Secretary Pattern: An Alternative for Segregation of
Behaviors

RENATO CORDEIRO FERREIRA, Universidade de Sao Paulo

iGOR BONADIO, Universidade de Sao Paulo
ALAN MITCHELL DURHAM, Universidade de Sao Paulo

A class with multiple behaviors increases coupling if separated subsystems of a program use different subsets of these behaviors.
When behaviors share few data but reuse non-trivial code, it is difficult to increase encapsulation by breaking the class in components
(as proposed by the CompoNeNT pattern) and still avoid duplication. In order to address this situation, this paper introduces the SEcReTARY
pattern, where auxiliary classes — called Secretaries — represent the behaviors and the main class — called Boss — is derived from the
original entity. A secretary keeps only the data and exposes only the methods related to its behavior. A boss implements all algorithms
and holds all data that do not change when executing any of its behaviors. The secretaries receive all client’s requests and delegate
to their boss. This design decreases coupling, as clients use only the behaviors they need; and keeps cohesion, as all relevant code is
kept in one class. As the boss remains immutable, algorithms can be executed with different set of parameters in parallel. Results can
be pre-computed and cached in the secretary, speeding up the response time for known arguments. This pattern has been originally
created in the refactoring of ToPS framework and can be applied to increase the reuse code in games.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Features— Patterns

Additional Key Words and Phrases: Secretary Pattern, design patterns, segregation of behaviors

ACM Reference Format:
Ferreira, R. C., Bonadio, i. and Durham, A. M. 2016. Secretary Pattern: An Alternative for Segregation of Behaviors. jn V, N, Article 1
(November 2016), 5 pages.

1. INTENT

This design pattern aims to decrease the coupling related to classes that have complex interfaces, this is,
classes whose methods can be grouped in different semi-independent subsets. Here, “semi-independent”
means methods conceptually independent but whose segregation into smaller classes would not increase
the reuse of code. The Secretary pattern allow developers to create auxiliary objects called Secretaries)
that keep mutable data and provide access to the behaviors of the main class (called Boss), moving client’s
dependencies to the auxiliary while keeping the relevant implementation in a single class.

2. MOTIVATION

A First Person Shooter (FPS) is a game that simulates a fight among players Each player carries a set of
weapons that are used to injure its opponents. A general weapon has three major behaviors:

—Shooting: The capacity of calculating which objects in the scenario will be damaged by the weapon;
—Targeting: The capacity of simulating the point that the weapon may hit;
—Reloading: The capacity of filling the ammunition of the weapon.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers’ workshop at the 17th Conference on Pattern Languages of Programs (PLoP).
SugarlLoafPLoP’16, November 16-18, Buenos Aires, Argentina. Copyright 2016 is held by the author(s).

In this kind of game, there are many types of weapons. Handguns (which shot projectiles) and machine
guns (which bursts) are the most common. Flamethrowers, cross-and-bows and boomerangs are more exotic.
Each category has a specific algorithm to calculate their collision area (ray tracing for the first group, elliptical
and curved routes for the second one). These algorithms are necessary for the shooting and targeting
behaviors.

The simplest way to implement this part of the game is by creating one class for each category of weapon.
However, there is a problem with this approach: each class has a complex public interface with different
methods for their behaviors. Nonetheless, not all methods are useful for the clients of the classes: the render-
ing subsystem, for example, needs to access the reloading data to display the number of projectiles in the
status bar and the targeting methods to show the path of the projectiles to the player; the physics subsystem,
in turn, only needs the shooting methods to hit the objects, reducing their health. As a consequence, the
weapon classes couples several domains of the game - a great source of problems in the point of view of
interface segregation [Martin 2000].

Considering the drawbacks of increasing the coupling, it is clear that this approach is not ideal to create a
robust implementation. Nevertheless, splitting the classes in components (as proposed by the ComPoNENT
pattern [Nystrom 2014]) would not beneficial as two of the behaviors (shooting and targeting) reuse code
(the collision algorithm) and all of them need to access the parameters specific of each category of weapon
(as different kinds of ammunition).

3. PROBLEM

How can we decrease the coupling of a system that has entities with many behaviors, but whose methods
share some data and code?

