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It has been previously proposed that understanding the mechanisms of contour perception can provide a theory for why some flow-
rendering methods allow for better judgments of advection pathways than others. In the present article, we develop this theor y through a 
numerical model of the primary visual cortex of the brain (Visual Area 1) where contour enhancement is understood to occur according to 
most neurological theories. We apply a two-stage model of contour perception to various visual representations of flow fields evaluated 
using the advection task of Laidlaw et al. [2001]. In the first stage, contour enhancement is modeled based on Li's cortical model [Li 1998]. 
In the second stage, a model of streamline tracing is proposed, designed to support the advection task. We examine the predic tive power of 
the model by comparing its performance to that of human subjects on the advection task with four different visualizations. The results 
show the same overall pattern for humans and the model. In both cases, the best performance was obtained with an aligned streamline-
based method, which tied with a LIC-based method. Using a regular or jittered grid of arrows produced worse results. The model yields 
insights into the relative strengths of different flow visualization methods for the task of visualizing advection pathways. 
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1. INTRODUCTION 

Many techniques for 2D flow visualization have been developed and applied. These include grids of little 
arrows, still the most common for many applications, equally spaced streamlines (Turk and Banks 1996, 
Jobard and Lefer 1997), and line integral convolution (LIC) (Cabral and Leedom 1993). But which is best and 
why? (Laidlaw et al. 2001) showed that the ``which is best'' question can be answered by means of user studies 
in which participants are asked to carry out tasks such as tracing advection pathways or finding critical points 
in the flow field. (Note: An advection pathway is the same as a streamline in a steady flow field.) (Ware 2008) 
proposed that the ``why'' question may be answered through the application of recent theories of the way 
contours in the environment are processed in the visual cortex of the brain. But Ware only provided a 
descriptive sketch with minimal detail and no formal expression. In the present paper, we show, through a 
numerical model of neural processing in the cortex, how the theory predicts which methods will be best for an 
advection path tracing task. 

1.1 The IBQ Approach in Image Quality Estimation 

The IBQ approach combined with psychometric methods has proven suitable, especially for testing the 
performance of imaging devices or their components and then returning this quality information to the 
product development or evaluation stages. When the subjective changes in image quality are multivariate, the 
technical parameters changing in the test image are unknown or difficult to compute. However, the IBQ 
approach can be used to determine the subjectively important quality dimensions with a wide range of natural 
image material related to changes caused by different devices or their components. In order to tune the image-
processing components for optimal performance, it is important to know what the subjectively crucial 
characteristics that change in the perceived image quality are as a function of the tuning parameters, or simply 
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for different components. Table I describes the problems caused by multivariate changes in image quality and 
offers suggestions of how to approach them by using different measurement methods that complement each 
other. The IBQ approach can complement the psychometric approaches and objective measurements by 
defining the subjective meaning of image quality attributes and characteristics; in other words, it reveals how 
important they are for the overall perceived quality. This information can then be used as guidance in tuning, 
and no complex models are needed in order to understand the relation between objective measures and 
subjective quality ratings. 
 

Table 1 Multivariate Changes in Image Quality Attributes, the Relationship of Psychometric and  
Objective Image Quality Estimations and the IBQ Approach 

PROBLEM Estimating the performance when image quality changes are multivariate 

APPROACH Objective measurements Subjective measurements 

IBQ approach Psychometric approach 

GOAL Objective and computational 
measures for describing the 
changes in the images 

Definition of subjectively 
crucial image quality 
characteristics 

The amount of change in either the overall 
quality or a single attribute 

QUESTION What changes physically? What matters for the 
observer? 

How big is the perceived change? 

The IBQ approach can help to determine the subjectively crucial characteristics of an image and therefore to give weights to objective  
and computational measures. 

 
Our basic rational is as follows. Tracing an advection pathway for a particle dropped in a flow field is a 
perceptual task that can be carried out with the aid of a visual representation of the flow. The task requires 
that an individual attempts to trace a continuous contour from some designated starting point in the flow until 
some terminating condition is realized. This terminating condition might be the edge of the flow field or the 
crossing of some designated boundary. If we can produce a neurologically plausible model of contour 
perception then this may be the basis of a rigorous theory of flow visualization efficiency. 
 

Identify.  Characteristics of an object. 

Locate.  Absolute or relative position. 

