

Proceedings of the
Sixth Nordic Conference on
Pattern Languages of
Programs

Edited by: Cecilia Haskins

Viking PLoP 2007, Proceedings of the Sixth Nordic Conference on Pattern Languages of Programs,
Bergen, 29-30th September, 2007

Edited by Cecilia Haskins

Copyright © 2007. All rights reserved. Authors retain copyrights of their respective papers.

PLoP is a registered trademark of Hillside Group. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners.

For more information about VikingPLoP please visit www.vikingplop.org.

http://www.vikingplop.org/�

CONFERENCE PROCEEDINGS OF THE SIXTH NORDIC CONFERENCE ON
PATTERN LANGUAGES OF PROGRAMS VIKINGPLOP

Preamble

Introduction

Shepherding award

VikingPLoP 2007

A Pattern Language for Sustainable Industrial Parks
Cecilia Haskins

Data Compatibility in Dynamic Environments with Extension Points
Birthe Böhm, Norbert Gewald, Gerold Herold, Dieter Wißmann

Refactoring State Machines
Matthias Rieger, Bart Van Rompaey, Serge Demeyer

Patterns in the Story-based Software Development Method
Jan Reher

Design Patterns in the Context of Multi-modal Interaction
Andreas Ratzka

More Patterns for Software Companies
Allan Kelly

Easy GUI maintenance
Met-Mari Nielsen

Content Adaptation for Mobile Web Applications
Bettina Biel, Volker Gruhn

Introduction

Patterns and pattern languages are ways to describe best practices, good designs, and capture
experience in a way that it is possible for others to reuse it. In August 1993, Kent Beck, Grady
Booch, Ward Cunningham, Ralph Johnson, Ken Auer, Hal Hildebrand and Jim Coplien
considered ways to apply Christopher Alexander’s ideas of patterns for urban planning and
building architecture, to object-oriented software. They started to write object-oriented patterns
and discovered an emerging desire to catalog and communicate these themes and idioms. Now,
in 2007, patterns have arguably become part of the standard vocabulary of the software
engineering community, and an essential part of any significant software project.

The first conference on pattern languages of programs, PLoP®, was held in August, 1994, at the
University of Illinois. Since then, an increasing number of pattern conferences, such as
EuroPLoP, ChiliPLoP, KoalaPLoP,MensorePLoP, and SugarloafPLoP, have helped improve
pattern expertise in the growing patterns community around the world.

In May, 2001, Linda Rising had the idea of holding an annual pattern conference in Scandinavia,
to encourage people in Scandinavia, who might not otherwise attend a PLoP® conference, to
learn about patterns.

The first VikingPLoP was held in Højstrupgård, Denmark, in September, 2002. The conference
was primarily structured around writers’ workshops, supplemented by focus groups; one for
upcoming shepherds of patterns.

Since then a VikingPLoP conference has been held in a Scandinavian country with rotating
locations and conference chair duties.

2002: Helsingør, Denmark
2003: Bergen, Norway
2004: Uppsala, Sweden
2005: Helsinki, Finland
2006: Helsingør, Denmark
2007: Bergen, Norway

Conference Chairs

2002: Pavel Hruby and Kristian Elof Sørensen
2003: Cecilia Haskins and Jason Baragry
2004: Rebecca Rikner and Daniel May
2005: Juha Parssinen and Sami Lehtonen
2006: Aino Vonge Corry, Pavel Hruby and Kristian Elof Sørensen
2007: Cecilia Haskins, Lars-Helge Netland and Yngve Espelid

Sponsors

2002: HillsideEurope
Microsoft Business Solutions Aps
PearsonPublishing

2003: HillsideEurope
Norwegian Computer Society
Microsoft Business Solutions Aps

2004: HillsideEurope
2005: HillsideEurope

VTT
2006: HillsideEurope
2007: HillsideEurope

Norwegian Computer Society

The Shepherding Award

Patterns are the essence of the PLoP® conferences. The shepherding process improves the
quality of patterns submissions. Shepherds usually invest a lot of personal time and effort. And,
while it usually is a rewarding process both for shepherd and author, it also has its challenges.
An award was created to thank the many people who serve as shepherds. The award
is called "The Neil Harrison Shepherding Award". Neil Harrison has guided the VikingPLoP
shepherding process, and makes sure that this process succeeds at the PLoP® conferences
around the world.

At VikingPLoP, the program committee members and the authors of accepted papers have the
right to nominate a shepherd. The award recipients are recognized here.

Recipients of The Neil Harrison Shepherding Award at VikingPLoP

2002: Linda Rising

2003: Alan O’Callaghan

2004: Cecilia Haskins

2005: Klaus Marquardt

2006: Andreas Rüping

2007: Allan Kelly

PATTERNS FROM VIKINGPLOP 2007

A Pattern Language for Sustainable Industrial Parks1

Proceedings for the 6th Annual Nordic PloP® Conference, Bergen, Norway, 28-30 September, 2007

Cecilia Haskins, Norwegian University of Science and Technology
cecilia.haskins@iot.ntnu.no

Dear reader,

This pattern language is written as part of the author’s dissertation on applying systems
engineering to the creation and maintenance of sustainable industrial parks. The patterns have
emerged from, and are significantly substantiated by the extensive literature on this subject.
The choice of insights in this pattern language derives from personal observations of Verdal, a
small industrial Norwegian community, and from the many stories that the author has been
told while working with the people there. At this time most of the pattern language exists as
“patlets” that require refinement and maturity. The more mature patterns are submitted for
this workshop.

Formatting conventions used in this work: pattern names that appear in SMALL CAPS belong to
this pattern language; pattern names that appear in Italics are from a referenced source.

The patterns are structured in a framework as illustrated in Figure 1. The framework is
consistent with that used by Daniel May in his Patterns for Building the Sustainable
Organization.2 Alexander recognized that people have a life cycle with eight stages (Life
Cycle, Alexander, et. al., 1977). Stage seven is the Adult. The Adult is identified with a need
for a Work Community with Self-Governing Workshops and Offices, and access to Communal
Eating. The pattern Industrial Ribbon discusses geographic placement of an industrial park.

Sustainable
Industrial Park

Creation

“Just do it”

One person
makes a difference

Jobs enable prosperity

“Made in
YOURTOWN”

Connectors

Honest Dealings

Symbiosis

Ripple Effect

Chain of trust

Close cooperation

Shared
responsibility

Industrial Parks
are systems too

Connections
make sense

Growth Development’ Renewal

Consensus on all levelsCore values persevere

‘the chain gang’

Built to change

Sustainable
Industrial Park

Creation

“Just do it”

One person
makes a difference

Jobs enable prosperity

“Made in
YOURTOWN”

Connectors

Honest Dealings

Symbiosis

Ripple Effect

Chain of trust

Close cooperation

Shared
responsibility

Industrial Parks
are systems too

Connections
make sense

Growth Development’ Renewal

Consensus on all levelsCore values persevere

‘the chain gang’

Built to change

Figure 1 – Framework for Sustainable Industrial Parks Pattern Language

1 © Haskins, 2007 – permission to use with attribution
2 Daniel Chien-Meng May, 2001, Patterns for Building the Sustainable Organization, Australian Conference on
Pattern Languages of Programs, Melbourne, Australia, http://www.thedanielmay.com/publication.php?id=23

© Haskins, 2007 Page 1 of 14

A pattern language for sustainable industrial parks

Sustainable industrial park
Most readers are familiar with the industrial revolution. It is a concept that represents the
social, political and economic changes that emerged as people left their farms and cottage
industry (home crafts) to flock to the (urban) factories. Stories from the earliest days expound
the horrors of child labor and sweat shops, where man was subservient to machine, and the
factories spewed smoke and debris into the air and water that their workers would breath and
drink. Gradually these conditions have improved, but there is still room for improvement in
the way most companies interact with their people and the natural environment. For example,
many nations have recognized the need to encourage the development of low-carbon or no-
carbon technologies needed to wean their economies off fossil fuels. In theory, the wealth and
the jobs created by these ‘green’ technologies should help to offset the costs of reducing
carbon emissions.

To qualify as sustainable, an industrial park must focus individually and as a whole on the
sustainable development triad – equity (in dealing with society), economic prosperity (for the
company and the community), and stewardship for the natural environment (protecting the
legacy of future generations). The principles of sustainability require that attention is paid to
economic, environmental and social issues with equal weight. Many consider the concept of
sustainable development to be an oxymoron – a desirable but unachievable ideal. Principles of
industrial ecology, in which industry mimics nature, are often applied to the discussion of
stewardship. Figure 2 illustrates the progression of change required to move to a complete
industrial ecology.

Figure 2 – Stages of progress toward full industrial ecology (Little, 1994)

Industrial ecology employs the metaphor of natural ecologies to industrial (or human made)
systems. Using this metaphor, the life cycle of an industrial park or other social community3
can be viewed in the same way as the stages of a forest or other natural system. These four
stages can be summarized as Creation, Growth, Development, and Renewal. Patterns for a
sustainable community have been categorized, although many patterns are applicable
throughout the entire life cycle, such as CHAIN OF TRUST.

3 The term community here is used in many layers – from a group of people living in a city, to a region, country
or even planetary scope.

© Haskins, 2007 Page 2 of 14

A pattern language for sustainable industrial parks

During the creation stage, many ideas are generated; there is an abundance of energy, and a
desire to make something happen (JUST DO IT). It is helpful during this phase to create a
shared vision of how the industrial park will look in the future. Trial and error teaches what
works, and this learning is applied during the growth stage. The participants begin to
understand the role they play in the overall context (SHARED RESPONSIBILITY). The
development stage is typified by more maturity, continued growth, and institutionalization of
‘what works’ such that success breeds success (RIPPLE EFFECT).

But success also breeds the conditions that constrain unlimited development. Eventually, the
status quo is threatened by the need for change and renewal begins. In nature, a fire that
destroys a section of the forest but allows dormant seeds to burst out when touched by the sun
would be an example of this destruction and renewal phase.

At the end of a life, every entity experiences a form of creative destruction that eventually
leads to renewal. McDonough4 has coined the phrase ‘Cradle to Cradle’ to express this
concept for product development. Alexander recommends encouraging a birth and death
process for towns in his pattern ‘The distribution of towns’ (Alexander, et. al., 1997). Time
and experience have not yet given the author enough insights into this phase of the
community life cycle, notwithstanding many real world examples. A related organizational
pattern called Transforming Institutions can be found online.5

Patlets for the patterns that have emerged during the research are given in the tables that
follow. The patterns have been allocated to a life cycle stage based on when they are most
used or first needed. Pattern names in bold text are written and submitted to this workshop.

Acknowledgements

Sincere thanks to Linda Rising, whose many insights as shepherd have helped the author to
improve the work; and to my advisor, Professor Annik Magerholm Fet, without whose
encouragement this work might never have been conceived.

References
Christopher Alexander, Sara Ishikawa, Murray Silverstein. A Pattern Language: Towns, Buildings,

Construction. New York: Oxford University Press, 1997.
Arthur D. Little, "Industrial Ecology: An Environmental Agenda for Industry," Industrial Ecology Workshop:

Making Business More Competitive. Toronto: Ministry of Environment and Energy, February 1994.

4 http://www.mcdonough.com/cradle_to_cradle.htm
5 http://diac.cpsr.org/cgi-bin/diac02/pattern.cgi/public?pattern_id=398

© Haskins, 2007 Page 3 of 14

A pattern language for sustainable industrial parks

Table 1 – Creation Patterns
“JUST DO IT” What is the balance between theory and practice?
ONE PERSON MAKES A
DIFFERENCE

Each person makes a contribution, but without a visionary, can
progress be achieved? See also Evangelist from Fearless Change.6

JOBS ENABLE
PROSPERITY

Employment is important to prosperity and well-being; in a non-
agricultural setting, this means people need jobs provided by firms.

“MADE IN
YOURTOWN”

Is there a definition of sustainable industrial park? See also Beautiful
Purpose from Patterns for building a Beautiful Company.7

CHAIN OF TRUST How reliable are the relationships in a business or social network?
Who should be trusted?

CORE VALUES
PERSEVERE

Longevity is desirable – what do firms need to do so they do not
collapse before their time?

BUILT TO CHANGE Survival is tightly linked to adaptation. See also Genius of the AND
from Patterns for Building the Sustainable Organization8

Table 2 – Growth Patterns
CONNECTIONS MAKE
SENSE

Will business or social networks exist under all conditions?

CLOSE
COOPERATION*9

Can members of an industrial park share resources if all actors behave
independently? See It’s a Relationship, not a Sale from Customer
Interaction Patterns.10

SHARED
RESPONSIBILITY*

Can an industrial park achieve sustainability if each actor does not
accept full responsibility for their contribution to the goals? See also
Culture that Grows from Patterns for Building the Sustainable
Organization11

INDUSTRIAL PARKS
ARE SYSTEMS TOO

Can the principles of systems thinking contribute to our understanding
of Industrial Parks? See also de Geus, The Living Company.12

CONSENSUS ON ALL
LEVELS

Can a single industrial park maintain sustainability in isolation
without local, regional and national cooperation? See also Voices of
the Unheard13

CONNECTORS Where do new relationships and partners come from? How are they
identified?

Table 3 – Development Patterns
HONEST
DEALINGS

How much are companies willing to disclose, and to whom?

SYMBIOSIS In natural ecosystems, when two creatures depend on each other for
survival this is called symbiosis.

RIPPLE EFFECT* What positive influence do businesses and citizens have on each other?
THE CHAIN GANG Are firms permanently shackled to prior commitments?

6 http://www.cs.unca.edu/~manns/Summaries.pdf
7 http://www.vikingplop.org/vikingplop2002/VikingPLoP2002_Proceedings.pdf
8 http://www.thedanielmay.com/publication.php?id=23
9 *suggested by Edwards, A. (2005). The Sustainability Revolution. Gabriola Island, Canada: New Society
Publishers
10 http://www.lindarising.org/
11 http://www.thedanielmay.com/publication.php?id=23
12 http://www.sfu.ca/~dmarques/federation/pdf/deGeus-TheLivingCompany.pdf
13 http://trout.cpsr.org/program/sphere/patterns/pattern-form-display.php?pattern_id=76

© Haskins, 2007 Page 4 of 14

A pattern language for sustainable industrial parks

CHAIN OF TRUST

... your firm belongs to many networks – professional, supply chain, community.

How reliable are the relationships in a business network? Who can be trusted?

The interactions of a firm are seldom one person to one person. In supply chains, firm A
contracts with firm B, who in turn contracts with firm C, creating a dependency between
firms A and C, even if they have never had any direct dealings. Business contracts are made
with an implicit understanding that the terms will be satisfied – deliveries will be punctual,
accurate and for the agreed price. Follow-on business depends on reputation and reliability.
Long-term contracts become a liability if any link in a supply chain fails to perform.

Therefore:

Build a chain of trust.

Observe the reliability of your vendors’ vendors, and the integrity of your customers’
customers. In business relationships firm A must not only trust firm B’s ability to meet the
terms of an agreement, but also to enter into equally reliable relationships that will not
jeopardize the commitments made – thereby creating a chain of trust. Rising Customer
Interaction Patterns contain a pattern Build Trust that also addresses ways to build trusted
relationships. She also co-authored Organizational Integrity, a pattern about preserving
integrity in the face of real-world situations.

Professional or community relationships may involve less risk because of the possibility for
direct interpersonal contact in the event of a misunderstanding.

The following are examples of CHAIN OF TRUST.

Wow-Media in Verdal operates as an advertising agency but is actually composed up of six
separate small firms, each with their own specialization. They have joint contracts that
determine the financial arrangements, but day-to-day assignments are handled in a more ad
hoc manner, based on work load and other commitments. These six people work closely

© Haskins, 2007 Page 5 of 14

A pattern language for sustainable industrial parks

together, sharing office space and expenses, as well as revenue, and are beginning to gain a
loyal customer base for the agency.

Williamson describes a form of agreement he calls ‘relational contracting’ in which two firms
place more value in preserving their relationship than in enforcing punitive settlements in the
event something goes wrong. Within such complex and long-term contracts, two or more
partners will forge a chain of trust that supersedes the legal bond.

A recent USA TODAY/CNN/Gallup Poll asked the question, “Who do you trust?” People
who own small businesses came in second with a 75% trust rating. On the other hand, right
near the bottom of the list were chief executive officers of big corporations, with a mere 23%
of respondents trusting them. The poll reflects the almost-daily revelations of corporate
misdeeds, but there's more to it than headlines. Small-business owners better understand the
importance of trust to the survival of their business. All of us who run small companies know
that without trust, we wouldn't be in business long. Our customers don't do business with us
because we have a brand name or even the lowest price; we have to connect with them in a
more personal way. Most of us still do deals based on our word or a handshake; if we had to
put everything in writing, our business would come to a standstill. In my 16 years in business,
I've only had one client not pay their full bill. It comes down to this: If people don't trust you,
you don't have a business.

Sometimes a company needs to work with their competitors. The Dangerous Waterhole
pattern illustrates why competitors might want to cooperate in a process to develop a new
technology or standard. Imagine a watering hole in a jungle. Animals eye the hole from a
distance, but not one goes forward, lest it fall prey to another beast lurking behind the trees.
But once an animal large enough or otherwise immune from sneak attacks descends on the
watering hole, other animals soon follow suit. A similar situation might draw the world's
premier widget manufacturers to the same watering hole. However, they are unlikely to
initiate a common interface standard on their own; after all, why would competitors follow
one company's proposal? Thus, little progress is made, until a neutral third party invites those
companies to work together. A competitor that refuses to join runs the risk of having its own
interests ignored.

 References

Excerpt from Rhonda Abrams, How to build trust, USA Today.
http://www.usatoday.com/money/smallbusiness/columnist/abrams/2002-07-19-trust_x.htm.

Gabriel, R. and Ron Goldman, (1998). The Jini Community Pattern Language, available
online from www.dreamsongs.com/NewFiles/JiniCommunityPL.pdf.

Rising, L., (1998). Customer Interaction Patterns, available online from www.lindarising.org.

Rising, L., et. al, (2002). Organizational Integrity in Beautiful Company Pattern Language,
available online from www.lindarising.org.

Williamson, O. E., (1985). The Economic Institutions of Capitalism. New York: The Free
Press.

© Haskins, 2007 Page 6 of 14

http://www.dreamsongs.com/NewFiles/JiniCommunityPL.pdf

A pattern language for sustainable industrial parks

CONNECTIONS MAKE SENSE

Schematic of industrial symbiosis in Kalundborg, DK

... a firm is building relationships within an industrial business network.

How does a firm decide whether to pursue a relationship?

Building a relationship takes time and energy; time, to evaluate trustworthiness, and energy,
to follow up on negotiations and joint activities. Not every potential relationship will deliver
the same value – not every relationship makes sense.