4. FORCES
—Cohesion: All code can be written in a single class without the increase of coupling.

—Reusability: Common code can be accessed within a single class, facilitating refactoring [Fowler and
Beck 1999] and the creation of more concise methods.

—Simulation: The main object remains immutable and the execution of behaviors can be simulated with
different sets of parameters.

—Parallelism: Through moving shared data to outside the main object, tasks requested to it can be executed
in parallel.

5. SOLUTION

The SecreTary pattern proposes a way to address the segregation of behaviors of complex entities. An entity
is an abstract idea of a real world object or concept. For each behavior, the pattern determines the creation
of a Secretary that represents it. Secretaries provide a narrowed view of the entity, with access only to the
methods that implement the behavior they represent.

The class that represents the entity is promoted to a Boss, keeping all the code that implemented its
behaviors. Each method now receives an extra parameter: a reference to the secretary that represents the
behavior it implements. All calls are made indirectly through the secretaries, which have methods that match
the boss’ and delegate to it. This requires secretaries to keep a reference to the boss they serve.

In order to keep the state of the boss immutable, a secretary stores all data that can change during the
execution of one of its methods. At the same time, it can also collect any external data that may be necessary.
The boss keeps only the parameters that are immutable with respect to all its implemented behaviors, getting
the rest from the secretaries whenever necessary.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 2

In the example presented in section 2, we can model each category of weapon as a boss and Shooter,
Targeter and Reloader as secretaries. Each subsystem of the game gets only the secretary (Shooting,
Targeting and Reloading behaviors) from a given boss (weapons), loosing the coupling between the weapon
and the subsystems.

6. STRUCTURE
The SecreTary pattern has two categories of classes:

—Boss: Entity with multiple behaviors that will be segregated. It holds all code related to the behaviors in its
methods, which do not modify any data kept inside the boss.

—Secretary: Auxiliary that provides access to the methods and stores mutable data related to a behavior. It
delegates all computation to a given boss. It may collect data provided by clients.

These elements and their relations are illustrated by Figure 1 using an UML class diagram. The architecture
presents an abstract class Boss and two concrete implementations Boss1 and Boss2. This hierarchy contains
two behaviors (A and B) whose methods are accessed through SecretaryA and SecretaryB. All requests
received are forwarded by their concrete implementations to the appropriate bosses.

7. DYNAMICS

The dynamics of the Secretary pattern is illustrated by Figure 2. Following the example presented in the last
section, a Client interacts with a Boss through a SecretaryB, which both transmits the requests made by
the Client and stores a set of outer parameters provided by it.

8. IMPLEMENTATION

A class or a set of classes are good candidates for the application of the SecreTary pattern if they have four
major characteristics:

—NMultiple behaviors: The candidate class has a complex interface, whose methods can be logically
grouped in different semi-independent subsets.

—Clustered data: The candidate class has a partition of the methods and of the mutable attributes of the
class such that that each subset of methods use only a subset of the attributes.

—Specialization: The candidate class has particular implementations of its methods, different from other
classes with the same set of behaviors.

—Code reuse: The candidate class has common code among different behaviors.

Given a candidate, the pattern can be implemented as follows: each behavior is represented by a secretary
that keeps one subset of the methods and the corresponding attributes. The methods in a secretary have
the same signature of the original methods of the entity. The original methods, in turn, receive an extra
parameter: a reference to the secretary. The entity class is then called a boss. Methods in the secretaries
are implemented by delegating the reference and other parameters to the boss. Methods in the boss keep
their original implementation but retrieve their data from the secretary.

As all methods in the secretaries have similar implementations and replicate the signature of their
equivalents in the boss, it is possible to use metaprogramming to apply this pattern. In C++, templates can
be used to generate methods in the secretary automatically while In dynamic languages the same result can
be achieved with reflection. The following listings show a Ruby and C++ implementation of the example of
section 2. Listing 1 presents the usage of the boss and secretary classes. Listing 2 and 3 defines the bosses
while Listing 4 display the secretaries. Listing 5 finally presents the classes and macros that implement the
metaprogramming techniques, which could be distributed as libraries to make the use of the pattern easier.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 3