Distinguish.  Recognize as the same or different. 

Categorize.  Classify according to some property (e.g., color, position, or shape).   

Cluster.  Group same or related objects together. 

Distribution. Describe the overall pattern. 

Rank.  Order objects of like types. 

Compare.  Evaluate different objects with each other. 

Associate.  Join in a relationship. 

Correlate.  A direct connection. 

 

1.2 Conditions 

The reproduction of the gestures was performed in the presence or absence of visual and auditory feedback, 
resulting in four (2 x 2) conditions 
 
(1) Visual and auditory feedback (V + A).  

(2) Visual feedback, no auditory feedback (V). 

(3) Auditory feedback, no visual feedback (A). 

(4) No visual or auditory feedback (None). 

 
The order of the four conditions was randomized across participants. 
 
 when + where  what: State the properties of an object or objects at a certain time, or set of times, and a 

certain place, or set of places. 
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 when + what  where: State the location or set of locations. 
 where + what   when: State the time or set of times. 

 
When conducting a user study, the goal for the study is to measure the suitability of the visualization in some 
sense. What is actually measured is a fundamental question that we believe can be handled by using the 
concepts of effectiveness, efficiency, and satisfaction. These three concepts are derived from the ISO standard 
of usability 9241-11. 

Extent to which a product can be used by specified users to achieve specified goals with 
effectiveness, efficiency, and satisfaction in a specified context of use. 

The mechanisms of contour perception have been studied by psychologists for at least 80 years, starting with 
the Gestalt psychologists. A major breakthrough occurred with the work of Hubel and Wiesel (Hubel and 
Wiesel 1962, Hubel and Wiesel 1968) and from that time, neurological theories of contour perception 
developed. In this article, we show that a model of neural processing in the visual cortex can be used to predict 
which flow representation methods will be better. Our model has two stages. The first is a contour 
enhancement model. Contour enhancement is achieved through lateral connections between nearby local edge 
detectors. This produces a neural map in which continuous contours have an enhanced representation. The 
model or cortical processing we chose to apply is adapted from (Li 1998). The second stage is a contour 
integration model. This represents a higher level cognitive process whereby a pathway is traced. 

THEOREM 1.1. For a video sequence of n frames, an optimal approach based on dynamic programming can 
retrieve all levels of key frames together with their temporal boundaries in O(n4) times. 

We apply the model to a set of 2D flow visualization methods that were previously studied by (Laidlaw et al. 
2001). This allows us to carry out a qualitative comparison between the model and how humans actually 
performed. We evaluated the model against human performance in an experiment in which humans and the 
model performed the same task. 

Our article is organized as follows. First we summarize what is known about the cortical processing of 
contours and introduce Li's (Li 1998) model of the cortex. Next we show how a slightly modified version of Li's 
model differentially enhances various flow rendering methods. Following this, we develop a perceptual model 
of advection tracing and show how it predicts different outcomes for an advection path-tracing task based on 
the prior work of (Laidlaw et al. 2001). Finally we discuss how this work relates to other work that has applied 
perceptual modeling to data visualization and suggest other uses of the general method. 

 

Fig. 1. Neurons are arranged in V1 in a column architecture. Neurons in a particular column respond preferentially to the sam e edge 
orientation. Moving across the cortex (by a minute amount) yields columns responding to edges having different orientations. A 
hypercolumn is a section of cortex that represents a complete set of orientations for a particular location in space.  

2. CORTICAL PROCESSING OF CONTOURS 

Visual information passes along the optic nerve from the retina of the eye where it is relayed, via a set of 
synaptic junctions in the midbrain lateral geniculate nucleus, to the primary visual cortex at the back or the 
brain (Visual Area 1 or V1). It has been known since the Hubel and Wiesel's work in the 60s that the visual 
cortex contains billions of neurons that are sensitive to oriented edges and contours in the light falling on the 
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retina. Such neurons have localized receptive fields each responding to the orientation information contained 
within the light imaged in a small patch of retina. A widely used mathematical model of a V1 neuron's receptive 
field is the Gabor function (Daugman 1985): 

 


      


 
 

 

2 2 2

22( , , , , , , ) cos(2 ).
u v u

Gabor u v e  (1) 

Hubel and Wiesel (Hubel and Wiesel 1962, Hubel and Wiesel 1968) found that neurons responding to similar 
orientations were clustered together in a structure they called a column which extended from the surface of 
the visual cortex to the white matter (see Figure 1). Later, they and other researchers discovered hypercolumn 
structures consisting of thousands of neurons all responding to the same area of visual space and selecting for 
a range of orientations. Overall, V1 contains a topographic map of the visual field having the property that 
every part of the retinal image is processed in parallel for all orientations. These orientation selective neurons 
have provided the basis for all subsequent theories of contour and edge detection. 