But relationships are important to the survival of organizations. A business network can help
individual firms share risk, reduce costs, and achieve flexibility by providing access to special
skills or smoothing demand curves. New sales can be realized from a network of extended
contacts.

Therefore:

Focus time and energy on connections that derive value – make sense.
Some relationships are mandated, such as connections with governmental and regulatory
organizations. Others are a matter of choice, such as suppliers, subcontractors and partners.
Good relationships are based on win-win negotiations which display a balance between effort
expended and benefits realized. These benefits can take the form of tangible economic value
to the firm or intangible values such as happy employees or clean air, which share the benefits
with the stakeholders of the firm. Connections may result in long-term contracts or mergers.
See the discussion of Dangerous Waterhole above for a description of situations where
working with the competition is what makes sense.

Additional discussion and examples are provided in the Patterns for Building the Sustainable
Organization – see Constant Exploration and Genius of the AND.

The following are examples of CONNECTIONS MAKE SENSE.

© Haskins, 2007 Page 7 of 14

A pattern language for sustainable industrial parks

Erling Pedersen, CEO of the Industrial Development Council in the Kalundborg region wrote
in 1999, “There was no original joint management … the network did not evolve with any
academic knowledge of scientific environmental network theories, but as good economical
management practices. All projects required investments and resulted in revenues or savings
for the parties involved.” The employees of these firms were looking for innovative ways to
reduce the cost of waste treatment and disposal, to find cheaper input materials and energy,
and to generate income from their own production by-products [Desrochers, 2001].

In 1999, in the face of imminent layoffs that would have devastated the local community, the
management of Aker Verdal initiated a series of fissions that divided the company from a
large entity into many small companies. As a result, there are more external relationships to
manage, but the employees are buffered from fluctuations in the offshore oil industry by
working for smaller firms that provide services to Aker Verdal, as well as other customers.
[Kvarsvik, 2002] However, these actions averted more adverse consequences of an economic
downward spiral.

"Wharton management professor Harbir Singh, who has done extensive research on mergers,
says that the crucial distinguishing factor between success and failure in a merger is a sense of
objectivity on the part of executives -- a "realistic outlook" that needs to be maintained from
the initial transaction through the entire integration process. The danger, it seems, is when
executives "fall in love" with the idea of the acquisition, wanting it to work no matter what
the cost.” [Sikor, 2005] This excerpt from the article offers an insight into the danger of
pursuing a relationship that does not make sense – which happens often enough that in the
USA, “a cottage industry of sorts has emerged to help companies navigate the rough terrain of
integration -- and especially to help them overcome the internal inertia that comes with facing
change.” [ibid]

 References

P. Desrochers, Cities and Industrial Symbiosis: Some Historical Perspectives and Policy
Implications, Journal of Industrial Ecology, Fall 2001, pp. 29-44.

A. Kvarsvik, Omstilling ved Aker Verdal: fra en stor til mange små. Hovedfagsoppgave,
Geografisk Institutt, NTNU, Trondheim, Mai 2002

Daniel Chien-Meng May, 2001, Patterns for Building the Sustainable Organization,
Australian Conference on Pattern Languages of Programs, Melbourne, Australia, available
from http://www.thedanielmay.com/publication.php?id=23

M. Sikora, Why do so many mergers fail? Knowledge@Wharton, March 30, 2005,
http://knowledge.wharton.upenn.edu/article.cfm?articleid=1137

© Haskins, 2007 Page 8 of 14

A pattern language for sustainable industrial parks

CONNECTORS

... a firm or community are ready to grow.

Where do new relationships and partners come from? How are they identified?

There are many criteria for entering a business relationship as indicated by CHAIN OF TRUST
and CONNECTIONS MAKE SENSE. Often the skills that make a good business leader are not the
same as those that make a good marketer, or finder of new opportunities. Firms and industrial
communities need help to find new suitable partners.

Therefore:

Identify a ‘connector’ – a person with a strong personal network and the ability to
persuade. This person will attract potential firms to the industrial park.

This pattern is identified and well defined by Manns and Rising in Fearless Change.
Connectors are people who have relationships that make them effective in reaching out to
other people. This phenomenon is also extensively discussed in Gladwell’s The Tipping
Point. He describes Connectors as, “… people with a special gift for bringing the world
together.” The best way to find a connector is to observe your acquaintances and how many
different communities they move in comfortably. People who gravitate to sales or similar jobs
are often good connectors, or know people who are connectors.

Two other patterns also offer additional insight into CONNECTORS: It’s a Small World, from
the Pattern Language for Building a Beautiful Company, and Gatekeeper from Organizational
Patterns for Agile Software Development.

The following are examples of CONNECTORS.

When it was clear that 400 jobs would be obsolete, the CEO of Aker Kværner Verdal tapped
Pål H. to start up an incubator. He understood that Pål had both the business acumen and the
personality to identify and mentor potential entrepreneurs. Pål has built an organization that
includes other connectors who are equally effective at bringing in new contracts and new
tenants for the Verdal Industrial Park and managing those relationships.

© Haskins, 2007 Page 9 of 14

A pattern language for sustainable industrial parks

Gladwell tells a story about meeting business tycoon Roger Horchow, a Connector. He found
that while his many connections had been helpful in his professional endeavors, collecting
people was not part of a business strategy, it was just who he was. Roger simply likes people
and has “an instinctive and natural gift for making social connections.”

In an article on networking, Keith Ferrazzi discusses the research of Mark Granovetter on
social networks. Granovetter found that professionals rely primarily on their set of personal
contacts to get information about job-change opportunities over using a search firm or reading
the newspaper (or internet in today’s society). Fifty-six (56) percent of those surveyed found
their current job through a personal connection. Only 19 percent used what we consider
traditional job-searching routes, like newspaper job listings and executive recruiters. Roughly
10 percent applied directly to an employer and obtained the job.

As a result of the study, Granovetter immortalized the phrase "the strength of weak ties" by
showing persuasively that when it comes to finding out about new jobs-or, for that matter,
new information or new ideas-"weak ties" are generally more important than those you
consider strong.

According to Ferrazzi, it pays to talk to strangers. “Many of your closest friends and contacts
go to the same parties, generally do the same work, and exist in roughly the same world as
you do. That's why they seldom know information that you don't already know. Your weak
ties, on the other hand, generally occupy a very different world than you do. They're hanging
out with different people, often in different worlds, with access to a whole inventory of
knowledge and information unavailable to you and your close friends.”

 References

Connecting with Connectors by Keith Ferrazzi, downloaded from
http://www.fastcompany.com/resources/networking/ferrazzi/032105.html

Coplien, J. O., and Harrison, N., (2004). Organizational Patterns of Agile Software
Development. Upper Saddle River, NJ: Prentice Hall.

Gladwell, M., (2000). The Tipping Point: how little things can make a big difference. New
York: Little, Brown and Company.

Granovetter, Mark. 1974. Getting a Job: A Study of Contacts and Careers. Chicago:
University of Chicago Press.

Manns, M. L. and L. Rising, (2004). Fearless Change: patterns for introducing new ideas.
Boston: Addison-Wesley.

Rising, L., et. al., (2002). Patterns for Building a Beautiful Company, downloaded from
http://www.lindarising.org/ and http://www.thedanielmay.com/publication.php?id=27

© Haskins, 2007 Page 10 of 14

A pattern language for sustainable industrial parks

JUST DO IT!

... it is time to take action – but what action?

What is the balance between preparation and practice?

Decision-making is an important business activity. Decision-making takes time – time that
could be used doing other work. A common scenario is frequent iterations of data collection,
planning and brain storming, and planning and brain storming, and …… Then after deciding
on a course of action, thinking of all the reasons why something won’t work, and start the
cycle again.

In addition, sometimes it does not make sense to wait to achieve a 100% agreement through
CONSENSUS ON ALL LEVELS. Occasionally the timing of a decision may mean the difference
between success and failure.

Therefore:

Follow the advice of one of the greatest marketing campaigns in corporate history and
“Just do it!”

Time spent agonizing over decisions is time lost. There is a middle ground between reckless
abandon and falling prey to the paralysis of analysis. Theory is important, but it should inform
practice, not replace it.

Fearless Change contains a pattern of the same name with additional discussion; the name of
the pattern has been reused with permission. Daniel May has written Patterns for Building the
Sustainable Organization. The pattern Start from a Grain contains similar advice with
suggestions for start-up activities and additional examples where this pattern has been
applied. A similarly named pattern, Get on with It, describes this situation for software
development projects.

In situations where the information is fuzzy or the issues are not defined well enough to
support a decision, Cockburn recommends, in the pattern Clear the Fog, taking some action
and then learn from the feedback or consequences what the real issues are before taking
action.

The following are examples of JUST DO IT!

© Haskins, 2007 Page 11 of 14

A pattern language for sustainable industrial parks

The best illustration of this pattern is found in the comparison of accomplishments in each of
two Norwegian communities after four of six years of special financial support from the state.
Both communities are in the same region, within 30 km of each other, and faced significant
job-losses at the end of the 1990’s. Community A used the time to develop fancy templates
for applications for funding and documents filled with theoretical advice. After the first four
years, Verdal had seen numerous small business start-ups – both successes and failures – and
every laid-off employee had found a new employer, if they were not actually the boss.

This online advice is offered to small business owners: “All too often when speaking with
business owners who are worried about the success of their business, I find the answer to
their problems is: Just do it! Many entrepreneurs believe they need things to be perfect before
they can implement a marketing campaign. Instead they should test the campaign and perfect
it based on the results of the test. To test, you have to take action and just do it... A survey of
top entrepreneurs asked, ‘What is the biggest regret you have in starting and running your
business?’ The answer 97% of the time had to do with something they didn’t take action on
rather than something they did take action on. This tells us that even if we take action and
make a mistake, it’s better than not doing anything at all.”

Eric Stolterman offers some reflections on life in a small Swedish village. “The information
system that makes this community work is very simple. There is a list of all inhabitants,
divided into working groups. This list is sent out once a year. We get a note in our mailbox
maybe four times a year with announcements of the time and place for activities. These notes
are sent out by the responsible working group. If we measure the success of our community by
what we accomplish I think most people would rate it as an active and successful community.
If the activity was measured by the amount of information flows – the community would
probably be rated as almost non-existing.” This quote illustrates the importance of doing over
talking about doing.

 References

Cockburn, A., (1998). Surviving Object-Oriented Projects: A Manager's Guide. Reading, MA:
Addison-Wesley.

Coplien, J. O., and Harrison, N., (2004). Organizational Patterns of Agile Software
Development. Upper Saddle River, NJ: Prentice Hall.

Manns, M. L. and L. Rising, (2004). Fearless Change: patterns for introducing new ideas.
Boston: Addison-Wesley.

Daniel Chien-Meng May, 2001, Patterns for Building the Sustainable Organization,
Australian Conference on Pattern Languages of Programs, Melbourne, Australia, downloaded
from http://www.thedanielmay.com/publication.php?id=23

Just do it! Advice to the small business community. Downloaded from
http://www.smallbusinessconsulting.com

Stolterman, E. (1999). Activity and Community some Personal reflections , (Accepted for
presentation at the workshop at ECSCW in Copenhagen, September, 1999.), downloaded
from http://www.scn.org/tech/the_network/Proj/ws99/stolterman-pp.html

© Haskins, 2007 Page 12 of 14

A pattern language for sustainable industrial parks

HONEST DEALINGS

... your firm operates in a CHAIN OF TRUST.

How much information sharing is necessary to maintain a business network?

Decision-making is complicated – multiple criteria, multiple stakeholders, uncertain
consequences. The difficulty is further exacerbated when a decision spans a business network,
across multiple organizations / firm boundaries. Imperfect information is always a trade-off
between the time and cost of collecting more data against the urgency of the decision. Often
information sits in many individual heads and is not unknown. The challenge is to bring all
relevant information together when it is needed.

Therefore:

In a business network, no information relevant to meeting commitments should be kept
secret.

Organizational literature is filled with buzzwords such as business intelligence and knowledge
management. Somewhere within these concepts, and enabled by increased interconnectivity
afforded by the information age, a technological solution may be formed. Alternatively, more
human centric approaches such as geographically co-located teams are also feasible.

The issue that is at the heart of this matter is how comfortable is each firm with sharing
information that in the past may have been perceived as proprietary, confidential or
competitive advantage.

The following are examples of the importance of HONEST DEALINGS.

The CEO of Aker Verdal recognized that the business needed to change direction and become
leaner to remain competitive on the international market. To keep the facility open in the

© Haskins, 2007 Page 13 of 14

A pattern language for sustainable industrial parks

long run meant that 400 people needed to leave the company, and many of those who
remained needed retraining. Rather than keep this information to himself, he began preparing
the employees and the local community to deal with this change. As a result of his honest
mode of dealing with the trade unions, and the local government, everyone took an initiative
to contribute to mitigating this necessary layoff. As a result, within two years, all 400
employees had found new employment – some as owners of their own company – and
additional new jobs were created in the process.

BROWNSVILLE, Texas - This border community has long shared knowledge and cultural
ties across the border with its sister city of Matamoros, and vice versa. So it should be no
surprise that negotiations are now taking place on both sides of the border to develop the
relatively new concept of eco-industrial parks. One Mexican company - Quimica Flor -
produces gypsum as a by-product of its industrial production of hyfluoric acid, potentially an
ideal candidate for reuse and recycling in other applications, including road building materials
and plaster. However, before any business arrangements can be made, the composition of the
gypsum as well as the industrial processes needs to be studied in depth. "We are coordinating
our efforts," Lockett said. "We have to. Information that can benefit the border environment
and economy has to be shared bi-nationally."

From the Chinese Guidelines for eco-industry park planning
"An eco industrial park has the following main characteristics: ... (3) Ensuring the steady and
sustainable development of the industrial park through the application of modern
administration, policy and new technology such as sharing information, saving water and
energy, re-circulation and reuse, environment monitoring and sustainable transportation
technique.” Sharing information has been an important focus of the Chinese Circular
Economy initiatives.

 References

Mader, R. (1995). Eco-Industrial Park. Downloaded from
http://www.planeta.com/ecotravel/border/0095industry.html

The guidelines were formulated by China’s State Environmental Protection Administration
for guidance and evaluation of EIP projects. The document is dated 2003-12-31 and is
available at http://www.indigodev.com/sepa_eip

 Photograph

Legends are often untrue, but Abraham Lincoln was honest. During his years as a lawyer,
there were hundreds of documented examples of his honesty and decency. He was known at
times to convince his clients to settle their issue out of court, saving them a lot of money, and
earning himself nothing.

According to one account, an impoverished old widow of a Revolutionary soldier was
charged $200 for getting her $400 pension. Lincoln sued the pension agent and won the case
but he didn't charge her for his services and, in fact, paid her hotel bill and gave her money to
buy a ticket home!

Photo downloaded from: http://www.pbase.com/kjschoen/favorites

© Haskins, 2007 Page 14 of 14

Data Compatibility in Dynamic
Environments with Extension Points

Birthe Böhm, Norbert Gewald

Corporate Technology, Siemens AG
Günther-Scharowsky-Str. 1, 91050 Erlangen, Germany

{birthe.boehm, norbert.gewald}@siemens.com

Gerold Herold
Medical Solutions, Siemens AG

Hartmannstr. 16, 91050 Erlangen, Germany
gerold.herold@siemens.com

Dieter Wißmann

Department of Electrical Engineering and Computer Sciences
University of Applied Sciences Coburg

Friedrich-Streib-Str. 2, 96450 Coburg, Germany
wissmann@fh-coburg.de

Intent
With this pattern it is possible to extend a data model whilst staying compatible with
the original data model and leaving all the related software components intact and in
conformance with previous versions or standards.
That is, it is possible to adapt a data model to future requirements without the need to
adapt the whole system to the changed data model as a consequence.

Example: Consider an automotive company that has a data model for the customi-
zation and production process of a car in which a data type CarFeaturesT is
included. CarFeaturesT describes a customer’s selections when a new car is ordered
and gives information for the production process. This means that data based on this
type is handled by a number of different systems such as the order system used by
salespersons, but also in systems that are optimizing the finishing or giving instruc-
tions to the workers in the factory and so on. All of these systems are developed
based on the current definition of the data type CarFeaturesT. In this example, there
are only two options for the customer and therefore two members in the data type
CarFeaturesT: “color” and “number of doors”. After a while new features, such as
navigation systems, become available for the car. How should CarFeaturesT be
extended to include this new feature? Is it necessary that all participating systems
are adapted to a new version of the CarFeaturesT data type or can the changes be
limited to the systems that need to have this new information? Can both the old and
new features be validated successfully by the new and old systems and therefore
make sure that they got some valid data?

© Siemens AG 2007. All rights reserved. Permission granted to make copies for the purpose of VikingPLoP 2007.

Context
This pattern is useful if a system relies on a data model that needs to be extended, or
may need to be extended in the future, and you want to limit the effort for adapting
the system software in case of such a planned or even unforeseen change. It is
expected that during the design of the data model either the location of these exten-
sions can be anticipated or changes to the data model are expected at standard
locations in general. Persistently stored data that is compliant to the previous version
of the data model or standard data model remains unaffected and can be understood
by the system as well.
The term “data model” is used as a description of data on a meta level in general. For
example, a data model can relate to a relational database model, to an object model
or structs that are used by programming languages such as C.

Problem
If you have a common data model or data standard with multiple software appli-
cations using it, you would like to have this model as stable as possible. Extensions
normally lead to expensive changes of the participating software applications, even
though the application may not be interested in the extended part. Therefore we need
a way of extending the data model or standard without getting incompatible with the
previous version of it.

Forces
To address these issues the following forces must be resolved:

• Requirements to the system and also to the data do change – in general
because of new functionalities or because the system is extended.

• Changing of data models requires much effort, particularly when a data stan-
dard should be defined by different parties but also in systems with many
stakeholders. This effort should be kept as low as possible.

• Depending on the frequency of standardization activities, there can be a sig-
nificant time lapse until a modification of a data model is agreed by all partici-
pants. During this time, the data objects cannot be extended because a modi-
fied data object would not be valid for the data model that is still in use. This
can lead to an innovation barrier. Temporary extensions of a data model can
bridge the gap between subsequent versions of a data model.

• Changes to a data model may be temporary and need not to be incorporated
into a widely used data model.

• In general, future modifications to a data model are not known in advance but
should be possible when needed.

• A data model with insufficient description of its elements and their values
might be misinterpreted. Therefore a data model should capture its elements
as precisely as possible although it might be more difficult to change it after-
wards. A balance between a strict data model that allows no additions in the
data objects but can be validated and a very flexible but highly interpretable
data model has to be found. “Validation” in this context means the possibility to

check the syntax and semantics of data against the data model to which the
data should be conformant.

• Data that was made persistent and that conforms to the data model standard
shall be valid as long as the data model is in use, even if the data model
changes over time.