SecretaryA

main : Boss 1
inner_data_A : InnerDataA N
+ methodA(...)
~ getlnnerData() : InnerDataA
SecretaryA(boss : Boss)
Boss
+ makeA(cached : boolean) : SecretaryA
Extends Extends + makeB(param : Param, type : int) : SecretaryB
SecretaryAS SecretaryAC ~ methodA(SecretaryAS, ...)
~ methodA(SecretaryAC, ...)
- cache : Cach —— b
+ methodA(...) cache - bache ~ methodB1(SecretaryB1, ...)
hodA(... ~ methodB1(SecretaryB2, ...)
~ SecretaryAS(boss : Boss) + methodA(...) ~ methodB2(SecretaryB1, ...)
~ SecretaryAC(boss : Boss) ~ methodB2(SecretaryB?2, ...)
~ getCache() : Cache
Extends Extends
SecretaryB
Boss1 Boss2
main : Boss - -
param : Param 4 # instance_parameter1 # instance_parameter4
:) h
#inner_data_B : InnerDataB #instance_parameter2
outer_data_B : List<OuterDataB> # instance_parameter3 ~ methodA(SecretaryAS, ...)
~ methodA(SecretaryAC, ...)
~ methodA(SecretaryAS, ...)
I ﬁg;ﬁogg;z; ~ methodA(SecretaryAC, ...) ~ methodB1(SecretaryB1, ...)
0 ~ methodB1(SecretaryB2, ...)
. ~ methodB1(SecretaryB1, ...) ~ methodB2(SecretaryB1, ...)
e i = meroc1 Socrstanz) | |~ metode2(Seceae2.)
i ~ methodB2(SecretaryBf, ...)
+ getOuterDataB() : List<OuterDataB> ~ methodB2(SecretaryB2, ..)
~ getinnerDataB() : InnerDataB
SecretaryB(boss: Boss, param : Param)
Extends Extends
SecretaryB1 SecretaryB2
+ methodB1(...) + methodB1(...)
+ methodB2(...) + methodB2(...)
~ SecretaryB1(boss: Boss, ~ SecretaryB2(boss : Boss,
param : Param) param : param)

Fig. 1. Class diagram of the Secretary pattern: The Boss abstract class represents an entity with two behaviors: A, implemented by
methodAl and methodA2; and B, implemented by methodB1 and methodB2. These methods can be accessed through two secretaries:
SecretaryA, which has a simple and a cached concrete implementation; and SecretaryB, which has two alternative concrete versions
labeled 1 and 2. The concrete derived classes of Boss keep in their methods the specific code for each concrete secretary, receiving
the corresponding class as first parameter. All inner data necessary for computations can be retrieved through getters. SecretaryB’s
concrete children also have a common expansion of secretaries: they receive and store outer parameters (given by the client) that can
be used by Boss’s children. Regarding the instantiation, Boss provides factory methods to construct new secretary objects by binding
them with their creator object. Methods of behaviors in the Boss hierarchy and getters for the inner data are kept with package access.
Methods of behaviors in the secretaries, factory methods in Boss and accessors to the outer data are made public for clients.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 4

9. CONSEQUENCES

Beyond the forces already discussed, this pattern makes refactoring [Fowler and Beck 1999] easier, as all
code of the behaviors can be potentially reused. As secretaries are very simple, programming languages that
support inlining or method call optimizations can reduce the overhead of calling methods through secretaries
to zero. When adding a method to a behavior, not all clients need to be recompiled: only the ones that use the
corresponding secretary. This pattern can also be used to create secretaries for static methods. Secretaries
can have their requests executed in parallel given that bosses remain immutable. They also provide a good
place to cache the results generated by the bosses (as shown in Figure 1). The use of this pattern generates
a design that follows the Interface Segregation Principle [Martin 2000], making clients do not depend on
methods they do not use.

10. RELATED PATTERNS

This pattern was initially derived from the Bripge pattern [Gamma et al. 1995], which aims to decouple
interfaces from implementations. In terms of applicability, it can be used in some situations that are not
optimally addressed by the CompoNeNT pattern [Nystrom 2014]. Lastly, the Secretary pattern can also be
applied with other design patterns such as Visitor and BuiLber [Gamma et al. 1995]. Examples of this can be
found in the implementations presented in the next section.

