November. Last accessed in July 2016.
MERKEL, D. 2014. Docker: Lightweight linux containers for consistent development and deployment. Linux Journal 2014, 239.
NODEJS. 2016. Installing Node.js via package manager. Last accessed in September 2016.
PAHL, C. AND LEE, B. 2015. Containers and clusters for edge cloud architectures–a technology review. In 3rd International Conference on

Future Internet of Things and Cloud. 379–386.
POHL, K., BÖCKLE, G., AND LINDEN, F. J. V. D. 2005. Software Product Line Engineering: Foundations, Principles and Techniques.

Springer-Verlag New York.
WETTINGER, J., BREITENBÜCHER, U., AND LEYMANN, F. 2014. Compensation-based vs. convergent deployment automation for services

operated in the cloud. In 12th International Conference on Service-Oriented Computing. Springer-Verlag, 336–350.
WOODS, E. 2016. Operational: The forgotten architectural view. IEEE Software 33, 3, 20–23.

SugarLoafPLoP’16, November 16-18, Buenos Aires, Argentina. Copyright 2016 is held by the author(s). ACM 978-1-4503-0107-7

A Computing Environment Configuration Management Pattern based on a Software Product Line Engineering Method — Page 7


	Context
	Problem
	Solution
	Acknowledge