Solution
During data model design, identify the data types included in a data model that are
likely to be extended in the future. Add empty placeholders, called extension points,
to these data types that are used further on to cover any necessary extensions due
to future requirements. If extensions to these data types are required then use the
defined extension points for this purpose and make sure that all affected system
components are adapted. The other system components can still work with the
previous data model and ignore the extensions. These extensions can be introduced
into a new version of a data model later on and adopted by the whole system if
required.

Consequences
Benefits:

• Extensions to a data model are possible without adapting all system compo-
nents that deal with the data. That means forward compatibility of system
components related to the data is achieved.

• Standard data models can be adapted to actual needs without the necessity to
change the standard. Innovations can be implemented also if the data model
is affected. Later on, the extensions can be incorporated in the next version of
the data model.

• The definition of a standard data model will be easier due to its inherent exten-
sibility.

• All extensions can be understood and validated by the components for which
they are intended, whilst ignored by the rest of the system.

• Extension points can be also pre-structured as it is discussed in the Implemen-
tation and Variants sections. A defined structure of the extensible part of the
object prohibits uncontrolled definitions of extensions.

• Persistently stored data that conforms to the standard data model is still
compliant to an extended data model as long as all system components
regard the extensions as optional. That means that system components
adapted to a newer version of the data model are able to deal with this older
data. That is, backward compatibility related to the data is achieved.

Liabilities:
• Extensions to a data model must be anticipated or standard extensions must

be planned for all relevant data model parts. Only then are extensions possible
later on.

• Validation of the extension data is not possible for components adapted to a
previous version of the data model, unless some specific rules are observed –
see section Variants for details.

• The possibility for dynamic extension of data models might be misused to
avoid new versions of data models. It should only be applied if data is to be
extended and if the extensions are not used by all system components. Exten-
sion points should normally be a temporary solution until the extensions are
integrated into a new version or a standard (e.g. while new components are
tested). A stricter data model means in general better control of the semantics
and syntax of the data and this is exactly what is neglected in case of exten-
sion points. There may be circumstances where it makes sense to use the
extension permanently, for example when a format cannot be changed after its
creation, e.g. the Internet Protocol header definition cannot be changed easily
due to its huge impact.

• The concept requires that all system components that are dealing with the
extended data are able to handle the additional data placed in the extension
point object. Either the extended data has to be ignored but kept by the
system components or it can be interpreted based on the new data model. All
other exchanged data, however, must follow the original data model.

• If extension points are pre-structured generically (see Implementation and
Variants section) then the data types used inside the data extension should be
declared in the data model in order to be able to validate them.

Implementation
The first step for the implementation is to anticipate where the future extensions may
happen in the data model. Pick these data types and add extension points to these
data types.
An extension point is basically an empty container that is added to a data model
during the design of a data model wherever extensions are likely to occur in the
future. These extension points can carry data later on that were not considered at the
design stage. They therefore encapsulate all extensions and make sure that the rest
of the data model can be used as originally intended.
Figure 1 shows the diagram of a typical object type with some specific object content
summarized by a container of type ObjectContentT and an extension point of type
ExtraDataContainerT. The minimum demands on the additional data can be set with
the definition of the type ExtraDataContainerT, as it is explained later on.

Figure 1: Object type with extension point

When the extension of the data model is made at the anticipated location, redefine
the content of the empty extension point, i.e. of container type ExtraDataContainerT
in Figure 1. In the following make sure that all affected system components are
adapted. That is, design a new data model that redefines the content of the required
extension points and adapt the affected system components so that they can access
and work with the data in the extensions. This makes sure that the syntax and
semantics of the extensions are properly defined for all affected system components.
Other system components, which are not interested in the extension, do not have to
be adapted to the new model, but can still work with the previous data model. But
they have to ignore completely and keep all data extensions they are not familiar
with, that is, all extension points in the data objects.

Example: Consider again an automotive company. The following example shows
how a data type CarFeaturesT that gives details of some car features could look like
based on type ObjectT as defined above, see Figure 2.

Figure 2: An example data model

The data type CarFeaturesT contains sub-elements for describing the number of
doors and the color of the car but also an optional container for possible future
extensions: an element of type ExtraDataContainerT. This element is intended for
future use only and is not used in a typical runtime object at first as it is shown in
Figure 3.

CarFeaturesX : CarFeaturesT

Number = 5
Doors : DoorsT

Body = red
Roof = black

Color : ColorT

Figure 3: An example runtime data object

When new features, such as navigation systems, become available they can be
added to the data using the extension point by directly redefining the data type
ExtraDataContainerT. In Figure 4 the new container used for holding the navigation
system data is displayed: NavigationSystemT extends ExtraDataContainerT with an
additional element DisplayType which might e.g. specify whether a color or black-
and-white display is chosen. It is not absolutely necessary that the data modeling
language supports inheritance as Figure 4 might suggest. This feature facilitates the

implementation of this pattern and the validation of the data using extension points
but it can be substituted by other concepts as well.

Figure 4: The new container NavigationSystemT

The resulting data object of CarFeaturesT given in Figure 5 can be processed by
both kinds of systems: The participating systems that need to interpret the data
describing the navigation system have to be adapted to the new data model. All other
systems can just ignore the additional data and rely on the previous data model.

Figure 5: An extended data object

In our example of the automotive company, only the production station where the
navigation system is incorporated into the car is affected by the data model change
while all other production stations can ignore the extension since the additional
information about the navigation system is not relevant to them.

Variants
The first two variants given in this section differ in the level of sub-structuring of the
extension points while the last two variants deal with different approaches for
embedding extension points in data models, see Figure 6. These variants are all
enhancements of the basic pattern.

Figure 6: The variants of the basic pattern

Extension Point Sub-Structuring
Extension points can be pre-structured to enable easy multiple extensions of the data
model and also provide a basic guideline for extensions. As it is shown in Figure 7,
the ExtraDataContainerT type that was introduced in Figure 1 as extension point may
contain an arbitrary number of containers of type ContainerT. These containers can
be built up in a hierarchy to reflect the structure of the data being modeled, again
shown in Figure 7. The container of type ExtraDataContainerT, though, is available
only once.

Figure 7: A sub-structured ExtraDataContainerT type

Basically, the sub-containers of ExtraDataContainerT are used for extensions. That
is, containers that conform to the definition of ContainerT can be added to an
element of type ExtraDataContainerT in this data model. These containers are used
to substitute objects of type ContainerT – they do not need to be real sub-classes in
the sense of object orientation but it is just necessary that they are acknowledged as
compatible replacements. As it is shown in Figure 8, specializations of ContainerT,
e.g. ExtendedContainer1T, are used for adding the additional data.

Figure 8: Specialized containers for extensions

Since there might be several sub-containers added by different system components,
all ContainerT elements must have a name attribute to distinguish them, i.e. the
name must be unique inside the ExtraDataContainerT element. Rules should be
established which define how to generate a name for a container or a parameter
object since it must be possible to identify each object uniquely.

The pre-structuring of the extension point enables a better structuring of data inside
the extension point and also makes it possible that the data model is extended inde-
pendently by different system participants. In addition, system components that are
not affected by the extensions and therefore not adapted can still identify the exten-
sion point containers and ignore only their content. Limited adaptation is also possi-
ble with this variant: A system component can use selected extension point contain-
ers but ignore other containers it has no knowledge about. A drawback of this variant
is, that it is necessary to synchronize the extensions regarding the container names
that are assigned to specific extensions. In addition, the extensions can be validated
only by system components adapted to the extensions.

Generic Extension Point Structuring
The basic pattern and the previous variant require always the redefinition of the
extension point (or a part of the extension point) in a future data model. Instead of
changing the data model it is also possible to employ a generic version of the exten-
sion point in the data model instead: This implies again a more detailed pre-
structuring of the extension point. In Figure 9 we see that a ContainerT element
contains either other ContainerT or ParameterT elements. Such a parameter can be
named and has a value which is the real data to be stored. The parameter names
need to be unique inside the ContainerT element in order to make them distinguish-
able.

Figure 9: Object with an extension point structured as generic container hierarchy

With this concept, it is even possible to add additional data to an ExtraContainerT
object without the need to define new data types at all: It is sufficient to add a
container of the base type ContainerT and fill it with arbitrary parameters and their
values. That is, the element of type ContainerT and its elements of type ParameterT
or ContainerT are used directly without any changes.
For validation purposes it is recommended to define different parameter data types in
advance, i.e. when the initial data model is created. These parameter types should

be sub-types of the generic DataTypeT as used by the type ParameterT and could
be, for example, standard data types like strings or integers. Then, ParameterT
objects can contain a name-string value pair or a name-number value pair. Using this
concept, objects of type ExtraDataContainerT can be validated and understood
completely. Only the interpretation of the name attributes in the ContainerT and
ParameterT objects as well as the content of the Value element itself are not defined.
With the recursive ContainerT concept it is possible to define large tree hierarchies. If
the data model is small, the recursive definition of the ContainerT type can be
removed. This reduction will result in a model which can be understood easier. But
be careful with a large list of parameters. Related parameters should be better
grouped in one container to express this relationship properly and to enhance under-
standing of the model. Therefore the recursive definition of ContainerT is very helpful.
In contrast to the previously described variant, the data model is not changed in case
of extensions but the built-in generic mechanism is used directly for extensions.
Therefore it is always possible to validate the data according to this data model and
even process the extension point data without any knowledge of new data. On the
other hand this is also a drawback since the semantics of the extension point data is
not defined at all and might be misinterpreted easily.

Multiple Extension Points
In the basic pattern and the variants described so far we have used a single exten-
sion point for each object type. Variants are possible, e.g. using multiple extension
points in object types.
Multiple extension points are useful if an object is very large and if extensions are
made only to specific parts. In this case at each of the possible extension locations
an extension point can be set up – so that the extensions can be made at the logi-
cally best positions in the object type. The number of extension points should be
limited, though, otherwise the resulting data model is difficult to comprehend.

Intrinsic Extension Points
The extension point concept can also be integrated in a base data model. All domain
specific objects shall be derived from this base data model and therefore contain the
ability to be extended without changing the data model. Figure 10 shows an object
type ObjectT that could be used as the basis for all object types in a data model and
would be a typical element of such a base data model.

Figure 10: A basic object type ObjectT with an integrated extension point

ObjectT already contains an optional element of type ExtraDataContainerT and
therefore all derived object types would also support such an extension point as a

standard feature. Again, inheritance is no prerequisite but all data types of the data
model can support such an extension point independently.
This variant is useful whenever it is not possible to foresee where extensions will
occur in the future and the effort for changing the data model is very high. Since
these widespread extension points allow uncontrolled extensions, this freedom is
also a drawback of this variant.

See Also
Related patterns are the handle/body patterns as summarized by Coplien (1998),
e.g. the decorator pattern from Gamma, Helm, Johnson and Vlissides (1995). Like
this pattern, the decorator pattern makes it possible to extend an object. But the
decorator pattern does this by wrapping dynamic objects while this pattern identifies
extension points and prepares an extension for data objects.

Known Uses
• XML@PROFIBUS standard for defining engineering data formats: This pattern

is used inside this standard as a basis for all complex data types including the
sub-structuring of the extension point.

• TCP (Transmission Control Protocol) Header: This data structure defines an
element “Options” which can be used for various data to be interchanged
between communication partners. It therefore is a simple implementation of
the extension point concept.

• In Siemens internal data formats for the automation and building technology
sector this concept is also applied. All complex data types offer an extension
point which can be used for future extensions. The data formats cover also the
sub-structuring of the extension points.

Acknowledgment
We would like to thank Michael Kircher for his early and very valuable review of this
pattern and Kristian Elof Sørensen for his great coaching during the shepherding for
the VikingPLoP 2007 conference. Many thanks also for all the valuable contributions
made during the conference.

Literature
B. Böhm, N. Gewald, G. Herold, D. Wißmann: Patterns in Data Modeling and the
Dynamic Extension Pattern as Example, in: Proceedings of the IADIS International
Conference e-society 2006, Dublin, Ireland
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern Oriented
Software Architecture Volume 1: A System of Patterns, Wiley, 1996
J. Coplien: C++ Idioms, in: J. Coldewey, P. Dyson (eds.): Proceedings of the 3rd
European Conference on Pattern Languages of Programming and Computing
(EuroPLoP ’98), Universitätsverlag Konstanz, 1998

E. Gamma, R. Helm, R Johnson and J Vlissides: Design Patterns: Elements of
Reusable Design, Addison-Wesley, 1995
M. Fowler: Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997
M. Fowler et al: Patterns of Enterprise Application Architecture, Addison-Wesley,
2003
M. Kircher, Prashant Jain: Pattern Oriented Software Architecture Volume 3: Patterns
for Resource Management, Wiley, 2004
D. Schmidt, M. Stal, H. Rohnert, F Buschmann: Pattern Oriented Software Archi-
tecture Volume 2: Patterns for Concurrent and Networked Objects, Wiley, 2000

Refactoring State Machines

Matthias Rieger, Bart Van Rompaey, Serge Demeyer
Lab On Re-Engineering

University of Antwerp, Belgium
{matthias.rieger,bart.vanrompaey2,serge.demeyer}@ua.ac.be

Abstract

State machines are a common way of representing a variety of problems
in computer science. For certain implementations of state machines, e.g.
switch–statements, unattended growth can lead to overly complex and un-
maintainable code. This paper presents a small, code–level pattern language
which assists a maintainer in the different tasks of identifying, recovering,
and refactoring of state machine implementations with the goal of applying
some of the well known idioms and patterns that have been developed for
the procedural and the object–oriented paradigm.

1 Introduction
Code that grows over the course of multiple evolutionary steps tends to get

more complex than what can be handled by someone not familiar with the code.
When the increasing cost of adding another feature and the rising risk of introduc-
ing errors are too large to be carried, a dedicated effort to refactor first becomes
necessary.

In such a legacy system one is typically confronted with code fragments that
are too complex to directly integrate some required changes. To reduce the com-
plexity via refactoring, you first have to understand the nature of the code. When
identified as a state machine implementation, i.e. a set of states with transitions
triggered by external input, specific solutions exist to make such fragment main-
tainable again. Martin argues that finite state automata are among the most useful

abstractions in the software arsenal, as they (i) provide a simple way to define the
behavior of a complex system; (ii) provide a powerful implementation strategy;
and (iii) are almost universally applicable [6]. As such, approaching the change
as an extension of a state machine may ease the maintenance process.

Figure 1 contains an overview of a small pattern language for refactoring state
machines that we present in this paper. Having some clues that the given code
fragment encompasses some state machine implementation triggers the entrance
point to the language, helping the maintainer to (i) recognize the state machines;
(ii) extract its essence in terms of states and transitions; and (iii) subsequently
transform them into a modular, well structured implementation under a variety of
implementation choices.

Figure 1: Pattern Language for Refactoring State Machines (SM).

The first two patterns of the pattern language constitute the reverse engineering
part and are described in Section 2.

A state machine is a well known representation of a specific class of prob-
lems. There exist multiple idioms and patterns which describe how to implement
a state machine. Knowing that a given code fragment implements a state ma-
chine therefore gives us a clear goal towards which we can guide our refactoring
effort. Therefore, in the first pattern, named DETECTING AN IMPLICIT STATE

MACHINE, we need to gather evidence that helps to decide whether the given
code fragment implements a state machine. A positive answer gives rise to apply-
ing the follow-up patterns.

The next pattern, RECOVER THE ESSENTIAL STATE MACHINE seeks to guide
the developer in identifying the essential composition of the state machine in terms
of states, transitions and action code. Having recovered this state machine model
out of the source code, two more questions pop up. First, the developer needs to
decide upon a new go/no go decision about an eventual refactoring. Secondly, the
most favorable implementation for the case needs to be chosen.

Once we have extracted the structure of a state machine in terms of states and
transitions, we can go over to the next step of rebuilding it using one of the well
known idioms and patterns for state machine implementations. The intent is in all
cases the same: reimplement an existing state machine so that its states and tran-
sitions become explicit. The prefered implementation technique depends largely
upon the contextual programming paradigm, the desired level of abstractions and
the representation and amount of states. In Section 3 we describe a refactoring
pattern, REFACTOR TO EXPLICIT STATE MACHINE IMPLEMENTATION, to de-
cide upon and refactor towards one of two typical state machine implementa-
tions. The procedural state machine implementation uses a master function that
dispatches control to state-representing functions. The object-oriented approach
describes the refactoring of a deteriorated state machine implementation towards
the object–oriented state pattern by Gamma et al [4].

The pattern language in this paper is written for software developers working on
evolving legacy systems, having to decide between quick hacks and from scratch
implementations when coping with new requirements. The patterns here help to
explore and carry out a path in the middle: refactoring the existing implementa-
tion first, facilitating future additions. In that sense, this work is similar to the
reengineering patterns of [2] and the refactoring guidelines of [5]. Furthermore, a
small appendix contains some basic information about state machine representa-
tions (Appendix A).

2 Reverse Engineering State Machines
Suppose a complex piece of code, containing lots of branches with complex condi-
tions that you are required to understand and which you suspect of implementing a
state machine. In order to perform a successful refactoring towards a clean imple-
mentation, we first need to decide if the code fragment in question really concerns

a state machine. Secondly, we have to reverse engineer the state machine and ex-
tract all states, transitions, and associate the action code within the state machine
correctly with the given states and transitions.

Forces. The following forces play a role in determining the difficulty, required
effort, scope and support required to proceed with reverse engineering the code
fragment:
Reverse Engineering Goal. Will the concerned code be extended with new re-
quirements? Are you tracking a bug, possibly involving test writing? Maybe you
plan a rewrite or port of the code. In all cases you need to understand what the
code is doing, although the level and scope of the desired understanding differs.
Familiarity with the code. Which artifacts are available except for the source
code? The documentation may mention the presence of a state machine or even
presents a (possibly outdated) specification. Are the original developers still around,
or, if not, how experienced are the current maintainers with the code? Moreover,
what is your own knowledge of state machines?
Impact and involvement. What is the role of this code in the system? What is the
current change rate? Checking the involvement of other developers (possibly via
the versioning system) as well as how the system relies on this piece through its
interface gives a feeling about how difficult and important it is to reverse engineer.
Quality of the code. Several lightweight metrics give a first impression of the
code’s quality. The readability can be verified via size metrics and identifier
names. The number of bugs in recent months tell something about the reliabil-
ity. Determine changeability via versioning system queries as well as by asking
the developers (how many of your colleagues avoid this piece of code at all cost?).
The outcome helps to estimate how much effort is required.

Pattern: DETECTING AN IMPLICIT STATE MACHINE

Intent: Determine whether a complex code fragment implements a State Machine
using a code review checklist.