There remains the problem of how the output of orientation sensitive neurons, each responding to different 
parts of a visual contour, becomes combined to represent the whole contour. Part of the solution appears to be 
a contour enhancement mechanism. (Field et al. 1993) examined the human's ability to perceive a contour 
composed of discrete oriented elements. They placed a contour composed of separated Gabor patches, among a 
field of randomly orientated Gabor patches. Contours were detected when the patches were smoothly aligned. 
They were not detected when there was misalignment. This work suggests that there is some manner of lateral 
coupling among the visual elements involved in perceiving the Gabor patches in the contour. These researchers 
have suggested that similarly oriented aligned contours mutually excite one another, while they inhibit other 
neurons that are nearby (Figure 2). 

 

Fig. 2. Neurons whose receptive fields are aligned along a continuous contour mutually reinforce each other. They inhibit nearby neurons 
with a similar orientation sensitivity. 

3. LI'S V1 MODEL 

Based on the observed organization of the neurons in the visual cortex by Hubel and Wiesel (Hubel and Wiesel 
1962, Hubel and Wiesel 1968) and the experimental evidence by (Field et al. 1993), Zhaoping Li constructed a 
simplified model of the behavior of V1 neurons and examined the model's ability to integrate contours across 
multiple V1 neurons. The model is introduced briefly here, and described in more detail in (Li 1998). In Li's 
model, the cortex is approximated by a set of hypercolumns arranged in a hexagonal grid. Each hexagonal cell 
has 12 orientation-selective neuron pairs oriented in 15-degree increments. One of the main simplifications 
embodied in Li's model is that it fails to incorporate the way the mammalian visual systems scales with respect 
to the fovea. Real neural architectures have much smaller receptive fields near the fovea at the center of vision 
than at the edges of the visual field. The neurons in each hex cell were grouped into excitatory and inhibitory 
pairs responding to an edge of a particular orientation at that location. Thus there were a total of 24 neurons 
per cell. The firing rates of both the inhibitory and excitatory neurons were modeled with real values. The 
neuron pairs affected neighboring neuron pairs via a transfer function that depended on the alignment of the 
edge selectivity orientations. Neuron pairs that were aligned with one another exhibited an excitatory effect on 
each other, while pairs that were not aligned inhibited each other. Finally, Li's model also contains feedback 
pathways for higher-level visual areas to influence individual neurons. 
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In our implementation, the mapping of the hexagonal grid to the image space was such that the hex centers 
were separated by 10 pixels. For the V1 neuron response, we used the Gabor function (Eq. (1)) with a 
wavelength, , of 21 pixels, a   of 7 pixels, and an aspect ratio, , of 1. 

4. STREAMLINE TRACING ALGORITHM 

(Laidlaw et al. 2001) compared the effectiveness of visualization techniques by presenting test subjects with 
the task of estimating where a particle placed in the center of a flow field would exit a circle. Six different flow-
field visualization methods were assessed by comparing the difference between the actual exit numerically 
calculated and the estimation of the exit by the human subjects. Laidlaw et al.'s experiment was carried out on 
humans but, in our work, we apply this evaluation technique to humans as well as to our model of the human 
visual system and use a streamline tracing algorithm to trace the path of the particle. 

We use the term streamline tracing to describe the higher level process that must exist for people to judge a 
streamline pathway. We call it streamline tracing because the task seems to require the user to make a series of 
judgments, starting at the center, whereby the path of a particle dropped in the center is integrated in a 
stepwise pattern to the edge of the field. Though many algorithms exist in the machine vision literature for 
contour tracing, we found these to be inappropriate for use in this application. Contour tracing algorithms are 
generally designed to trace out the boundary of some shape but a streamline tracing algorithm must also be 
able able to produce a streamline in a field of disconnected contours, such as is the case with the regular 
arrows. The streamline to be traced will often not follow a visible contour but instead be locate between 
contours, and will sometimes pass through areas devoid of visual elements. Thus we developed a specialized 
algorithm that is capable of tracing streamlines that do not necessarily correspond to the boundary of any 
shape but can pass between visual contours. 