11. KNOWN USES

The Secremary pattern was originally developed in the refactoring of ToPS (Toolkit for Probabilistic Models of
Sequences), an object-oriented framework written in C++ which facilitates the integration of probabilistic mod-
els for sequences over an user defined alphabet [Kashiwabara et al. 2013]. The code can be found at: https:
//github.com/topsframework/tops. A simple C++ implementation containing generic entities and using
template metaprogramming can be found at: https://github.com/topsframework/tops-architecture.

REFERENCES

FowLer, M. anp Beck, K. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley. 2, 5

Gamma, E., Hewm, R., Jonnson, R., anp Vussipes, J. 1995. Design patterns: elements of reusable object-oriented software. Vol. 47.
Addison-Wesley Longman Publishing Co., Inc. 5

KasHIwABARA, A. Y., BoNabio, ., ONucHic, V., Amabo, F., Mathias, R., anp Durnam, A. M. 2013. ToPS: A Framework to Manipulate Probabilistic
Models of Sequence Data. PLoS Computational Biology 9, 10, e1003234. 5

MarTin, R. 2000. Design principles and design patterns. Object Mentor. 2, 5

Mevers, S. 2014. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++ 11 and C++ 14 1st Ed. O’'Reilly Media. 11

Nvstrom, R. 2014. Game programming patterns. 2, 5

StrousTRup, B. 2013. The C++ Programming Language, 4th Edition. Addison-Wesley. 11

Received February 2009; revised July 2009; accepted October 2009

SugarLoafPLoP’16, November 16-18, Buenos Aires, Argentina. Copyright 2016 is held by the author(s).

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 5

https://github.com/topsframework/tops
https://github.com/topsframework/tops
https://github.com/topsframework/tops-architecture

Client SecretaryB Boss

makeSecretaryB(param, 2)

: »

1 1 .

, secretary : SecretaryB U
S RASSERe I CC I AEL L SEb e L SEEE SRR SRR .
: methodB1(params...) , ,
: P methodB1 (self, params...) L
' Lad

E P getinnerDataB()

i J_‘ inner_data : InnerDataB

: SRR R EEE L EEEEEEEEEE R
. return return

S EEARRREs S ESSRRTEEE R EEEE
E addOuterData(od1) o : :
, 'l_l .
i addOuterData(od2) L :
1 Vl_l 1
5 addOuterData(odN) L 5
1 Vl_l 1
E methodB2(params...) o : methodB2(self, params...) o :
r Lad Lad

: getinnerDataB()

i J_‘ inner_data : InnerDataB

, SRREEEEEEEEEEEEEEEEEEEEEEERD
: getOuterDataB()

E J_‘ outer_data : List<OuterDataB>

E return return

:< ------------------------------- SERREEEEEEEEEEEEEEEEEEEEEE R

_ _
' '
' '
' '
' '
' '

Fig. 2. Sequence diagram of the Secretary pattern: The Client object requests to the Boss object the access to a SecretaryB
object. It then uses this secretary to call both methodB1 and methodB2. In both cases, the secretary forward the request to the boss,
passing as first parameter a reference to itself. The boss uses this reference to access the inner data stored inside the secretary. In
methodB2, it also uses some outer data provided by the client to the secretary before the call.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 6

render = RenderComponent.new
sound = SoundComponent.new

hg = Hangun.new

render.render_path(
hg.targeter, direction)

hg.shooter(:silver_bullet).shoot(
direction)

reloader = hg.reloader(12)
reloader.reload (4)
sound.reload(reloader)

gd = Grenade.new

render.render_path(
gd.targeter, direction)

gd.shooter (: flash_bang).shoot(
direction)

int main() {

RenderComponent render;
SoundComponent sound;

Handgun mg;
render.render_path(mg. targeter (), direction);

mg.shooter(Projectile::silver)
->shoot(direction);

mg.reloader (12)->reload(4);
sound.reload(mg_reloader);

Grenade gd;
render.render_path(gd. targeter(), direction);

gd.shooter(Projectile::incendiary)
->shoot(direction);

return 0;