Problem

How can you identify a State Machine implementation in source code?
This problem is difficult because:

• There exist many guidelines and patterns about how to implement a State
Machine [7, p. 202]. Some implementations are strongly localized in a
lengthy construct, others rely more on abstractions and dispatching. Clearly,
each of such implementations bears its own characteristics, adding to an
eventual checklist. Moreover, a State Machine can just as well be imple-
mented in an arbitrary combination of conditions and abstractions.

Yet, solving this problem is feasible because:

• Developers typically use naming conventions to denote State Machine parts
such as states or transitions. As a reviewer, you can make use of such indi-
cators.

• Given system documentation, you may have encountered state diagrams or
requirements that are likely to translate into a State Machine.

In order to perform a successful refactoring to a clean state machine, we first
need to decide if the code fragment in question really implements a state machine.
Secondly, we have to reverse engineer the state machine and extract all states and
transitions, and associate the action code within the state machine correctly with
the given states and transitions.

Solution

Detecting the Structure of a State Machine

A state machine is a closed program section that repeats itself, getting input from
outside, and selecting on possible alternatives among a set, until it has reached an
end-state, upon which the state machine is exited.
The basic structure of a state machine is therefore (in pseudo code):

s t a t e = i n i t i a l S t a t e ;
whi le (more Inpu t () && s t a t e != e n d S t a t e) {

< s e l e c t a c t i o n code based upon s t a t e and i n p u t >
<e x e c u t e a c t i o n code wi th i n p u t >
< t r a n s i t i o n t o new s t a t e >

}

Any code fragment that conforms to this schema can be viewed as a state machine.
The selection of the action code happens via a switch–statement or an else–
if chain. In many case the state is represented by a numerical type. Therefore, a
switch condition is able to dispatch control flow to the appropriate state code.
The following code exhibits a canonical example for such an implementation:

sw i t ch ($ s t a t e) {
case 1 :

$ r e t u r n . = $ u t f 7 [ord ($ c h a r) >> 2] ;
$ r e s i d u e = (ord ($ c h a r) & 0x03) << 4 ;
$ s t a t e = 2 ;
break ;

case 2 :
$ r e t u r n . = $ u t f 7 [$ r e s i d u e | (ord ($ c h a r) >> 4)] ;
$ r e s i d u e = (ord ($ c h a r) & 0x0F) << 2 ;
$ s t a t e = 3 ;
break ;

case 3 :
$ r e t u r n . = $ u t f 7 [$ r e s i d u e | (ord ($ c h a r) >> 6)] ;
$ r e t u r n . = $ u t f 7 [ord ($ c h a r) & 0x3F] ;
$ s t a t e = 1 ;
break ;

}

When the state is encoded in a string, however, an state machine implementation
must use an else–if chain, as can be seen in the following example:

i f (pos == r o o t s t r u c t) {
s t a t u s = ” body ” ;
r o o t s t r u c t n s = msg [” namespace ”] ;

} e l s e i f (name == ”Body”) {
s t a t u s = ” e n v e l o p e ” ;

} e l s e i f (name == ” Header ”) {
s t a t u s = ” e n v e l o p e ” ;

} e l s e i f (name == ” Enve lope ”) {
/ / n o t h i n g t o do

}

It is also possible that states are encoded in the values, or ranges of values, of
multiple variables. The following example shows how three states are defined as
ranges of the variable count:

i f (c o u n t == 0)
. . . / / a c t i o n f o r empty c o l l e c t i o n

e l s e i f (0 < c o u n t && c o u n t < m a x E n t r i e s)
. . . / / a c t i o n f o r normal usage

e l s e i f (m a x E n t r i e s <= c o u n t)
. . . / / a c t i o n f o r e x h a u s t e d c a p a c i t y

Finally, the purpose of the code can be an indication that it is implementing a
state machine. State machines are preferred solutions for a number of common
tasks such as, for example, (stateful) protocols, lexical analyzers, (GUI) event
handlers, etc. Oftentimes programmers note that the present code implements a
state machine in the accompanying comments.

What’s Next?

Applying this pattern has given some evidence whether the complex pieces of
code is a state machine implementation. In case of a positive answer, you can
proceed to the next pattern, RECOVER THE ESSENTIAL STATE MACHINE , to
recognize the state machine components in the code and to reverse engineer the
implementation to a state diagram. If there is not enough evidence, the state ma-
chine path should be left. Other patterns dealing with complexity may apply,
such as EXTRACT METHOD [3], REFACTOR TO UNDERSTAND or TRANSFORM

CONDITIONALS INTO REGISTRATION [2].

Pattern: RECOVER THE ESSENTIAL STATE MACHINE

Intent: Recover the composition of a State Machine from the implementation.

Problem

How can you extract states, transitions and actions from a State Machine imple-
mentation?
This problem is difficult because:

• A State Machine may not have been implemented consistent with a partic-
ular implementation pattern. States or transitions may have been omitted.

Yet, solving this problem is feasible because:

• You can exploit the check list heuristics that made you decide that we are
dealing with a State Machine implemenation.

In order to perform a successful refactoring to a clean state machine, we need
first to decide if the code fragment in question really implements a state machine.
Secondly, we have to reverse engineer the state machine and extract all states,
transitions, and associate the action code within the state machine correctly with
the given states and transitions.

Solution

Once we know that the code fragment in questions implements a state machine,
we can extract its individual constituents, e.g. its states, transitions, and the ac-
tions which are tied to them. With the information about states, transitions and
actions you can draw a representation of the state machine, e.g. a state diagram
(see Appendix A.1). This serves as the basis for refactoring the state machine.
To be able to identify the states and transitions of the state machine better, con-
sider a first round of refactorings1. We have, for example, observed that separate
cases in a complex switch–statement often contain duplicated pieces of code.
Be aware, however, that moving code around before you have identified the states
and transitions may make reverse engineering more difficult if the code contains
statements pertaining to these concepts.

1The Refactor to Understand-Pattern (see http://st-www.cs.uiuc.edu/users/
brant/Refactory/SS99/sld056.htm) gives hints on what to do.

Extracting the State Variables

A state machine has a finite number of states, which are represented by either one,
or a group of variables. The state variable (sv) holds the input values that trigger
the transitions. Three hints can lead you here:

Name: Names ending in status, or state, are good indicators for the sv. Be
aware, however, if the input variable comes from another state machine,
for example from the settings of a radio button GUI element, it might still
be called state. The name status is also often used for the resulting
value of an invocation.

Usage: The sv will be assigned to whenever a state transition occurs. This nor-
mally happens towards the end of a case. The input variable, on the other
hand, will only be read from, since the assignment of new input values will
happen outside of the state machine.

Definition: The state variable must be defined globally, whereas the input vari-
able is a most likely a parameter to the function containing the switch–
statement.

After having identified the state and the input variables, list all potential values
that they can have (find all assignments to sv or, if sv is of an enumeration type,
find its definition). The switch–statement should provide one case for each of
the states and/or each of the input values explicitly named.

Single or multiple state variables: In the simplest and most common case, the
current state is represented by the value of a single variable. But there are cases
where the state is represented by a set of variables.
For example, the state here is defined by a set of flags, each one being true in the
exclusion of the others.
bool inTeX = f a l s e ;
bool inComment = f a l s e ;
bool i n S t r i n g = f a l s e ;
bool i n C l a u s e = f a l s e ;

There might also be flags which encode state in additional to the main state vari-
able, e.g.

bool i s T r a n s i t i o n T o F i r s t A c t i v a t i o n ;
bool i sCrea teAndGo ;

These flags may indicate an additional state that is not represented by a potential
value of sv. If you find secondary state variables consider extending the range
of the primary state variable (adding new primary states) and getting rid of the
secondary ones, thus making the state machine more explicit.

Extracting the Transitions

A state machine, in the course of its execution, transitions between its states. For
each state, determine the transitions that leave it. A transition is characterized by
an assignment to (one of) the state variable(s) sv.
The value of sv at this position indicates the new state of the state machine. If
sv was not assigned to before the transition is concluded, a self-transition has
occurred, leaving the state machine in the same state.
A return from the function containing the switch–statement or else–if
chain may indicate a transition to the end-state of the state machine. If there are
such direct returns from within the state machine, consider creating a separate
’STOP’ case and transition to this state instead of returning directly. At the cost
of an extra iteration through the machine you will have a more explicit model, and
you will be able to more easily handle refactorings like extracting action code into
separate functions. The action code of the ’STOP’ case will also be the right place
for cleanup actions that must be performed when the state machine exits.

Extracting Action and Transition Code

A state machine usually attaches some actions to either the states, the transitions,
or both.
For each state determine precisely which code belongs to it. This code is the
action code and it will also contain the transition code. The following example
presents the difference between state code, which is executed each time the state
is entered, and transition code, which is only executed for a specific transition.

case INIT :
l n p = d o r e a d l i n e (& c u r p r o c) ; / / s t a t e a c t i o n
i f (INSTR (l n p) == p s p r o) {

s t a t e = AFTERPRO ; / / t r a n s i t i o n 1
} e l s e {

s t a t e = NORMAL; / / t r a n s i t i o n 2

h e a d l = l n p ; / / t r a n s i t i o n a l a c t i o n
l p = &lnp−> l n e x t ;

}
break ;

Some switch–statements use the fall-through mechanism, e.g.

sw i t ch (s t a t e) {
case s t a t e A :
case s t a t e B : a c t i o n C o d e 1 () ;

i f (s t a t u s == s t a t e A) { break }
case s t a t e C : a c t i o n C o d e 2 () ; break ;

}

A fall-through, especially a conditional fall-through, is usually harder to under-
stand than if all cases conclude with a break. The solution below is therefore
preferable:

sw i t ch (s t a t e) {
case s t a t e A : a c t i o n C o d e 1 () ; break ;
case s t a t e B : a c t i o n C o d e 1 () ; a c t i o n C o d e 2 () ; break ;
case s t a t e C : a c t i o n C o d e 2 () ; break ;

}

This solution also shows the advantage of encapsulating the action code into a
function: it can be invoked from multiple states.

What’s Next?

At this point, you should end up with a model of the state machine (such as a state
diagram). This model specifies the state machine as it was implemented. Com-
pared against given specifications, it tells you (i) how it compares to the expected
behaviour; and (ii) how it compares to the required extensions.
In case the specification is close enough to the recovered model, or it is obvi-
ous enough how to proceed to closing the gap, you can start to REFACTOR TO

EXPLICIT STATE MACHINE IMPLEMENTATION.

Some reasons why you would not want to continue with this implementation in-
clude:

• Lacking confidence in the model, because you are not convinced that the
obtained model is correct and complete. The implementation may have
been too complex to accurately extract all states, transitions and actions.

• The model may be too far away from the desired implementation; the re-
quired changes may have too much impact on the model.

As such, a reimplementation from scratch may be the preferrable solution. Binder
provides an overview of state machine implementation alternatives [7].

3 Refactor a State Machine
Forces. Multiple design guidelines exist for implementing a state machine. We
identified the following forces to impact the decision for a particular solution:
Future changes. How will the state machine change in the foreseable future? How
will that impact the states, transitions or actions of the state machine. Solutions
differ in the effort that is required to make such changes and extent to which they
scale.
Time of changes. When are changes to be made, and how much time will be
foreseen for the update? If high availability of the system is important, dynami-
cally updating the state machine may be a requirement. A solution where states
and transitions are easy to update and extend at runtime, such as a table-driven
implementation, then becomes more favorable.
Experience. The experience of the developers in either procedural or object–
oriented techniques influences the decision in the sense that a learning curve has to
be taken into account if the developers are not accustomed to the chosen solution.
From the set of solutions, we present two patterns discussing refactoring a state
machine implementation to the common solutions of using the object–oriented
state pattern and a procedural, function-based approach.

Pattern: REFACTOR TO EXPLICIT STATE MACHINE IMPLEMENTATION

Intent: Refactor a complex state machine to a state machine implementation with
explicit representations of state, action and transition.

Problem

Many designs for state machines have been promoted in literature. The object–
oriented state pattern proposes the introduction of a subclass hierarchy represent-
ing the various states. In a procedural design, a set of functions captures the
various states. What target design suits best given an implicit state machine im-
plementation?

Solution

In the procedural implementation of a state machine, states are modeled by
functions instead of classes. For each state we have one function which associates
the actions with the given inputs. We also need an initial dispatch function, which,
based on a variable that holds the current state, dispatches the control flow to the
function that represents this state. The following example shows a procedural
implementation with two states:

void i n i t i a l i z e () {
c u r r e n t S t a t e = i d l e ;

}

void d i s p a t c h (i n t i n p u t E v e n t) {
/ / d i s p a t c h c o n t r o l f l o w t o c u r r e n t s t a t e
sw i t ch (c u r r e n t S t a t e) {

case i d l e : i d l e S t a t e (i n p u t E v e n t) ; break ;
case busy : b u s y S t a t e (i n p u t E v e n t) ; break ;

} ;
}

/ / ha nd l e ‘ i d l e ’ s t a t e
void i d l e S t a t e (i n t i n p u t E v e n t) {

i f (i n p u t E v e n t == START) c u r r e n t S t a t e = busy ;
}

/ / ha nd l e ‘ busy ’ s t a t e
void b u s y S t a t e (i n t i n p u t E v e n t) {

i f (i n p u t E v e n t == STOP) c u r r e n t S t a t e = i d l e ;
}

The object–oriented state pattern is a well known design pattern by Gamma et
al. [4]. The state pattern (see Figure 2) represents a state machine by the so–called
context object which acts as the interface to the clients of the state machine. The
states of the machine are all implemented in separate classes, each one inheriting
from an abstract STATE class. The CONTEXT class holds a pointer to the current
state and delegates handling of the input event to the state. When a transition
occurs, an instance of the new state is created and replaces the old state in the
context class reference.

Context

setState(state : State) : void
handleInput(input : Object) : void

state : State

State

handleInput(input : Object,context : Context) : void

ConcreteStateA

handleInput(input : Object,context : Context) : void

ConcreteStateB

handleInput(input : Object,context : Context) : void

instantiates

instantiates

Figure 2: State Design Pattern.

Trade-offs

The following tradeoffs play a role in preferring a particular alternative solution
(see also the Consequences section of the state pattern in [4]):

• Programming Paradigm. Mechanisms like polymorphism are only avail-
able in an object–oriented language. Even with a suitable programming
language, the successful application of object–oriented design principles
depends on the familiarity of the developers with the paradigm. The proce-
dural solution can be applied in any programming language, i.e. it does not
rely on object–oriented features.

• State machine Isolation. Depending on the size of the state machine, an
implementation using multiple classes can introduce too much boilerplate
code, as the number of states corresponds to an equally large number of
classes to be created. If there is only a small number of input events that are
recognized in a certain state, the overhead of creating a new class for each
state makes this solution inefficient. Additional classes also tend to pollute

the namespace and design diagrams. As such, in the case of a state ma-
chine of limited size, a single switch–statement may be the right level of
abstraction to make the code understandable. The procedural way provides
a more compact solution. We are assuming here that the state machine is
only a small part of the system and don’t want to put too much emphasis
on it, which a design with multiple classes—as required by the state de-
sign pattern—would do. The entire state machine can be implemented in a
single source file which reduces clutter in the source tree. As an example
for the understandability of smaller switch–statements, see the following
code which implements a comment remover for C/C++ programs.

sw i t ch (s t a t e) {
case INCODE :

sw i t ch (c) {
case ’ / ’ : c=peek () ;

i f (c== ’ / ’) { n e x t l i n e () ; }
e l s e i f (c== ’∗ ’) { append (’ ’) ;

advance () ;
s t a t e =INCOMMENT; }

e l s e { copy advance () ; } break ;
case ’ ” ’ : copy advance () ; s t a t e =INSTRING ; break ;
d e f a u l t : copy advance () ;

}
break ;

case INSTRING :

sw i t ch (c) {
case ’ \\ ’ : copy advance () ; copy advance () ; break ;
case ’ ” ’ : copy advance () ; s t a t e =INCODE ; break ;
d e f a u l t : copy advance () ;

}
break ;

case INCOMMENT:

sw i t ch (c) {
case ’∗ ’ : i f (peek ()== ’ / ’) { advance () ;

s t a t e =INCODE ; }
advance () ; break ;

d e f a u l t : advance () ;
}

}

This state machine consists of three states and four transitions. Its imple-
mentation counts about 25 lines of code (disregarding the helper functions).
Since we can keep the entire state machine on as single page, the procedural
implementation is preferable over the OO solution.

• Facilitating Evolution. In the OO solution, a switch–statement growing
with the number of state is not needed since dispatch is done via polymor-
phism. If there are many states, getting rid of an unwieldily switch–
statement improves the understandability. Moreover, polymorphism re-
moves one level of switch–statement, that is needed in the procedural
implementation, makes the code more maintainable in light of potential
changes in the number of states.

The number of states determines the size of one switch–statement of the
procedural solution. Moreover, the procedural implementation requires at
least two switch–statements are needed to dispatch the control flow to the
correct location. We are however free to change the order of the two dis-
patches needed. If there are many more inputs than states we just dispatch
on the input first, and then on the state. This results in more but smaller
methods. Since we must write at least one dispatch based on the value of
the state variable sv, having a large number of states will make procedural
code difficult to understand.

• State Representation. In the OO implementation, states are made explicit
by means of a dedicated class: a CONCRETESTATE class contains only code
pertaining to a single state. This focusses the attention of the person read-
ing the code and makes the code more understandable. The procedural ap-
proach using a dispatch function which does not contain any action code
has the advantage that it is self-documenting in that it gives a good overview
over all the existing states.

• Multi-variable State. If the state must be represented by the values of
multiple variables, the danger of state changes that leave an inconsistent
state arises in the OO approach, as changes need to be made in two different
classes. Encapsulating all state variables in an object hides these variables
to the outside and makes state changes atomic again. Since from the the
viewpoint of the context object, a state transition is only a single assignment,
state transitions are then always atomic.

Refactoring Steps
Once a decision has been made for either the object–oriented or the procedural
implementation, the refactoring steps are similar for both cases.

1. Define a blank canvas for the new implementation. This can be a fresh
function or a new class. The code will be moved gradually from the old
to the new location. At the end, the old location is an empty shell which
delegates to the new place.

2. Encapsulate all action code in separate methods. This makes the state-
handling function more transparent, showing all different inputs that are
handled at a glance. If possible, try to separate the action code from the
transition code which again improves understandability.

3. Use naming conventions for the methods and variables. For example:

• The method which dispatches on the current state has a name such as
dispatch(), since it is the entry point into the state machine.

• In the procedural case, every method representing a state should end
in State.

• The variable storing the state value should end in State or Status
as well.

• The name of the variable containing the input value that determines
the transition to the next state should contain the string command or
action.