Perception is a combination of top-down and bottom-up processes. Bottom-up processes are driven by 
information on the retina and are what is simulated by Li's model (Li 1998). Top-down processes are much 
more varied and are driven in the brain by activation from regions in the frontal and temporal cortex that are 
known to be involved in the control of pattern identification and attention (Lund 2001). All of the flow 
visualizations evaluated by (Laidlaw et al. 2001), except for LIC, contain symbolic information regarding the 
direction of flow along the contour elements (e.g. an arrowhead). In a perpetual/cognitive process this would 
be regarded as a top-down influence. At present our model does not deal with symbolic direction information 
but it does do streamline tracing once set in the right general direction. 

Streamline tracing is a combination of top-down and bottom-up processes. Broadly speaking, top-down 
processes reflect task demands and the bottom-up processes reflect environmental information. In our case, 
the bottom-up information comes from the different types of visualization, while the top-down information is 
an attempt to model the cognitive process of streamline pathway tracing. Contour integration was modeled 
using the following iterative algorithm. 

Algorithm 1. Iterative Algorithm 

current_position   center 
current_direction   up 
current_position  is inside circle 
while current_position is inside circle, do 

neighborhood   all grid hexes within two hexes from current_position 
for each hex in neighborhood, do  

for each neuron in hex do 
convert neuron_orientation to vector 
scale vector by neuron_excitation 
vector_sum   vector_sum + vector 

end  
end 
normalize vector_sum 
current_position   current_position + vector_sum 
current_direction   vector_sum 
return current_position  

end 
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The algorithm maintains a context that contains a current position and direction. Initially, the position is 

the center, and the direction set to upward. This context models the higher-order, top-down influence on the 
algorithm that results from the task requirements (tracing from the center dot) and the directionality which in 
our experiment was set to be always in an upwardly trending direction. 

The algorithm traces the contour by repeatedly estimating the flow direction at the current_position  and 
moving the position a small distance (.5 hex radii) in that direction. The flow direction is calculated from the 
neural responses in the local neighborhood of the current_position. The excitation of each neuron is used to 
generate a vector whose length is proportional to the strength of the response and whose orientation is given 
by the receptive field orientation. Because receptive field orientations are ambiguous as to direction (for any 
vector aligned with the receptive field, its negative is similarly aligned). The algorithm chose the vector most 
closely corresponding to the vector computed on the previous iteration. Vectors are computed for all neurons 
in hypercolumns within a 2-hexes radius of the current position; they are summed and normalized to generate 
the next current_position. 

Some changes were made from the method published by (Pineo and Ware 2008). Previously, the algorithm 
considered only a single hex cell at each iteration of the algorithm. We found that this would occasionally cause 
unrealistically large errors in streamline tracing. For example, on visualizations with arrowheads, the neural 
network might yield a very strong edge orthogonal to the flow field positioned at the back of an arrowhead. If 
the algorithm considered only the edges at this point, it may make a significant error, despite the edges in 
nearby positions indicating the correct direction. We felt that creating an average over neighborhood was the 
more correct approach, and we found closer agreement with human performance with this change. 

4.1 Qualitative Evaluation 

Four different flow visualization methods were used in our evaluation of the theory. These were 
implementations of four of the six used by (Laidlaw et al. 2001). We chose to investigate a regular arrow grid 
because it is still the most commonly used in practice and a jittered arrow grid because of the arguments that 
have been made that this should improve perceptual aliasing problems (Turk and Banks 1996). We added Line 
Integral Convolution (LIC) because of its widespread advocation by the visualization community (Cabral and 
Leedom 1993) and head-to-tail aligned streaklets because of Laidlaw et al.'s finding that is was the best and the 
theoretical arguments in support of this method (Ware 2008). Note that Laidlaw et al. used Turk and Banks 
algorithm to achieve aligned arrows on equally spaced streamlines while we used Jobard and Lefer's (Jobard 
and Lefer 1997) method to achieve the same effect and we used streaklets without an arrowhead (Fowler and 
Ware 1989). 
 