Lst. 1. Usage of the boss and secretary classes, in Ruby and C++. This example shows a simple FPS game with two types of
weapons: handguns and grenades. The game has two components, one for rendering and other for sound playing. Weapons are
implemented as bosses with two types of secretaries: shooters, responsible for finding the objects in the world scenario that will be
damaged by the weapon; and targeters, responsible to provide the expected path of the projectiles. Handguns also have reloaders,
whose aim is to store the number of projectiles available in a handgun.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 7

class Handgun < Boss class Handgun : public WeaponBoss<Handgun> {

secretary :shooter, [:shoot] public:
secretary :targeter, [:path, :target] void shoot(Shooter<Handgun>* shooter,
secretary :reloader, [:reload, :full?] Direction d) {
auto trace = rayTrace(d);
def shoot(shooter, direction) for (auto object : World::objects())
trace = raytrace(direction) if (trace.collide(object))
World.objects.each do |obj| object->hit(shooter->projectile());
if trace.colide?(obj) }
obj.hit(shooter.projectile)
end Point target(Targeter<Handgun>* targeter,
end Direction d) {
end return rayTrace(d).lastPoint();
}
def path(targeter, direction)
raytrace(direction).points vector<Point>
end path(Targeter<Handgun>* targeter,
Direction d) {
def target(targeter, direction) return rayTrace(d).points();
raytrace(direction).last_point }
end
unsigned int
def reload(reloader, ammunition) reload(Reloader<Handgun>* reloader,
reloader.ammunition += ammunition unsigned int ammunition) {
if (reloader.ammunition > reloader->ammunition += ammunition;
reloader.capacity) if (reloader->ammunition > reloader->capacity)
reloader.ammunition = reloader->ammunition(reloader->capacity);
reloader.capacity return reloader->ammunition;
end }
reloader.ammunition
end bool isFull(Reloader<Handgun>* reloader) {
return reloader->ammunition
def full?(reloader) == reloader->capacity;
reloader.ammunition == reloader.capacity }
end
private:
def raytrace(direction) RayTracer rayTrace(Direction d) {
computes ray tracing algorithm // computes ray tracing algorithm
end }
end };

Lst. 2. Handgun Boss, in Ruby and C++. This boss implements behaviors defined by three secretaries: Shooter (shoot), Targeter
(calculate path of projectiles and target point) and Reloader (update the number of projectiles and check if the weapon is full). In both
languages, the classes inherit from an auxiliary class. In Ruby this class is generic and works for any type of boss. It provides the
method secretary that allows the creation of a secretary class from a symbol with its name and a list of symbols with the name of
the methods that will be accessed through it. It also creates the factory method to create the secretary through its boss. In C++ the
auxiliary class is a specific implementation that works only for this example. It uses macros to implement factories methods for the three
secretaries.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 8

class Grenade < Boss
secretary :shooter, [:shoot]
secretary :targeter, [:path, :target]

def shoot(shooter, direction)
World.objects.each do |obj|
if explosion_area(parable_trace(
direction).last_point).include?(
obj.position)
obj.hit(shooter.projectile)
end
end
end

def path(targeter, direction)
parable_trace(direction).points
end

def target(targeter, direction)
parable_trace(direction).last_point
end

def parable_trace(direction)
computes the parable trace algorithm
end

def explosion_area(point)
calculates the explosion area
end
end

class Grenade
public:
void shoot(Shooter<Grenade>* shooter,
Direction d) {
for (auto object World::objects())
if (explosionAreaf(
parableTrace(d).lastPoint())
.find(object->position()))
object->hit (shooter->projectile());

public WeaponBoss<Grenade> {

Point target(Targeter<Grenade>* targeter,
Direction d) {
return parableTrace(d).lastPoint();

}

vector<Point> path(Targeter<Grenade>* targeter,
Direction d) {
return parableTrace(d).points();

private:
ParableTracer parableTrace(Direction d) {
// computes parable tracing algorithm

Area explosionArea(Point p) {
// calculates the explosion area
}
};