Naming conventions let you separate dispatch–methods from methods im-
plementing the actions of the state machine. Separating these entitites lets
the maintainer selectively improve his understanding of what the system
does. Moreover, it will isolate the impact of future changes (e.g. introduc-
tion of additional action code).

4. Test the state machine as before the refactoring. Since the behavior of the
state machine is not changed, all existing tests should work without chang-
ing.

Related Patterns
• Factor Out State [2].

• Embedded State Machine Implementation2.

• Replace State-Altering Conditionals with State [5].

Known Uses
• Bucknall discusses how to refactor a parser to recognize a floating-point

number in a string. Originally implemented as a large switch statement
representing a state machine, he proposes to refactor to an object model,
for ease of implementing (a closer match with the actual state machine),
understanding and maintenance [1].

A State Machines and their Representations
A finite state machine (FSM) or finite automaton is a model of behavior com-
posed of states, transitions and actions. A state stores information about the past,
i.e. it reflects the input changes from the system start to the present moment. A
transition indicates a state change and is described by a condition that needs to be
fulfilled to enable the transition. An action is a description of an activity that is
to be performed at a given moment. A transition is triggered by an input action
or event. A sophisticated state machine may execute an action when a specific
state is entered, and another action when a state is left. A simple state machine
associates an action with each transition between a source and a target state.
To determine which action code to execute next, a state machine works on two
parameters, the current state and the input. The normal view of a state machine as
a certain state acting on the input leads to the idiom of first selecting the state and
then take the input event to decide on the action to be executed.

A.1 State Machine Representations
State machines have two common representations: the state transition table and
the state diagram.

2http://www.embedded.com/2000/0012/0012feat1.htm

State Transition Table

A state transition table is a way to present the transitions of a state machine in a
clearly arranged manner. A commonly used layout shows the states on the vertical
axis, and the input events on the horizontal axis. Each cell contains the state into
which the machine transitions, given the state on the horizontal and the input on
the vertical axis (an empty cell means that a state does not handle a given input).

Events 1 0
States

S1 S1 S2

S2 S2 S1

Table 1: State Transition Table. State S1 transitions to S2 if input 0 is recieved.

A table driven approach of designing a state machine does a good job in giving
an oversight of all possible states, inputs, and transitions. It’s however difficult to
include into the display the actions that have to be taken for each transition.

State Diagram

A graphic way to represent state machines is a diagram made out of bubbles and
arrows. Each circle represents a state, and arrows represent transitions from state
to state. The transitions are annotated with the input by which they are triggered.

Figure 3: State Machine Diagram for the state machine of Table 1. The initial
state is S1 as indicated by the double circle.

State diagrams are a good way to design a state machine, or to reverse engineer a
state machine from the source code, because they can be drawn freely on a piece
of paper. A new transition that is discovered during the reverse engineering phase
can be added more easily to a free–form drawing that to the rigid structure of a
table.

Acknowledgment
This work was executed in the context of the ITEA project if04032 entitled Soft-
ware Evolution, Refactoring, Improvement of Operational&Usable Systems (SE-
RIOUS) and has been sponsored by IWT, Flanders.

References
[1] J. Bucknall. Object-oriented state machines. The Delphi Magazine, (115), March

2005.
[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns.

Morgan Kaufmann, 2002.
[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving

the Design of Existing Code. Addison-Wesley, 1999.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, Reading, Mass., 1995.
[5] J. Kerievsky. Refactoring to Patterns. Addison Wesley, Reading, Mass., 2005.
[6] R. Martin. Agile Software Development, Principles, Patterns, and Practices. Prentice

Hall, October 2002.
[7] R.Binder. Testing Object-Oriented Systems, chapter 7: State Machines. Addison-

Wesley, 2000.

Patterns in the Story-based Software
Development Method

Jan Reher, Systematic Software Engineering A/S∗

December 2007

1 Introduction

The Story-based Software Development Method aims to make the everyday
life of software developers simpler and more structured so that they can
concentrate on the task of delivering useful, working software.

The method’s key characteristic is that implementation of a feature in a
system occurs incrementally in a number of small work packages that share
a common structure. These work packages are called stories. This makes
for a method that is disciplined, manageable, mature, agile, productive, and
programmer-friendly.

Planning the implementation of a feature consists mainly of breaking the
feature into stories according to three strict rules: 1) each story should be of
manageable size, 2) it should implement a valuable contribution towards the
complete feature and 3) it should leave no loose ends. Quality assurance of
code and ancillary work products produced during the execution of a story
happens while the story is being executed.

This paper presents six patterns that will help the team find, shape, organise,
and execute the stories needed for implementing a complete feature. But first
it is necessary to explain the origins and values of the Story-based Method,
and to define a few key concepts.

∗Copyright c© 2008 Jan Reher and Systematic Software Engineering A/S. Contact the
author at electro-magnetic mail address jar@systematic.dk.

1.1 Origins of the Method

The Story-based Software Development Method was invented by the author
at the company where I work as Senior Developer. The company is called
Systematic Software Engineering A/S and has its headquarters in the city of
Århus in Denmark. Systematic is accredited with a level 5 maturity rating
according to the Capability Maturity Model [Chrissis+06], and is currently
working on further improving its ways of working by incorporating agile and
lean practices.

The Story-based Method has been in use at Systematic since September
2005, and is currently being executed in 15 software projects ranging in
size from one-year projects with just three developers to multi-year projects
with 50 developers supported by testers, user interaction designers and other
expert roles.

Story-based Software Development is a lean method because it embodies
and realises the priciples of Lean Software Development [Poppendieck+03].
These include: communication and learning, the elimination of waste, build-
ing quality into the product, deferring commitment, delivering early and fre-
quently, respecting and empowering the development team, and optimising
the whole.

The method is also compliant with the requirements of the Capability
Maturity Model, though using the method is far from enough in itself to
earn an organisation a CMMI certificate.

The method is inspired by the works of several methodologists:

Alistair Cockburn For insisting that methods should be habitable by peo-
ple [Cockburn04]. The Story-based Method was conceived among de-
velopers who refused (and still refuse) to use methods that they feel
are getting in their way. And for explaining why and how to use use
cases for analysing and documenting requirements [Cockburn00]. The
Story-based Method recommends use cases.

Ivar Jacobson, Grady Booch, and James Rumbaugh For the com-
pletexness of their Unified Method framework [Jacobson+99]. The
Story-based Method is by no means a complete method but the Unified
Method framework showed how to define a method with a well-defined
border and how to provide clear connections to other methods and
techniques.

Mary and Tom Poppendieck For stating the Lean principles which is
one possible and meaningful definition of what constitutes a “good”

method [Poppendieck+03]. The Story-based Method is based on the
Lean principles.

Watts Humphrey et al. For the rigour demanded by the Capability Ma-
turity Model [Chrissis+06]. The Story-based Method is CMMI-compli-
ant.

Kent Beck For Extreme Programming [Beck04] which shows that it is ac-
ceptable to state hard rules that may not be broken, provided that you
explain why. Like XP, the Story-based Method is fairly dogmatic at
times. And for [Beck03] which states that before you go about solving
a problem by writing code, you should state the problem as a (fail-
ing) test. The Story-based Method encourages defect containment and
early testing.

The Story-based Method is not a universal method, neither in terms of ap-
plicability nor completeness. It focuses on the core task of transforming a
requested and fairly well-defined feature into complete, tested, and releasable
software. It draws upon the strengths of a number of best practices and
patterns from many disciplines of software engineering without being partic-
ularly dependent on them, notably the use of unit tests for testing [xUnit],
use cases for specifying requirements [Cockburn00], early testing for reduc-
ing risks and increasing efficiency [Poppendieck+03] [Beck03], continuous
integration [Fowler06] for bringing the system’s components together, and
an iterative and incremental approach to project management, for example
Scrum [Schwaber+01].

1.2 The Feature

A key concept of the Story-based Method is the feature. It is defined thus

Feature: A large-granularity lump of coherent functionality. A
feature can be described in detail by a set of requirements, prefer-
ably expressed mainly as use cases (See section 1.4). Whether the
development team needs a detailed description before the imple-
mentation of a feature can begin, or the team can make do with
an overall description, depends on the nature of the project and
the contract, and on the team’s relationship with the customer.

The Story-based Method tells how to define, scope, estimate, design, code,
document, and test a feature. The patterns in this paper focus on planning

and executing the work needed to move the feature from a fairly precise
description to deliverable software.

In the context of this method, implementing a feature means moving it
from concept to reality. Implementation therefore involves both writing code
and producing ancillary work products, and ensuring the quality of them all.

The Story-based Method is primarily a feature-driven approach to soft-
ware developments. It is not, for example, primarily architecture-driven or
primarily test-driven. This means that the question one should always ask
first is “how does what the team is doing right now contribute to the deliv-
ery of the current feature?”, and secondly, “how does the team maintain and
extend the architecture?” and “how does the team test this?”.

1.3 An Example Feature

An example feature will illustrate the patterns presented in this paper. The
feature is not far from an actual feature that was implemented in a real
system using the Story-based Method.

The example concerns a system that stores and manages some sort of
data, and helps users manipulate the data. The data could be stocks, ships
and their cargo, email messages, documents, or something else. The example
feature is a monitoring window that pulls interesting data out of the system
and presents the data to the end user.

This feature presents two main challenges to the development team: First,
the list of potentially relevant data that users will want to see is practically
endless, and it is difficult to prioritise what data presentations to implement
and deliver first. Second, the team cannot be sure how the data should be
presented without trying the window out. Both problems are best solved by
getting some feedback from real use, or at least comprehensive tests. Thus
this feature is fairly easy to describe in overall terms but it should not be
analysed and designed in depth up front.

To get the implementation work started, the team should probably at
first establish a preliminary architecture for the subsystems that will realise
the feature, and make a preliminary design of the user interface.

The preliminary architecture could be fairly simple. Drawing from the
body of useful design patterns, assume that the team decides on a layered ar-
chitecture: At the bottom the team puts a layer acting as an adapter between
the various subsystems that provide data to our monitoring window and the
window itself. On top of the adapter is an internal data representation, and
on top of that is the GUI itself.

The best way to make a preliminary design of the user interface probably
involves some amount of prototyping. Let’s assume that we decide on a
resizable and tabular data presentation. The end-user can use the window
as it is, or he can do his own configuration of it.

This concludes the definition, scoping, and preliminary design of the fea-
ture. The next step is to find and describe the stories that will make up the
implementation work. Each pattern in this paper includes a continuation of
this example.

1.4 Concerning Use Cases

The Story-based Method recommends use cases as defined by Alistair Cock-
burn [Cockburn00] as a technique for finding and documenting requirements,
and for testing and validating the implemented system. Here, I will briefly
outline the technique:

A use case is a piece of structured prose describing an interaction between an
actor—usually a person—that is seeking some goal, and a system—usually
a software system—that is meant to deliver that goal. An actor may follow
different paths while seeking the goal, depending on circumstances. These
paths are called scenarios.

The main success scenario of a use case is the straightforward path
through the use case where both the system and the actor act as appropriate
as imaginable, and nothing goes wrong. It is usually the path that is used
the most and provides the most value. Other scenarios are termed extension
scenarios and constitute other—often more convoluted—paths through the
use case. Some of these reach the goal, while some fail to reach the goal.

Use cases usually have preconditions, things that must be in place before
the use case can commence. Use cases usually provide guarantees in the form
of postconditions that are guaranteed to hold when the use case ends.

The key advantage of specifying requirements as use cases is that is focuses
on delivering value in the form of goals to the end-user. Other advantages
are that the use case form is a robust and inspiring template for analysing
business processes and specifying requirements, and that most stakeholders
in a software project can understand and relate to use cases.

In the following I will assume that features are specified using use cases,
and that you, gentle reader, are familiar with use cases. Please refer to
[Cockburn00] for a full treatment.

1.5 Concerning the Importance of Frequent Closure

A key value of the Story-based Method is to reach frequent closure. I claim
that any software development method should provide this. Frequent closure
must be achieved in several areas:

• Functionality is what provides value to the end-user. Frequent closure
of functionality enables the development team to frequently deliver new
(parts of) features to the customer. This facilitates communication,
feedback, and learning as well as providing value to the customer. In the
Story-based Method the preferred atom of functionality is a complete
use case scenario.

Without frequent closure of functionality, the development team and
the customer are unable to learn from actual usage of the system. They
are therefore forced to work according to a plan and not according to
changing needs and circumstances [Poppendieck+03].

• Quality is what makes functionality useful and valuable. With fre-
quent closure of quality (what [Poppendieck+03] calls a zero-defect
policy) new functionality will be useful, whereas without it, new func-
tionality will merely be interesting.

Without frequent closure of quality, the customer looses confidence in
the project, while the development team pushes an ever growing heap
of problems into the future.

• Architecture is what makes the system internally sound and able
to grow and change. [Bass+03] calls this architectural qualities not
discernible at runtime, which encompass coherence and low coupling,
clarity, etc.

With frequent closure of architecture, the development team retains
control over the growth of the system as more and more features are
implemented, and remain able to add new features.

Without frequent closure of architecture, the architecture degenerates.
New functionality can only be addded through excessive labour, and
quality is likely to suffer.

• Work products means any internal or external artefact that the devel-
opment team must produce [Chrissis+06]. This includes the system’s
software and hardware components as well as ancillary material: user
manuals, test specifications, design documentations, teaching material,
installation and maintenance software etc. With frequent closure of
work products, the overall set of deliverables stays coherent and useful.

Without frequent closure of work products, the system will be harder
to test, install, use and understand.

• Plan means that any work package which the development team is
responsible for should be small and comprehensible, and that at any
given time any person in the development team should be working full-
time on only one work package. So at any given time, the number of
work packages in progress is limited, and their expected completion is
in the near future.

With frequent closure of plan, the project team is able to accurately
state their progress to date and expected future progress. This in turn
makes it possible to re-prioritise future work packages and re-plan re-
maining work.

Without frequent closure of plan, it is difficult to say how much work
has actually been completed, and hence how much remains. This in
turn makes it impossible to re-prioritise and re-plan, and missed mile-
stones are likely.

The pattern descriptions that follow will discuss how each pattern helps
to achieve frequent closure in these araes.

2 Patterns

This section describes the patterns currently identified in the Story-based
Method. The patterns are arranged in a pattern language as shown in the
diagram below.

Story-based Development

sshhhhhhhhhhhhhhhhhhh

�� **TTTTTTTTTTTTTTTTT

Story-completion Checklist

��

Feature Skeleton

��

Vertical Section

Inspection Complete Scenario

2.1 Story-based Development

All implementation work should be done according to the Story-based Method.

. . . the team needs to create or modify a software system to add a feature,
reorganise parts of the system’s architecture, or fix a non-trivial bug.

� � �

How should work be divided into work packages so that each
work package is of manageable size and shape, provides value, and
forms a closure?

Consider each work package that work may be divided into.
The work package should be of manageable size as expressed by the num-

ber of hours a team of developers need to complete it. What this is depends
on the team’s situation and skills. The size limit may be set at 20, 30, or even
50 hours. This limit means that the people responsible for a work package
should be able to complete it within one or two work-weeks. This timeboxing
ensures that delays are spotted easily and early so that corrective actions can
be taken.

But simply time-boxing the work is not enough. A work package should
also provide value to a stakeholder, e.g. the customer, the end-user, or fellow
team members, by implementing a part of the feature being worked on. If
the team can achieve this, then the completion of each work package will be
an opportunity for presenting completed work to stakeholders and getting
feedback on it. This is necessary for steering towards providing the most
value to the customer and end-users.

Furthermore, the work package should be a closure that leaves no loose
ends dangling, e.g. tests that do not pass or design documentation that does
not correspond to the code. Just writing the code is not enough. Reaching
closure is very satisfying in itself, and presents an opportunity for pausing
and reconsidering options. Section 1.5 has more to say on the importance of
reaching frequent closure.

Work packages should also be ordered so that those that carry a high risk
can be treated with special care, using special tools and resources, and can
be executed early.

One possible way of decomposing the work is to use a phase-based ap-
proach. The phases are traditionally something like:

1. Analyse the requirements, document them, and do quality assurance
of the requirements specification.

2. Design a solution for the requirements, document the design, and do
quality assurance of the design description.

3. Write the code according to the design, document the code, and do
quality assurance of the code.

4. Test that the code fulfills the requirements.

5. Write the users’ manual.

6. Release the system.

The merits and drawbacks of a phase-based approach have been discussed by
numerous authors [Jacobson+99] [Poppendieck+03] and will not be repeated
here. Suffice it to say that this approach is inadequate. Specificallly, it does
not balance the forces described above.

Therefore:
Use stories as the unit of work.
The word story is hopelessly overloaded and ambiguous, and present dif-

ferent connotations to different people, but my colleagues and I have been
unable to invent a better name. It has a precise definition within the scope
of the Story-based Method, and I will go to some lenghts to explain it.

The term “story” is taken from XP’s analogous “user story” concept. XP
in turn borrowed the term from Alistair Cockburn [Cockburn00], and twisted
its meaning quite a bit.

A story is defined thus:

Story: A tiny software development project executed by one or a
few developers with the goal of implementing a tiny, incremental
bit of the complete desired feature. The story includes all the
activities usually done in software projects, but is limited to an
effort of about 40 hours.

An important point is that a story is a unit of work, not a unit of function-
ality. This distinguises the Story-based Method from for example Extreme
Programming where a “user story” means both a small unit of functionality
requested by the customer, and the work required to implement that func-
tionality. In the scope of the Story-based Method, a story is just the unit of
work. A story may implement coherent functionality in the form of scenar-
ios in a use case; indeed, the pattern Complete Scenario encourages the
team to execute stories that do precisely that.

So not only must the team write the code necessary to implement the story’s
contribution to the feature, the team must evolve and document the de-
sign behind the code, it must design and implement necessary manual and

automated tests, it must write the required user’s documentation, it must
integrate code, and it must perform quality assurance of all the work prod-
ucts touched. This will ensure that the system stays stable and coherent,
and retains its required qualities as the team works on it.

This hasty enumeration of activities is not enough. Some structure is
needed. Please see the pattern Story Completion Checklist.

Stories can be ordered according to value, dependencies, and risks. In the
terms of [Schwaber+01], stories are items on the sprint backlog. More gen-
erally, the pile of stories form a Work Queue [Coplien+05].

One or a few developers are responsible for each story. Assigning two develop-
ers to a story yields the advantages of Developing in Pairs [Coplien+05].
More people working on a story are likely to get in each other’s way. Stories
are sometimes linearly dependent on each other so developers should work
on a single story at a time. Sometimes a batch of stories can be executed
in parallel and this should be exploited where appropriate. The stories that
implement a given feature should be handled by a dedicated group of devel-
opers. This gives the advantages of Feature Assignment [Coplien+05].

Depending on the team’s needs and level of rigour, it will be able to
confidently release the system and its supporting work products at the com-
pletion of every single story. At the very least, a completed story presents
an opportunity to Engage Customers [Coplien+05].