 

Fig. 3. Regular arrows. Jittered arrows. 
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`  

Fig. 4. Closeup of neural response to arrowheads. Closeup of neural response to aligned streaklets.**  

V1 is known to have detectors at different scales. However, to make the problem computationally tractable 
we chose only a single scale for the V1 and designed the data visualizations with elements scaled such that they 
were effectively detected by the gabor filter used by the model. The widths of the arrows and streaklets were 
chosen to be smaller than the central excitatory band of the gabor filter. This allowed the edge to be detected 
even if not precisely centered on the receptive field of the neuron. The spatial frequency of the LIC visualization 
is defined by the texture over which the vector field is convoluted. Our texture was created by generating a 
texture of random white noise of one-third the necessary size and scaling it up via. interpolation. The resulting 
spacial frequency of the LIC visualization was of a scale that was effectively detected by the gabor filters of the 
model. 

4.1.1 Regul ar Arrows (Figure 3). This visualization is produced by placing arrow glyphs at regular 
spacings. The magnitude of the vector field is indicated by the arrow length, and the flow direction by the 
arrow head. The grid underlying the regular arrows is apparent to humans, but the edge weights of the model 
show no obvious signs of being negatively affected. In fact, the regularity ensures that the arrows are well 
spaced, preventing any false edge responses that might be produced by the interference of multiple arrows. We 
can expect that nontangential edge responses will be produced by the arrowheads and these will lead to errors 
in the streamline advection task. 

4.1.1.1. Jittered arrows (Figure 3b). This visualization is similar to the regular arrows, but the arrows are 
moved a small random distance from the regular locations. While composed of the same basic elements as the 
regular grid, we see instances where nearby arrows interfere with each other and produce edge responses 
nontangential to the flow direction. Also, as with gridded arrows, the arrowheads will excite neurons with 
orientation selectivity nontangential to the flow. This can be seen in Figure 4a. In this figure, we can see 
orthogonal neural excitation to each side of the upper arrow, caused by the back edge of the arrowhead (blue 
circles). We can also see excitation caused by the interference of two arrows at the bottom right (green circle). 
These nontangential responses are much stronger than those found in the aligned streaklets visualization 
(Figure 4b) 

5. DISCUSSION 

The overall agreement between the pattern of results for human observers and the V1-based model provides 
strong support of the perceptual theory we outlined in the introduction. The aligned arrows style of 
visualization produced clear chains of mutually reinforcing neurons along the flow path in the representation, 
making the flow pathway easy to trace as predicted by theory. 

The fact that LIC produced results as good as the equally spaced streamlines was something of a surprise, 
and this lends support to its popularity within the visualization community. While it did not produce as much 
neuron excitation as the aligned arrows method, this was offset by the lack of nontangential edge responses 
produced by glyph-based visualizations. However, its good performance was achieved only because our 
evaluation method ignored the directional ambiguity inherent in this method. (Laidlaw et al. 2001) found this 
method to be the worst and there is little doubt that had we allowed flow in any direction, up or down, human 
observers would have found pathways with close to 180 degrees of error half of the time. 

The performance of both the model and the human test subjects is likely to be highly dependent on the 
underlying vector field used. As described in Section 5.1.6, the vector field was generated by interpolating 
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between an 8x8 grid of random, but generally upward pointing vectors. A consequence of this is that when 
adjacent vectors in this grid point somewhat toward each other, the vector field forms an area of convergence. 
This convergence area tends to funnel neighboring streamline paths together, reducing error in streamline 
tracing (Figure 3 is an example of this). Thus, the overall accuracies of both the model and human subjects may 
be higher than might be might be observed using a vector field without such convergence zones. 

We were surprised that the computer algorithm actually did better at the task than human observers. One 
reason for this may have been that humans would have to make saccadic eye movements to trace a path, 
whereas the computer did not. For the patterns we used, it is likely that the observers had to make fixations on 
several successive parts of a path, and errors may have accumulated as they resumed a trace from a previous 
fixation. Nevertheless, we feel that the algorithm could easily be adjusted to make it give results closer to 
human subjects. A more sophisticated approach would be to simulate eye fixations. 