Lst. 3. Grenade Boss, in Ruby and C++. This boss has a definition similar to Handgun, but it only implements the behaviors provided
by the Shooter and Targeter. It is important to notice that in the C++ implementation Grenade inherits from WeaponBoss, which also
provides a factory method for the Reloader secretary. This is not a problem since the factory methods are templates, which are only
generated by the compiler when they are used. If the Targeter factory method is called and one of the methods of the created objects

is used, the compiler will emit an error.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 9

class Shooter < Secretary
attr_reader :projectile

def initialize(boss, projectile)
@projectile = projectile
super (boss)
end
end

class Reloader < Secretary
attr_accessor :ammunition
attr_reader :capacity

def initialize(boss, capacity)
@capacity = capacity
@ammunition = @
super (boss)
end
end

template<typename Weapon>
class Shooter {

public:

// constructors

DELEGATE (weapon_, shoot)

Weapon* weapon_;
Projectile projectile_;

};

template<typename Weapon>
class Reloader {

public:

// constructors

DELEGATE (weapon_, reload)
DELEGATE (weapon_, isFull)

Weapon® weapon_;
unsigned int capacity_ =
unsigned int ammunition_

1

DEFINE_SECRETARY (Targeter,

0;
= 0;

target, path);

Lst. 4. Secretaries definitions, in Ruby and C++. Simple secretaries can be automatically generated by the metaprogramming
techniques. This is the case of Targeter in both implementations. In order to add data that will be stored in the secretaries, it is
necessary to explicitly define the classes. In Ruby, the auxiliary parent class Secretary provides the methods that delegate the calls
to its child’s boss. In C++, it is not possible to loop through a list of methods. The macro DELEGATE is called once for every delegated

method and hides the detail of its implementation.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 10

class Secretary #define FACTORY(Secretary, Boss, name) \
def initialize(boss) template<typename... Args> \
@boss = boss Secretary<Boss>* name (Args&&... args) { \
end return new Secretary<Boss>(\
static_cast<Boss*>(this), \
def self.action(name) std:: forward<Args>(args)...); \
define_method name do |*args]| }
@boss.send(name, *([self] + args))
end #define DELEGATE (delegate, function) \
end template<typename... Args> \
end decltype(auto) function(Args&&... args) { \
return delegate->function(this, \
class Boss std:: forward<Args>(args)...); \
def self.secretary(secretary, methods) }
define_method secretary do |*args|
klass = nil #define DECLARE_SECRETARY(Secretary) \
begin template<typename Weapon> \
klass = Object.const_get(class Secretary
secretary.to_s.capitalize)
rescue #define DEFINE_SECRETARY(Secretary, ml, m2) \
klass = Class.new(Secretary) template<typename Weapon> \
Object.const_set(class Secretary { \
secretary.to_s.capitalize, public: \
klass) // constructors \
end \
methods.each { |m]| DELEGATE (weapon_, ml) \
klass.action(m) } DELEGATE (weapon_, m2) \
klass.new(*([self] + args)) \
end Weapon* weapon_; \
end } \
end
template<typename Weapon>
class WeaponBoss {
public:
FACTORY (Shooter, Weapon, shooter)
FACTORY(Targeter, Weapon, targeter)
FACTORY (Reloader, Weapon, reloader)
};

Lst. 5. Metaprogramming, in Ruby and C++. The details of the metaprogramming vary a lot accordingly to the programming
language. In Ruby, the static method secretary in Boss creates factory methods for the secretaries registered as symbols in its
subclasses. It also calls the static method action provided by Secretary, which creates in the Secretary’s subclasses the methods
that delegate to their bosses. In C++, the metaprogramming is made by a combination of macros and templates. FACTORY defines the
factory method for a secretary called Secretary (one of the macro arguments) that delegates to Boss (another parameter), naming
the method as name (the last parameter). This method has a variadic template [Stroustrup 2013] which allows it to perfect forward all
its received arguments to the constructor of the boss [Meyers 2014]. DELEGATE uses similar techniques, but creates methods in the
secretaries that are responsible to delegate to their bosses. DECLARE_SECRETARY and DEFINE_SECRETARY declare and define a simple
secretary class with at most two methods. This can be generalized, but it is out of the scope of this work. Finally, WeaponBoss is the
base class of all bosses used in this example, which was explained in Listing 3.

Secretary Pattern: An Alternative for Segregation of Behaviors — Page 11

	Intent
	Motivation
	Problem
	Forces
	Solution
	Structure
	Dynamics
	Implementation
	Consequences
	Related Patterns
	Known uses