Experience indicates that the total effort needed to execute the activities
in the story should not exceed 40 hours.

� � �

This pattern is the starting pattern of this paper, indeed of the Story-based
Method, in the sense that all other patterns in the paper build on the con-
text established by Story-based Development. Thus, he pattern Story
Completion Checklist explains how each story should be structured,
while the pattern Inspection explain to to do quality assurance on the ac-
tivities performed in a story. The patterns Feature Skeleton and Com-
plete Scenario provide advice as to the goal of each story.

Stories provide a common template for work packages. The template is
useful when designing, estimating, planning, and executing implementation
work. Estimating work by decomposing it into stories is no more difficult per
se than with any other work breakdown structure, but it takes a particular
mindset and it takes practice.

Story-based Development results in closure of work products, qual-
ity, and plan (section 1.5) at the end of the execution of each story, which
happens several times a week in most project teams:

• Work products: A story is complete only when all relevant work prod-
ucts are completed.

• Quality: A story is complete only when the inspector is satisfied with
the quality of the work done. See Inspection.

• Plan: A story is of limited scope and duration, so scope or effort esti-
mate overruns are detected early.

Not all the work that is necessary to implement a feature should or must
be done as stories. Notable exceptions include:

• Analysing users’ needs and requirements: This activity produces no
executable code.

• Building simple proof-of-concept prototypes for studying or validating
candidate technologies, techniques, or designs: Prototyping work often
focus on key aspects of a complete solution and does not need the full
quality assurance of the Story-based Method.

• Finalising documentation.

• Fixing trivial bugs.

• Refactoring code.

How to perform such work is outside the scope of this pattern, and of this
paper.

As a rule of thumb, any work that substantially affects the production
code of the system should be performed as stories. Other work should prob-
ably not be performed as stories. Beware of overusing this pattern by shoe-
horning all work packages into the story template.

Example:
The work of implementing the Monitoring Window described above will be
organised as a number of stories. As stated, it is difficult to determine the
exact requirements for the Monitoring Window except through daily use.
The team will therefore plan and execute a limited number of stories to
implement a simple first version of the window, and release it to the users
as frequently as possible to get feedback from them. The team is able to do
this because each story is a closure of quality, work products, and plan.

2.2 Story Completion Checklist

A checklist provides structure to the activities necessary to execute a story.

. . . the team is doing Story-Based Development.

� � �

How should the activities that must be performed in a story be
structured?

Software development involves many activities, e.g. analysing user needs,
designing and executing tests, inventing a design, writing code, and writing
design documentation. These activities need to be structured to some degree.
This is true for the development project as a whole, and true for the individual
story, which can be regarded as a miniature software development project.

The team wants to impose enough structure on this work to help the de-
velopers responsible for the story remember what they need to do, in which
order, and to what extent. But the structure must not be too rigid. Good
developers are intelligent people, and they will most likely rebel against en-
forced and unwarranted structuring.

The structure should express best practices for software development.
Currently at my company, these include techniques like refactoring, develop-
ing the design while you write the code to increase feedback and learning,
and early testing by specifying and running automated unit tests while you
write the code. However, individual teams should be free to explore new
ways of working and not be tied to any specific technique or practice.

The structure must also only impose a light ceremonial overhead on real
work.

Finally, the structure must support frequent closure as discussed in sec-
tion 1.5 and defect containment by insisting that a work package is really
complete before progressing to the next one (“done-done” in the sense of
[Poppendieck+03]).

Therefore:
Use a checklist to drive the execution of a story.
The checklist should be brief enough to print on a single sheet of paper.

The checklist’s items should state what activities must be performed. De-
tailed but generic descriptions of the activities can and should be written
elsewhere. These descriptions form the project’s or the organisation’s body
of knowledge about software development and should be consulted and up-
dated by developers when appropriate. But the story completion checklist

expresses the essence of that knowledge, and is used for driving day-to-day
work in stories.

In my experience a development team on a given project needs to execute
more or less the same activities for each story they work on. Thus, all stories
on the project can be driven by the same checklist. The checklist can and
should be tailored to the project’s particulars.

Below I present a fairly generic story completion checklist that is based
on my organisation’s best practices as discussed above. It should provide
a good starting point for most projects. The list is linearly laid out, but
though progressing from top to bottom is indeed the preferred route through
the checklist, developers are supposed to interleave and iterate the activities
as appropriate:

Feature:
Story:
Developers:
Inspector:

Activity Done Inspected
Reconsider the scope and estimate of the story
Analyse needs and requirements
Draft the user interface
Draft the user documentation
Identify existing manual tests that must be run
Draft new tests (manual and automated)
Draft the design
Draft the code
Write new manual tests
Write new automated tests
Perform refactorings
Complete the code
Execute existing and new manual tests
Complete the design documentation
Complete the user documentation
Integrate the story

Story complete:
Date Developers Inspector

When beginning a story, the developers fill in the fields at top. Each story
should have a name that states its goal in brief. The developers then cross out
activites that do not apply to this particular story, and add extra necessary
ones. As the developers complete activities, they mark this on the check-
list, and request an inspection of their work (See the pattern Inspection).
When the inspector approves an activity on the checklist, the developers may
proceed. Thus the checklist connects implementation to inspection, and the
developers to their inspector.

The story is done when all activities are done, and the inspector has
inspected and approved all activities.

At the end of the story, the developers and the inspector sign the check-
list. By putting their signature on the story completion checklist, the people
involved signify their responsibility for the scope and quality of the work
performed.

� � �

No two stories performed according to the checklist will be the same, yet they
will share a common structure. That is, they will express the same pattern.

The checklist helps developers reach closure in these areas:

• Quality: The checklist encourages developers to consider design, cod-
ing, and test as interrelated aspects of the implementation work. This
helps ensure that new functionality implemented in the story is of a
sufficient quality. Other developers can help with quality assurance by
doing Inspection on the story.

• Work Products: The checklist ensures that the story is not done
when the code is complete, but only when all ancillary work products
are done too.

• Plan: Each item on the checklist marked “Done” signifies measurable
progress. This includes integrating the code and other work products
produced in the story with the team’s collected work products. Thus
the checklist fosters Incremental Integration [Coplien+05].

Example:
Implementation of the Monitoring Window feature should start with a Fea-
ture Skeleton (section 2.4). This story should be executed according to
the story completion checklist, with the following modifications:

• The user interface is not terribly important for this story. Also, there
are probably no existing manual tests for the Monitoring Window.
Therefore activities that concern these aspects of implementation should
be omitted, i.e. crossed out on the printed checklist.

• This story is primarily concerned with demonstrating the validity (or
invalidity!) of the proposed architecture for the Monitoring Window.
Therefore the team should add an activity near the end of the check-
list that evaluates the produced design and code against the proposed
architecture. Simply add this activity in handwriting on the printed
checklist.

2.3 Inspection

Quality assurance of work done in stories is performed on the spot by an
inspector role.

. . . the team is doing Story-Based Development. Work in stories is
structured according to a Story Completion Checklist.

� � �

How should the quality of work performed in stories be assured?
Quality assurance of developers’ work is important. One of the most

effective ways to do this is to write automated tests [xUnit] and the Story
Completion Checklist lists several activities concerned with automated
tests. Another very effective technique is to have someone else review your
work and comment on it. The traditional way to do this is to hold review
meetings where e.g. the design, code, or user interfaces of the system are
scrutinized by experts with the purpose of finding defects and improvement
opportunities.

Reviews also present an opportunity for knowledge sharing, and for men-
toring of less-experiences developers.

However, quality assurance through review meetings is too heavy and
cumbersome to work in the context of the Story-based Method: Because the
amount of work done in a story is quite small, the team cannot afford the ad-
ministrative overhead imposed by conducting a review meeting with several
people involved after each completed activity in the Story Completion
Checklist, or even after each story. An alternative is to postpone reviews
until the team has collected a sufficiently large pile of completed stories, and
then review them all together. But this means putting work on the shelf,
which according to [Poppendieck+03] is waste, and it means that errors or
improvement opportunities are discovered late.

These ill effects are worsened if the team also wants the reviews to provide
knowledge sharing, and mentoring, both of which must be timely to provide
the most benefit.

Therefore:
For each story, assign the role of inspector to an experienced

developer, and have the inspector assure the quality of developers’
work as the story progresses.

The inspector should be well acquainted with the feature being imple-
mented, preferably by being the one responsible for the realisation of the
complete feature. The inspector must be on call for immediate inspection.

When the developers think they have finished an activity, they call for the
inspector. He then reviews the work products produced by the developers,
interviews them about their work, and provides mentoring and advice. The
inspector should adopt the role of Wise Fool [Coplien+05], and should
make a habit of asking stupid and lateral questions.

Any defects found (and the inspector has the final say as to what consti-
tutes a defect) must be corrected immediately. When he is satisfied with the
quality of the work, the developers may proceed with the story.

The inspector should adjust his level of interference to the maturity of the
developers responsible for the story. Inexperienced developers may benefit
from frequent inspection. In this manner, inspection is a way to implement
Apprenticeship [Coplien+05].

The most important work product of a story is the code. Therefore, the
inspector must be a developer. The inspector must also have a thorough
understanding of disciplines such as user interaction design, test, and archi-
tecture to be able to evaluate these parts of the developers’ work. He should,
however, be aware of the limits of his own knowledge and involve experts
in these disciplines when necessary. If the Architect also Implements
[Coplien+05], he can credibly inspect developers’ code. Inspection will then
contribute to achieving Architect Controls Product [Coplien+05].

Thus quality assurance by inspection is an integrated and ongoing activ-
ity in the Story-based Method, and most defects are corrected minutes or
hours—not days or weeks—after they are introduced.

� � �

Together with the Story Completion Checklist, inspection helps ensure
closure of quality and work products.

Inspection does not eliminate the need for testing. Different kinds of
errors are best found using diferent techniques. Run-time errors, such as
failure to comply with a requirement or plain bugs, are best found using tests,
be they manual or automated. Other errors, such as misuse of programming
language, architectural rot, or inconsistent documentation, are best found by
inspection. Thus inspection and testing are complementary.

A potential danger of this patterns is that inspection can sometimes focus
too much on the details of the individual story at the expence of the overall
quality of the feature’s implementation. The developers and their inspector
should discuss this risk. Depending on the project’s quality goals, it may be
a good idea to execute additional quality assurance activities addressing an

entire feature or component, such as reviews of code, design documentation,
test specifications, or user manuals.

An inspector cannot be expected to inspect more than about ten de-
velopers at the time, and then he will have most of his time full. This of
course means that he cannot do much implementation work himself. If the
inspector focuses too much on his own implementation work, he will become
a bottleneck.

A variant solution that remedies this is to let developers be inspected by
peer developers. Compared to the primary solution of this pattern, it frees
the experienced developer to do other work than planning and inspection.
On the other hand, it prevents the experienced developer from sharing his
experience by doing inspections. Peer-to-peer inspection has the additional
advantage that it fosters knowledge sharing among developers, and trains
future inspectors. The team must decide how to balance these forces.

(Note: This variant solution might be considered a separate pattern:
Peer-to-peer inspection.)

Example:
For the Monitoring Window, assign the role of inspector to the person who
described its initial requirements and designed the initial architecture. This
person should also be involved in the actual implementation of the feature,
i.e. he should also execute stories. Some other developer will have to do the
inspection of these stories. This could be an inspector working on another
feature, or a developer working on the Monitoring Window feature, who can
thus be trained in the role as inspector.

2.4 Feature Skeleton

The first story should implement a skeletal version of the feature.

. . . the team is doing Story-based Development and needs to add a
feature to a system.

� � �

There are many possible places to start implementing the fea-
ture. What should be done first?

Frequently, many aspects of a feature are not clear. These could be the
feature’s priority, the customer’s real needs, algorithmic issues, risks, the user
interface design, the domain object model, or third party tools or technologies
to use.

The team needs to address these unknowns, and the sooner the better.
The team does not want to spend too much time merely contemplating prob-
lems. The team needs to get started on implementing its best guess so that
there is a sense of progress, and so that both the team and other stakehold-
ers can get real feedback from the system. If the team does not get rapid
feedback on its best guess, it is likely to be off the mark, and valuable time
will have been wasted.

One way of getting rapid feedback is through prototypes. Prototyping
work should focus on resolving just one aspect of a problem, and should
disregard other aspects and qualities. This means that the development of a
prototype is not a closure, neither with regard to functionality, quality, nor
work products. The prototype cannot be released to the users. In essence,
you cannot trust a prototype.

Therefore:
Start with a story that implements a skeletal version of the

complete feature.
The story need not deliver enough of the complete feature to be of any real

end-user value. Focus on exploring one or a few of the unknowns, on reducing
risks, and on providing the architectural foundation (hence the “skeleton”)
for the feature. This foundation is best discovered by considering the feature
as a whole. Also, domain knowledge is very important. Thus, doing a feature
skeleton is one concrete way to Get On With it [Coplien+05].

A skeleton should have all its bones in place. This means that the story
should be a Vertical Section that implements something in all layers of
the architecture.

Sometimes developers can actually accomplish quite a lot within the scope
of a feature skeleton story. They can after all aim close to the 40-hour ceiling,
and include a bit of “meat” on the skeleton. But it is much better to focus
on getting the skeleton done in this story, and then execute other stories
afterwards that gradually add more and more meat. So if a skeleton story’s
estimate turns out to be close to the ceiling, remove some “meat”. This will
reduce the story’s scope, risk and estimate accordingly.

A Feature Skeleton is frequently the right place to start implement-
ing a feature. Once the skeleton story is done, execute stories that implement
Complete Scenarios.

But skip the Feature Skeleton if there are no significant unknowns
to consider. Go straight to stories that implement Complete Scenarios.

Note that the implementation of a Feature Skeleton is not a proto-
typing session. The developers must execute all the usual activities on the
Story Completion Checklist, and inspection must still be done. This
ensures that the story remains a closure.

If the team needs to build a prototype to prove feasibility or explore
possible solutions, it should do so but be conscious of that that is what the
team are doing. Once the team has resolved the problem, toss the prototype.
See Build Prototypes [Coplien+05].

� � �

A Feature Skeleton will provide the development team and other stake-
holders with a sense of early success and of being well on the way. It also
helps in planning and prioritising the work ahead.

The story is likely to implement a small bit of useful functionality, which
subsequently can be shown to stakeholders to receive some early feedback.

The customer might even want to start using the system as it is. Since a
story is a closure of quality as defined in section 1.5, it is safe to do so.

This pattern is analogous to the architecture pattern Walking Skele-
ton, and also provides Early Success [Cockburn04]. It addresses some
of the same forces as the XP pattern Bootstrap Story [Andrea01] but is
able to present a different resolution of the forces because the principles of
the Story-based Method are different from those of Extreme Programming.

Example:
Start work on the Monitoring Window feature by executing a story that
implements a Feature Skeleton. The story will also be a Vertical
Section through all three layers of the intended architecture: The adapter

layer, the model layer, and the presentation layer. Some aspects of the feature
can be factored out to trim the story down to a true Feature Skeleton:

Simple Data: The story will produce a system that can monitor just one
piece of data. Pick one that is fairly easy to dig out of the system and
fairly high on the customer’s prioritised list of data to monitor.

Simple User Interface: The presentation layer will be a simple window dis-
playing just the one piece of data. What constitutes a simple window
depends on the available GUI toolkit. It could be simply a modal
message box.

Simple Algorithm: Eventually the monitor must periodically sweep the sys-
tem and update itself but to further reduce scope this story will imple-
ment a monitor that simply performs one sweep of the system when it
starts.

2.5 Vertical Section

A story should touch several layers in the architecture of the system or sub-
system at hand.

. . . the team is doing Story-based Development, and needs to add
functionality to a system, or to enhance a quality of a system.

� � �

As the team extends the system, the developers need to consider
both functionality (the feature) and form (the system’s architec-
ture). How does the team balance these?

Any system or sub-system has an architecture, whether it is intentional
or accidental. Well-designed systems tend to have a component-based archi-
tecture with a clear layered structure [Bass+03]. A given feature does not
reside in any single layer, nor in any single component. Rather, a feature is
an emergent property of the collaboration of several components in a system.

Picturing the architecture of a system as a stack of horizontal layers, it
makes sense to say that a feature is orthogonal to the architecture; the feature
emerges from a set of vertical sections through the system.

One possible way of structuring the work of implementing the feature is
to create a work package for each layer or component that must be modified
in order to implement the feature. This approach has a number of drawbacks:

• It requires that the team first construct a fairly detailed design of the
modifications that must be made to the system. This design must be
made without writing any code to validate it, because if developers
did write the code, they would be executing the work which they are
actually only trying to estimate and plan.

• The team cannot validate the completed solution until all or most of
the work packages are complete. Each component can to some degree
be tested in isolation while it is being implemented but verification
and validation of the interaction between the components and their
emerging properties (i.e. the feature) will not be possible before the end.
Thus each work package is not a closure, and feedback and learning
after each work package is not optimal. Wasted effort is likely.

• Risks tend to reside in the interaction between components rather than
inside components. These risks cannot be handled early.

• Component-based development tend to proceed either top-down or
bottom-up. Neither approach delivers a feature that is even partly
useful to a customer before the very end.

Therefore:
Design each story so that it changes the design and code of

several layers of the architecture.
When looking at a system with a layered architecture, the parts of the

system changed during the execution of the story should form a vertical
section through the architecture.

One way of doing this is as follows:

1. First, execute a story that builds a Feature Skeleton. Since this
story focuses on architecture, it is likely to be a Vertical Section,
too.

2. Then, execute a number of stories that each are Vertical Sections,
and incrementally adds functionality on the side (so to speak) of the
result of the previous stories. Repeat this until the feature is completed.

3. Frequently evaluate the result of the stories with special attendance to
the balancing of functionality and architecture, get feedback, reconsider
and re-plan as necessary.

� � �

A story that forms a Vertical Section provides architectural closure be-
cause the developers executing the story are forced to understand, consider
and maintain all layers of the system’s architecture as they add new func-
tionality. This supports a continuous and controlled enhancement of the
architecture. In [Poppendieck+03] terms: The developers are forced to see
the whole because they need to touch the whole.

Sometimes it is not possible to touch all layers of the architecture, for
instance because some layers are being developed by another organisation,
or because they have already been developed and are now fixed. In this case,
merely extend the vertical section as far as it can go.

Example:
Stories for the Monitoring Window feature should form a vertical section
through all three layers of the intended architecture: The adapter layer, the
model layer, and the presentation layer.

2.6 Complete Scenario

A story should implement a complete scenario of a use case.

. . . the team is doing Story-based Development. The feature to be
implemented is expressed as use cases or in some similar form that focuses on
interaction scenarios between an actor and a system delivering the feature.