The model we applied is a considerable simplification over what actually occurs. It only uses the simplest 
model of the simplest orientation sensitive neurons, and fails to include cortical magnification, among other 
shortcomings. Real cortical receptive fields are not arranged in a rigid hexagonal grid as they are in Li's model. 
Furthermore, the neurons of V1 respond to many frequencies, however our model only uses one in its present 
form. In addition, besides the so-called simple cells modeled by (Li 1998), other neurons in V1 and V2 called 
complex and hypercomplex cells all have important functions. For example, end-stopped cell respond best to a 
contour that terminates in the receptive field and understanding these may be important in showing how the 
direction of flow along a contour can be unambiguously shown. Moreover, visual information is processed 
through several stages following the primary cortex, including V2, V4 and the IT cortex. Each of these appears 
to abstract more complex, less localized patterns. Researchers are far from having sufficient information to 
model the operations of these stages all of which may have a role in tracing contours. Nevertheless, the results 
are compelling and there are advantages in having a relatively simple model. We have plans to add some of 
these more complex functions in future versions of the model. 

APPENDIX 

With closest point to a given set of lines we intend the point having the minimum Euclidean distance with 
respect to those lines. Typically, this problem is formulated using Plü cker coordinates. Instead, here we 
compute this point by solving the problem in a closed form, since the resulting matrices are not ill-conditioned 
in our case. More precisely, by indicating the set of n lines with 

 


 
1

a rg min ( , ).
n

i
x

i

p d x l  (2) 

where Oi is the origin of the ith line and di is the corresponding direction (normalized), we found the closest 
point by minimizing 

 


 
1

a rg min ( , ).
n

i
x

i

p d x l  (3) 

The distance ( , )id x l  can be written as 

  2( , ) ( )i id x l x O  (4) 

The minimization is obtained by substituting (4) in (3), and imposing the derivative to zero. After some simple 
algebra, we obtain the final formulation: 
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i
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i

p d x l  (5) 
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Online Appendix to: 
Neural Modeling of Flow Rendering Effectiveness 

IF DIFFERENCE AUTHORS INCLUDE HERE, University of New Hampshire 

A. ANALYSIS OF INVALID TRIALS 

A.1. Results 

Invalid trials were previously defined as those trials in which the subject pressed the space bar to end the trial 
without first bringing the virtual finger to a stop. The number of invalid trials for each subject is presented by 
feedback condition in Figure 12. Due to the irregular distribution of the data, no significance test was run. 
However, the figure shows two notable features. First, Subject 6 had more invalid trials than any other subject. 
Second, more invalid trials occurred under the proprioceptive-only (NV + P) feedback condition than any 
other. 

A.2. Discussion 

Although the number of invalid trials is not directly related to task performance, we now consider any trends 
that may be seen in this information. No statistical tests were done with this data, but some inferences can be 
drawn from the invalid trial counts in Figure 12. The only obvious trend is that the NV + P condition appears to 
have the most invalid trials, which is the case for all but two subjects. In the post-experiment survey, one 
subject commented on this trend, saying that with only proprioceptive motion feedback it was hard to tell if the 
finger was moving or not. This might be a result of a larger threshold for absolute motion detection for 
proprioceptive feedback than for visual feedback. This difficulty in stopping the finger did not appear to affect 
the ease of use ratings provided by subjects, as no correlation was observed with invalid trial counts. 

It is interesting to note that the no-feedback condition (NV + NP) had fewer invalid trials than the 
proprioceptive-only condition (NV + P), especially in light of the findings of Ghez et al. [1990] that deafferented 
individuals tend to display endpoint drift in non-sighted targeted reaching movements (equivalent to NV + NP 
condition) while neurologically normal individuals do not (equivalent to NV + P condition). A notable 
difference between our study and the study by Ghez et al. is the availability of kinesthetic feedback from the 
thumb pressing on the force sensor, which indicates the magnitude of the applied force, that is, the movement 
command in our study. Thus, under the no-feedback condition, subjects could use this information to learn to 
apply grasping forces within the dead zone to stop finger movement. When motion feedback is available, 
subjects are likely focusing more on the feedback than on the forces applied, since the feedback allows them to 
achieve better accuracy. Thus, at the end of a trial, subjects are most likely using this feedback as an indicator 
of zero velocity rather than attending to the applied force. When visual feedback is available, it is easy to 
determine whether the finger is moving or not; however, when only proprioceptive feedback is available, the 
finger can be moving slowly without the subject being aware of its motion. This explanation would result in a 
larger number of failed trials for the NV + P condition than for any other, as observed.  
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