� � �

Some use cases in the feature are too large to be implemented
in one story, so the effort must be split into several stories. What
goal should each story have?

The team wants to first implement those parts of the use cases that
provide the most value to the customer. There are two possible reasons for
this: First, the time available for implementation may be limited, either by
a deadline or a budget, or both, and the team must use that time to provide
the most value. Second, implemented parts can be delivered to the customer,
and this will provide user happiness, or cash flow, or both.

A use case has two facets: Scenarios define the overall flow of the use
case, while business rules and pre- and postconditions define the details. A
use case scenario is completely implemented only when both the flow and
the details are in place.

But it can be difficult to implement both flow and details for a whole
scenario within the limited timeframe of one story. And frequently the de-
tails cannot be clearly defined until the system has been used in real work
situations.

Splitting the scenario into two or more consecutive parts for implementa-
tion in consecutive stories is no solution since a partly implemented scenario
provides no value.

Therefore:
Design stories that implement one or several complete scenarios.
If story estimates get too high, disregard complicated business rules, pre-

and postconditions, invariants, and other complications. Frequently these
can only be fully analysed and defined after the system has seen real use
anyway. This work belongs in separate stories.

Stories that implement Complete Scenarios should be executed in
sequence so that those that have high development risk or high customer
value are executed first.

Such a story should have the name of the scenario that it implements.
This will help communicating the story’s goal to stakeholders, and aid in
prioritisation of the story. See Implied Requirements [Coplien+05].

� � �

With the completion of each story that implements a Complete Scenario
the team has achieved closure of functionality by adding a piece of useful
and coherent functionality to the system. There may be some details miss-
ing which anyway are best discovered by getting feedback from real use of
the system in the customer’s environment. And this requires that complete
scenarios are there for the customer to use.

Example:
Continuing with the monitor window example, assume that the feature in-
cludes a use case where the user can have a snapshot of the data displayed
in the window dumped to a file. The user must be able to select which for-
mat to dump to (e.g. Excel, comma-separated values, or XML), the name of
the file, whether to overwrite an existing dump file of that name, and which
data to include in the dump. For the sake of the example, assume that the
complete use case is too much work to fit into a single story. Domain experts
tell the team that the most likely scenario involves selecting XML format,
the filename “dump.xml”, and to dump whatever the monitoring window
currently displays.

This is a good Complete Scenario, and the team should execute a
story that implements it. This will result in a useful bit of functionality,
and also provide a foundation for subsequent stories that tackle the other
scenarios in the use case, and add other details.

3 Related Work

3.1 Extreme Programming

The Story-based Method shares many characteristics with Extreme Program-
ming [Beck04]. Notably, both methods are fairly dogmatic in the sense that
they state (different) sets of mutually supporting rules that are broken at the
development team’s own peril. For example, XP insists that all production
code be written while pair programming, and the Story-based Method insists
that all work products be verified through inspection.

The values that underlie the two methods are very similar and roughly
defined by the buzzword “Lean”. However, the methods achieve these values
in different ways, and a team executing the Story-based Method does not
look and behave like a team executing Extreme Programming.

Gerard Meszaros’ paper Using Storyotypes to Split Bloated XP Stories
[Meszaros04] and Jennitta Andrea’s paper Managing the Bootstrap Story in
an XP Project [Andrea01] describe patterns for managing Extreme Program-
ming user stories. The papers discuss their patterns in the context of XP
with an emphasis on use cases. The patterns presented in this paper can be
seen as extensions and generalisations of Meszaro’s and Andrea’s patterns,
stated from the viewpoint of the Story-based Method.

3.2 Patterns for Effective Use Cases

The book Patterns for Effective Use Cases [Adolph+02] builds on the work
of Alistair Cockburn [Cockburn00] by presenting a number of patterns that
can be used to identify, size, and shape the use cases that describe a feature.
The patterns are somewhat similar to the patterns presented in this paper:
Both are most readily applicable in a software development context where
features (requirements) are described and understood as use cases, and some
of the patterns presented in this paper have direct analogies in [Adolph+02].
The table below lists some:

This paper Adolph et al.
Story-based Develop-
ment

The book’s basic argument
why use cases should be used
at all is not represented as a
pattern

Vertical Section No analogies
Complete Scenario Complete Single Goal
Construct a Feature Skele-
ton, then repeatedly imple-
ment a Complete Scenario

Breadth Before Depth,
Spiral Development, and
Ever Unfolding Story

However, the two sets of patterns have different areas of applicability: The
patterns in [Adolph+02] will help writing use cases that describe a feature,
while the patterns presented in this paper will help organising the implemen-
tation effort necessary to bring those use cases to life.

4 Summary and Conclusions

This paper has presented 6 patterns embodying advice on how to size, shape
and execute stories.

• First and foremost, do Story-based Development.

• Execute each story by following the Story Completion Checklist.

• Perform quality assurance through Inspection.

• Strive to make each story work on a Vertical Section through the
system’s architecture.

• Start with a Feature Skeleton and then repeatedly execute stories
that implement a Complete Scenario.

Section 1.5 described the importance of frequent closure in a number of areas.
It is time to revisit these areas and conclude to what extent the Story-based
Method and the patterns support this quality:

• Functionality Stories that implement a Complete Scenario im-
plement useful functionality which can be delivered to the end-users.
This facilitates communication, feedback, and learning.

• Quality By structuring stories according to the Story Completion
Checklist and doing Inspection each story will not only deliver new
code that realises new functionality, but will also do design and execute
tests necessary to verify and validate the new code. This means that
the functionality realised in the story can not just be demonstrated to
the customer, but can safely be used for real work in the end-users’
environment, thereby providing value to the end-users.

• Architecture By executing stories that form Vertical Sections
through the architecture, the development team is forced to constantly
consider the system’s architecture, and to maintain and develop it as
they add new functionality. Therefore, the architecture remains sound
at the end of each story.

• Work products By structuring stories according to the Story Com-
pletion Checklist and doing Inspection, each story will not only
produce and test new code, but will also produce ancillary work prod-
ucts like installation and user manuals. This ensures that the complete
set of project deliverables are coherent and complete at the end of
each story, and that the functionality implemented in a story can be
transitioned into the end-user’s environment.

• Plan When doing Story-based Development, the story is the de-
velopment team’s unit of planning. Because there are well-defined
rules—Story Completion Checklist and Inspection—for decid-
ing whether a story has been completed or not, there is never any doubt
as to which work packages are completed and which are not, and the
development team’s progress to date and expected future progress can
be readily determined.

The patterns presented in this paper constitute a first attempt at establishing
a pattern language for planning and executing stories. No doubt further
experience with the Story-based Method will give new insights into the nature
of good and faulty stories, and reveal new patterns. Whether or not these
patterns coalesce into a true pattern language remains to be seen.

5 Acknowledgments

My thanks go to my VikingPLoP 2007 shepherd Michael Weiss for his de-
tailed reviews of the paper and for inspiring questions and comments.

In like measure, thanks to Met-Mari Nielsen for suggesting that I write
this paper, for introducing me to the PLoP way, and for review.

Also thanks to the participants of the VikingPLoP 2007 conference in
Bergen, Norway for three delightful, challenging, and encouraging days. May
we meet again.

Thanks to my colleagues at Systematic for time, patience, enthusiasm
and reality checks.

Final thanks to Michael Holm, owner and managing director of System-
atic, for creating the space.

References

[Adolph+02] Steve Adolph and Paul Bramble: Patterns for Effective
Use Cases. Addison-Wesley 2002, ISBN 0201721848.

[Andrea01] Jennitta Andrea: Managing the Bootstrap Story in an
XP Project. Retrieved from www.jennittaandrea.com.

[Bass+03] Len Bass, Paul Clements, and Rick Kazman: Software
Architecture in Practice, Second Edition. Addison-
Wesley 2003. ISBN 0321154959.

[Beck03] Kent Beck: Test-driven Development: By Example.
Addison-Wesley 2003. ISBN 0321146530.

[Beck04] Kent Beck: Extreme Programming Explained: Embrace
Change. Addison-Wesley 2004. ISBN 0321278658.

[Chrissis+06] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum:
CMMI: Guidelines for Process Integration and Product
Improvement, 2nd edition. Addison-Wesley 2006. ISBN
0321279670.

[Cockburn00] Alistair Cockburn: Writing Effective Use Cases.
Addison-Wesley 2000. ISBN 0201702258.

[Cockburn04] Alistair Cockburn: Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison-Wesley 2004.
ISBN 0201699478.

[Coplien+05] James O. Coplien & Neil B. Harrison: Organiza-
tional Patterns of Agile Software Development. Pearson
Prentice-Hall 2005. ISBN 0131467409.

[Fowler06] Martin Fowler: Continuous Integration. Retrieved from
www.martinfowler.com.

[Jacobson+99] Ivar Jacobson, Grady Booch, and James Rumbaugh:
The Unified Software Development Process. Addison-
Wesley 1999. ISBN 0201571692.

[Meszaros04] Gerard Meszaros: Using Storyotypes to Split Bloated
XP Stories. Retrieved from www.clrstream.com.

[Poppendieck+03] Mary and Tom Poppendieck: Lean Software Develop-
ment: An Agile Toolkit. Addison-Wesley 2003. ISBN
0321150783.

[Schwaber+01] Ken Schwaber and Mike Beedle: Agile Software De-
velopment with SCRUM. Prentice Hall 2001. ISBN
0130676349.

[xUnit] www.junit.org

Design Patterns in the Context of Multi-modal
Interaction

Andreas Ratzka
Institute for Media, Information and Cultural Studies

University of Regensburg
D-93040 Regensburg, Germany

Andreas.Ratzka@sprachlit.uni-regensburg.de

1 Abstract

Multi-modal interaction aims at more flexible, more robust, more performant and more
natural interaction than can be achieved with traditional unimodal interactive systems.
In order to achieve this, the developer needs some design support in order to select appro-
priate modalities, to find appropriate modality combinations and to implement promising
modality adaptation strategies. This paper presents a first sketch of an emerging pattern
language for multi-modal interaction and focuses on the sublanguage “fast input”. This
work is part of a thesis project on pattern based usability engineering for multi-modal
interaction.

2 Introduction

Multi-modal interaction means interaction via several interaction-channels such as speech,
pointing device, graphics and the like. According to Oviatt & Kuhn (1998) the goal of
multi-modal interaction is

• to provide flexibility and adaptability of the system with respect to users and context
of use,

• to provide higher robustness of interaction due to mutual disambiguation of input
sources,

• to gain more interaction performance because of better integration into the work
situation and

• to provide more natural interaction.

Current design support is usually restricted to very general rules, indicating the appro-
priateness of certain modalities. In this context one can allude modality theory (Bernsen
2001) and the modality properties derived from this theory (Bernsen 1999). Some other
important issues are covered by the works of Bürgy (2002) and Calvary et al. (2005),

which categorise aspects of task, environment, application data, user, device in order to
provide appropriate advice towards modality usage.

These approaches provide only relatively general design advice but don’t give more
concrete suggestions. One assumption of this thesis project is that, although multi-modal
interaction is a relatively new field with very little market penetration, there exists already
a corpus of well founded research results and successful system implementations in which
recurring patterns can be found.

This pattern collection is based on a thorough literature review on multi-modal inter-
action in industrial and research projects. Following questions helped to find an adequate
categorisation of question-solution pairs and thus a basis for pattern mining:

• When to use a certain interaction modality?

• How to combine multiple interaction modalities?

• How to adapt modality usage according to the context of use (user, environment,
situation)?

There is not one universal approach of classification, there are rather several categorisation
alternatives. The categorisation I propose divides this pattern language into several,
partially overlapping, sublanguages according to the goals of multi-modality in interaction
design as described in Oviatt & Kuhn (1998, view previous section):

• Fast Multi-modal Input

• Multimodal Accessibility

• Robust Interaction

• Natural Task Support

This paper focuses on the sublanguage Fast Multi-modal Input.

2.1 Organisation of the Sublanguage “Fast Input”

The successful solution of the problems described in these patterns can be facilitated by
the application of multi-modal interaction techniques which lead us to abstract multi-
modal interaction patterns :

• Content-appropriate Input

• Context-appropriate Modality Usage

• Maximum Communication Bandwidth

At a more concrete level concrete multi-modal interaction patterns have been identified:

• Voice-based Interaction Shortcut

• Speech-enabled Form

• Speech-enabled Palette

• Gesture-enhanced Natural Speech

• Composed Gesture

2.2 Relationship to other Pattern Languages

As this work does not attempt to reinvent user interface design, but rather to enrich
and combine traditional graphical and speech-based user interfaces (GUIs and SUIs),
patterns from those domains are relevant as well such as the GUI-patterns in Tidwell
(1999, 2005), van Welie & Trætteberg (2000) and Sinnig et al. (2004) and the SUI-patterns
in Schnelle et al. (2005) and Schnelle & Lyardet (2006). Some of those patterns are
modality independent such as Favourites and Preferences (van Welie & Trætteberg 2000).
Others can, although described from the point of view of traditional interaction styles,
extended to multi-modal interaction such as Warning (van Welie & Trætteberg 2000) or
Persona (Schnelle & Lyardet 2006). Furthermore there exist close relationships between
muldimodal interaction patterns and traditional interaction patterns. Following table
illustrates some of the patterns referenced by this work:

Name,
Reference

Problem Solution

Helping
Hands
(van Welie
2001)

“Users need to enter many
different types of [graphi-
cal] objects”.

“Use one hand to enter the data while the
other hand is used to switch modes”, to se-
lect the appropriate tool from the palette.

Form
(Tidwell
1999; Sinnig
et al. 2004),
(www.welie.com)

“The user must provide
structural textual infor-
mation to the application.
The data to be provided is
logically related”

“Provide users with a form containing the
necessary elements. Forms contain basi-
cally a set of input interaction elements and
are a means of collecting information [...]”.

Auto-
completion
(Tidwell
2005)

“The user types some-
thing predictable, such as
a URL, the user’s own
name or address, today’s
date, or a filename [...]”.

“With each additional character that the
user types, the software quietly forms a list
of the possible completions to that partially
entered string [...]”.

Drop-
down
Chooser
(Tidwell
2005)

“The user needs to supply
input that is a choice from
a set [...], a date or time, a
number, or anything other
than free text typed at a
keyboard. [...]”.

“For the Dropdown Chooser control’s
‘closed’ state, show the current value of the
control in either a button or a text field. To
its right, put a down arrow. [...] A click on
the arrow (or the whole control) brings up
the chooser panel, and a second click closes
it again [...]”.

Composed
Command
(Tidwell
1999)

How can the artifact best
present the actions that
the user may take?

Provide a way for the user to directly en-
ter the command, such as by speech or by
typing it in.

Form Fill-
ing
(Schnelle
& Lyardet
2006)

“How to collect structured
information from the user
[in the context of speech-
based applications]?”

“Identify a short description or label of the
field to be filled in and prepare a variable to
store the entered information. [...] Present
the label to the user, followed with an op-
tional input prompt and silence to let the
user enter the data, as if she were filling out
a form [...]”.

3 Patterns for Fast Multi-modal Interaction

This paper focusses on the subcollection fast input. Along with the pattern descriptions,
relations among these patterns are outlined, as well as relations between these patterns and
other pattern collections, such as the GUI-centric patterns found in Tidwell (1999, 2005),
van Welie & Trætteberg (2000) and Sinnig et al. (2004), and the voice user interface
patterns described in Schnelle et al. (2005) and Schnelle & Lyardet (2006).

Speech-
Based

Interaction
Shortcut

Speech-
Enabled

Form

Speech-
Enabled
Palette

Gesture-
Enhanced

Natural
Speech

Helping
Hands

Form Filling

Maximum
Communication

Bandwidth

Content-
appropriate

Input

Context-
appropriate

Modality
Selection

Location-sensitive
 Gesture

Drop-down
Chooser

Autocompletion

Refined by
Uses
Alternatives

Form

Composed
Command

Patterns
from this
Collection

Patterns
from other

authors

Figure 1: Pattern Map

3.1 Abstract Multi-modal Interaction Patterns

3.1.1 Content-appropriate Input

Context Interactive systems allow the input and output of different kinds of data such
as images, text, sounds, videos.

Problem There is no uniform way to input or present data of several specific formats
and types.

Forces

• Information such as files, directories, locations on a map can be input via typing.
But users memorise rather the location of those ones than their exact spelling.

• The selection of an item from a small (and thus completely visible) set is easily
done via pointing and clicking, but the larger a set is growing additional navigation
efforts are necessary such as scrolling or moving through hierarchical menus.

• Shortcut keys are a valid alternative for selection of menu items, interaction objects
or tools on a palette. However, it is difficult to assign consistently intuitive shortcut-
characters to a wide range of commands or menu options. Thus some shortcut-keys
seem arbitrary and require a certain learning effort.

• Items can be selected via speech input from larger sets which reduces navigation
efforts, but speech recognition errors might lead to additional error correcting steps
which slows down interaction even more.

• Items that have well known and pronouncable names can be selected via speech
input but cryptic filenames or e-mail addresses are likely to be misrecognised.

Solution Analyse tasks, workflow and the data to be exchanged between user and
sytsem and choose interaction modalities accordingly.

Use a natural encoding of input and output data. Spacial data, proportions etc. can be
most appropriately encoded spatially whereas precise conceptual data are to be encoded
as spoken or written text.

“Natural encoding” should not be misunderstood too literally. In multimedia editing
applications (video and sound editing) encodings have to be transformed: You need e.g.
timeline visualisations in order to select the video or audio snippets you want to edit.

Consider furthermore confidental data. Private information should not be read out
loudly, as it is nothing to bystanders or office mates.

Rationale Users prefer speech input to input descriptive data, or to select objects
among large or invisible sets (Grasso & Finin 1997; Grasso et al. 1998; Oviatt et al.
2000). Pointing devices are preferred for inputting spacial or sketch-based data.

Modality Theory (Bernsen 2001, 1994a, b; Bernsen & Verjans 1995; Luz & Bernsen
2001) points out the plausibility of the complementary usage of analogous graphics and
linguistic text in HCI.

Refining Patterns

• Voice-based Interaction Shortcut uses speech input to select items from a large set
in order to reduce navigation overhead.

• Speech-enabled Form combines pointing and speech input. Pointing is used to select
a field on an interaction form whereas speech input is used to input data into the
selected field.

• Speech-enabled Palette combines speech input and pointing for palette based appli-
cations. Speech is used to select a tool on the palette whereas pointing is used to
perform the graphic manipulation task. This way the mouse pointer can stay in the
manipulation area and need not be moved repeatedly to the palette and back.

• Gesture-enhanced Natural Speech combines speech input with gestures or pointing
actions. Speech input is used to specify the desired action (or query) along with some
easily pronouncable parameters whereas pointing is used to select the interaction
object (or query parameter), the action is to be performed on, as well as further
parameters (such as the destination of a copying action).

• Location-sensitive Gesture combines iconic gestures with an implicit pointing action.
Pointing is used to select an interaction object, the iconic gesture expresses an action
that is to be performed on this object (such as a cross for deleting this object).
Pointing is implicit in this case because the pointing location is deduced from onset
and offset location of the drawing action.

Consequences

• Pointing does not require to memorise cryptic names.

• Selecting via speaking does not require all items to be displayed on screen.

• Selecting menu options via speech makes arbitrary key mappings superfluous.

3.1.2 Context-appropriate Modality Usage

Context There are different people using different kinds of interactive devices in differ-
ing environments and situations.

Problem Differing contexts of use lead to differing requirements which cannot be sat-
isfied with one general uniform design.

Forces

• Typing is powerful for a lot of tasks but if the target user group includes typing-
unskilled or even illiterate people other alternatives have to be used.

• In order to maximise mobility small devices have only tiny keyboards or only virtual
on-screen keyboards. Using them for string input is annoying and slow.

• Speech input as promising text input and item selection alternative is likely to fail
in loud environments. The same is true for speech output which is overheared in
loud environments.

• Pointing is good for selecting objects but requires the selectable objects to be pre-
sented graphically. Small devices offer only little display space such that additional
scrolling and navigation might be needed.

• Graphic output and feedback is useful in a lot of situations but cannot be perceived
in bad lighting conditions or by blind people.

• Graphical output can be easily scanned by users but small devices have only little
space for data to be displayed.

• Speech output and input can be more comfortable in mobile interaction but highly
confident data must not be read out loudly in public environments.

• Environmental factors can be controlled via special installations such as specially
mounted lamps, phone booths, directional speakers, earphones, or view shields but
these measures are not viable in every case such as mobile interaction.

Solution Analyse task and workflow, target user group and interaction scenarios in
order to determine appropriate interaction modalities. Offer more than one alternative
interaction modality to the user so that he can choose the most appropriate one.

Modality theory (Bernsen 2001) and modality properties (Bernsen 1999) describe char-
acteristics of different interaction modalities and are a basis for selecting adequate inter-
action styles.

Refining Patterns

• Voice-based Interaction Shortcut uses speech input to select items from a set which is
too large to be displayed completely on screen. Small devices which offer only little
space to display menu items or list-choosers encourage the usage of this pattern.

• Speech-enabled Form combines pointing for selecting a form field and speech input
for filling in the field. Devices which lack a keyboard or situations where the user
can use only one hand or a single finger for interacting with the system encourage
the usage of this kind of multi-modal form.

• Speech-enabled Palette combines speech input and pointing for palette based appli-
cations. Speech is used to select a tool on the palette whereas pointing is used to
perform the graphic manipulation task. Occasional users are more likely to remem-
ber a meaningful name of the palette-tool to be selected than an arbitrary shortcut
key.

• Gesture-enhanced Natural Speech combines speech input with gestures or pointing
actions for inputting composed commands. This allows the user to input composed
action commands even with devices that do not provide a keyboard. Additional
menus or buttons that would clutter small displays are not needed, either.

• Location-sensitive Gesture combines iconic gestures with an implicit pointing action
for inputting composed commands. This allows the user to input complex action
commands even with devices that do not provide a keyboard. Additional menus or
buttons that would clutter small displays are not needed, either.

Consequences

• Typing-unskilled an illiterate people can interact comfortably via speaking or point-
ing.

• Speaking accelerates string input in mobile computing.

• In loud or dark environments the user can sidestep to alternative input modalities
and switch output modalities.

• Design complexity is likely to increase as functionality has to be made accessible via
several alternative interaction channels. Thorough testing of the system is necessary
as with complexity sources of programming and design errors increase.

3.1.3 Maximum Communication Bandwidth

Context Tasks a user is performing with an interaction device are sometimes quite
complex and require input and output of a lot of information, selecting tools (using
a meta-tool called palette) and using additional interactive devices (such as car driver
assistants).

Problem Additional devices – be they real or virtual – require the user to switch (visual)
attention.

Forces

• Selecting of visible tools on a palette can be easily done via pointing, but in graphic
manipulation tasks this leads to repeatedly moving of the mouse pointer between
palette and canvas which is very time consuming.

• Typing text, commands or command keys is a powerful means of interaction. But
in combination with pointing and graphic manipulation the user is slowed down as
he needs to move his right hand from mouse to keyboard and back again.

• Reading text is preferred to hearing spoken text because users can determine pace
themselves, but when graphical text is used in combination with graphical presen-
tations or visualisation of complex processes the user has to switch his attention
repeatedly between two locations. The same holds for situations where the user has
to pay attention to the visual scene such as during driving.

Solution Analyse the task, data, target user groups and usage scenarios and deter-
mine appropriate interaction modalities as suggested by the patterns Content-appropriate
Modality Input and Context-appropriate Modality Usage. Distribute parallel subtasks to
different interaction modalities such as pointing and speaking, graphical visualisation and
spoken text. This way attention switches can be avoided or minimised and interaction
gets more efficient.

Rationale Multiple Resource Theory (Wickens 1980; Wickens et al. 1984; Wickens 1992)
postulates that task interference gets minimized when different tasks are allocated to
separated cognitive resources.

Baddeley (1986, 2003) postulates two subsystems of working memory, the phonological
loop and the visuo-spacial sketchpad. These subsystems possess to some extent indepen-
dent cognitive ressources.

Dual-task experiments conducted by Wickens et al. (1984) indicate that least task
interferences occur, when the user performs the visual-spacial task using his hands and
eyes and the verbal task with the vocal and auditory channel.

According to Srinivasan & Jovanis (1997), users of a car navigation systems performed
better in driving when they were given spoken instructions than when they got visual
instructions projected into the windscreen.

Studies conducted by Ren et al. (2000) have revealed that the combination of pointing
devices such as pen or mouse with speech input is fruitful in both CAD systems and
map-based interfaces. This way, interaction performance can be increased.

Cohen et al. (2000) compared standard direct-manipulation with the QuickSet pen/voice
multimodal interface. Multi-modal interaction was significantly faster.

Mayer & Moreno (1998) have shown that learning can be more effective when different
types of data are combined in a multi-modal way.

Elting et al. (2002) have shown that the combination of speech output and graphic
pictures improve recall performance especially in the case of interacting with a PDA.

Refining Patterns for Variant I: Maximised Input Bandwidth

• Speech-enabled Form, Speech-enhanced Action Space and Gesture-enhanced Natural
Speech combine all three pointing and speech input. No extra time is necessary to
change hands between keyboard and mouse or to move the mouse cursor between
different screen areas.

• Gesture-enhanced Natural Speech and Location-sensitive Gesture allow to input com-
plex data efficiently without having to scroll around or open any extra menu.

Refining Patterns for Variant II: Maximised Perception Bandwidth
Following patterns are not subject of this paper but will be described in forthcoming ones.

• Audio-visual Presentation combines spoken text and graphical output. There is no
need to jump with the eyes between reading area and visualisation and find again
where you have stopped reading. Spoken text can be listened at the same time as
the user is looking at the visualisation.

• Workspace-integrated Information Display enhances the user’s working environment
with audio messages and enriches when approppriate the visual field with augmented
reality features using headup or even head-mounted displays.

Consequences

• Users have to change mouse and hand position less frequently.

• Overlapping and parallel input of speech and pointing gestures can speed up inter-
action.

• Parallel audio-visual output of related content can be perceived faster than written
text and graphics.

• Even if speech or gesture recognition can accelerate interaction recognition errors
might compromise this advantage. Clarification and error corroboration dialogs
have to be designed with care. This is especially true when natural speech input
is supported. The system should find a stable way of error corroboration without
discouraging the user to make use of efficient interaction styles in future.

• System complexity is likely to increase as additional components (speech recognizers,
gesture recognisers) have to be integrated into the program. These components
increase storage and CPU requirements.

3.2 Concrete Patterns for Fast Multi-modal Input

3.2.1 Voice-based Interaction Shortcut

Context The user has to select items from a large set. Consider selecting an action
from a menu or selecting a list item from a drop-down chooser.

Either the number of choices is quite large or screen size is scarse such that the items
cannot be displayed all at once.

The interaction device is supporting speech input.

Problem Which interaction style allows the user to quickly select the desired item?

Forces

• Selection via pointing is very intuitive. But if the selection options are numerous and
cannot be presented simultaneously on screen they have to be arranged into scrolling
lists or hierarchical menu structures. In this case the advantage of intuitivity is
compromised by lengthy scrolling or clicking through menus.

• Shortcut keys are a valid alternative for menu/command selection. However, it
is difficult to assign consistently intuitive shortcut-characters to a wide range of
commands or menu options. Thus some shortcut-keys seem arbitrary and require a
certain learning effort.

• Typing in natural words is more intuitive and easier to learn than shortcut or
function keys. However, typing is not always appropriate: Not all users are skilled
typers. Typing with mobile devices is very awkward and slow and thus inappropriate
for accelerating interaction.

Solution Selecting objects or actions via speaking them can significantly speed up in-
teraction. This is especially true for frequent users to whom the command and item names
are well known.

The designer should simply include the identical names of the menu options or the
items of the drop down list (or combobox) into the speech recognition vocabulary in order
to enable seamless learning of interaction shortcuts.

There is frequently more than one appropriate alternative wording for the desired
action. The designer should check which synonyms should be included into the speech
recognition grammar. User tests, including tests with simulated speech functionality1

might be useful to elicit the most intuitive wordings for some system functionality.
Even when the designer has elicited the most intuitive command wordings, it is not

guaranteed that especially first time and occasional users are able to anticipate them, too.
The drop down list or menus should not be removed from the user interface.

Consequences

• Screen clutter and the need of menu navigation can be minimised.

1cf. Wizard of Oz tests: A human agent, the wizard, simulates speech functionality.

• There is no more need for the user to remember arbitrary action-key-mappings or
to obey to strict menu hierarchies.

• Typing can be reduced to a minimum.

• If the selection set is large then speech recognition performance may deteriorate,
especially when there are similarly sounding words. Even worse: some wordings
might be ambiguous within the application context. If this cannot be avoided,
the application has to provide clarification dialogs. In the worst case all speed
advantages might be lost.

Rationale Users prefer speech input to input descriptive data, or to select objects
among large or invisible sets (Grasso et al. 1998; Oviatt et al. 2000).

Known Uses NoteBook is a multi-modal notebook implemented on NeXT. The user
can edit textual notes, and browse the created notes. Whereas the content-editing is only
supported via typing, browsing, deleting and creating notes can be done via button clicks
or voice commands alternatively (Nigay & Coutaz 1993).

Speech recognition packages such as ViaVoice can be integrated into the operating
system in order to control standard applications.

MacOS provides built-in speech control.2

VoiceLauncher from Treoware enables speech input for Treos, Centro, and Tung-
sten—T3 devices.3

Microsoft Voice Command can be used to enable speech input for Windows Mobile
based smartphones (such as HP’s iPAQ 5144). Using this software extension, the user can
show up the calendar or contact details in one interaction step.5

Related Patterns This pattern is a refinement of Content-appropriate Input and Context-
appropriate Modality Usage.

This pattern can be used along with Tidwell’s Autocompletion (Tidwell 2005) to en-
hance Tidwell’s Dropdown Chooser (Tidwell 2005) with speech functionality.

As Dropdown Choosers are used in Forms (Tidwell 1999; Sinnig et al. 2004, cf.
www.welie.com) Voice-based Interaction Shortcuts are used in Speech-enabled Forms.

2http://www.apple.com/macosx/features/speech/
3http://treoware.com/voicelauncher.html
4http://www.call-magazin.de/handy-mobilfunk/handy-mobilfunk-nachrichten/hps-

erstes-smartphone-der-ipaq-514-hoert-aufs-wort 20628.html
5http://www.microsoft.com/windowsmobile/voicecommand/features.mspx

3.2.2 Speech-enabled Form

Context The user has to input structured data which can be mapped to some kind of
form consisting of a set of atomic fields.

Devices such as PDAs do not provide a keyboard for comfortable string input.
In other situations the device may support keyboard input but the user has only one

hand available for interacting with the system.

Problem How to simplify string input in form filling applications?

Forces

• Selecting areas in 2D-space is accomplished very comfortably with a pointing device
but string input via pointing (with on-screen keyboards) is very awkward.

• Values for some form items (academic degree, nationality etc.) are restricted and
can be input using drop down choosers (comboboxes). But this may lead to screen
clutter and additional navigation and scrolling.

• Speech recognition is very comfortable for selecting invisible items but the input of
unconstrained text suffers from recognition errors.

Solution Whereever possible determine acceptable values for each form field. Support
value selection via Dropdown Choosers and, alternatively, via voice commands.

Let the user select from the desired form field via pointing and value input via speech.
The speech input complexity can be reduced, as only the vocabulary of the selected form
item needs to be activated at the time.

Consequences

• The user can comfortably combine pen input for selecting input fields with speech
for value specification.

• Navigation and scrolling in drop down lists can be avoided.

• Constraining the voice recognition vocabulary according to the selected text field
helps to avoid speech recognition errors.

• Speech recognition errors might occur anyway. In case of poor recognition perfor-
mance all speed advantages might be lost due to the need of error corroborration.

Rationale Users prefer speech input to input descriptive data, or to select objects
among large or invisible sets (Grasso & Finin 1997; Grasso et al. 1998; Oviatt et al.
2000).

Cohen et al. (2000) compared standard direct-manipulation with the QuickSet pen/voice
multi-modal interface. Multi-modal interaction was significantly faster.

Known Uses Mobile Systems such as BBN’s Portable Voice Assistant (Bers et al.
1998), Microsoft’s MiPad (Miyazaki 2002; MiP) and IBM’s Personal Speech Assistant
(IBM; Comerford et al. 2001) are good examples.

In MiPad the user can create e-mail messages via Tap And Talk.6 The user can select
the addressee field and the speech recognition vocabulary is constrained to addressbook
entries. If the user selects the subject or message field an unconstrained vocabulary is
selected so that the user can input unconstrained text.

As a further example one could cite the QuickSet System (Cohen et al. 2000).
The multi-modal facilities offered by X+V (XHTML and VoiceXML) and supported

by the Opera Browser are heavily focussed on this Speech-enabled Form paradigma (IBM
2002, 2003b, a, 2004).

Related Patterns This pattern is a refinement of Content-appropriate Input, Context-
appropriate Modality Usage and Maximum Communication Bandwidth.

This pattern is a multi-modal extension of Form as found in Tidwell (1999) and Sinnig
et al. (2004) and the speech-based Form Filling (Schnelle et al. 2005; Schnelle & Lyardet
2006).

It is implemented using the pattern Voice-based Interaction Shortcut in the same way
as Forms are implemented using patterns such as Dropdown Chooser and Autocompletion.

For error handling consider to use Multi-modal N-Best-Selection and Spelling-based
Hypothesis Reduction (to be described in forthcoming papers).

6http://research.microsoft.com/srg/mipad.aspx

3.2.3 Speech-enabled Palette

Alternative Name: Speech as Third Hand / Speech-enhanced Action Space

Context Direct manipulation allows the user to edit visually presented objects directly.
In order to manipulate these objects the user has to select sometimes special tools. This
means that the user has to leave the manipulation area with the mouse in order to select
the desired menu item and then reenter the manipulation area in order to proceed the
manipulation action. This might be very annoying, especially in drawing applications.

Problem How to enable the user to select tools from the palette without having to
deplace the mouse between canvas and palette or the hand between mouse and keyboard?

Forces

• Both graphic manipulation tasks and selecting tools from a palette are accomplished
very comfortably via pointing. But performing both subtasks alternately several
times as is needed in design applications is very annoying and time-consuming.

• Using context menus which are opened on right clicks may reduce but not avoid
totally pointing distance. Additionally the context menu (unless transparent) ob-
scures the main manipulation area.

• Using the keyboard instead of the mouse for selecting commands may solve this
problem in some cases. However, there might arise a new one: The user has to
change his right hand between mouse and keyboard which is time-consuming, as
well.

• Another solution would be to assign graphic manipulation tasks to the right hand
which controls the mouse and action/menu selection tasks to the left hand which
remains on the keyboard and inputs shortcut keys.7 But the user would have to
remember awkward key mappings and possibly to look down to the keyboard to
find the desired key.

Solution Allow the user to select tools using speech input. Each tool on the palette
should have a meaningful name which is being made obvious to the user (because it is
displayed constantly or via tooltips) to allow seamless learning.

Consequences

• The user can speak the desired tool without the need to replace the mouse cursor
between tool palette and manipulation area.

• The screen and especially the main manipulation area is not obscured by popup
windows or menus.

• The right hand can stay on the mouse and need not be replaced between keyboard
and mouse.

7This kind of solution is proposed in Welie’s pattern Helping Hands.

• There is no need to remember awkard key mappings or to look down to the keyboard.

• As users are able to use the motor and vocal channels of their brain simultaneously,
combining spoken commands and pointing speeds up interaction significantly.

• Speech recognition errors might occur. In case of poor recognition performance
some speed advantages might be lost due to the need of error corroborration.

Rationale Studies conducted by Ren et al. (2000) have revealed that the combination of
pointing devices such as pen or mouse with speech input is fruitful in both CAD systems
and map-based interfaces. This way, interaction performance can be increased.

Cohen et al. (2000) compared standard direct-manipulation with the QuickSet pen/voice
multi-modal interface. Multi-modal interaction was significantly faster.

Known Uses Graphic applications (Gorniak & Roy 2003; Hiyoshi & Shimazu 1994;
Milota 2004), CAD-systems (Ren et al. 2000) and sketching applications (Sedivy & John-
son 2000) are examples which allow the user to select a tool of the palette via speech
without removing the mouse cursor from the graphics manipulation area.

As further examples one could cite VoicePaint (Nigay & Coutaz 1993), MICASSEM
(McCaffery et al. 1998) and QuickSet (Cohen et al. 2000).

Related Patterns This pattern is a refinement of Content-appropriate Input, Context-
appropriate Modality Usage and Maximum Communication Bandwidth.

This pattern is an alternative of van Welie’s Helping Hands (van Welie 2003).

3.2.4 Gesture-enhanced Natural Speech

Context Some applications require the input of composed commands consisting of sev-
eral parameters.

Consider copying one object to another location which consists of inputting the com-
mand, the object to be selected and the destination.

Consider setting up an email message: Input the command, input receivers of the
message.

Consider searching a location in a map-based application: Input the command, input
area constraints (square C 5), input keywords (italian restaurants).

Problem How to enable the user to quickly input composed commands consisting of
several parameters?

Forces

• Complex descriptive commands can be input efficiently via typed or spoken com-
mand languages. But consindering some parameters such as file names, directory
locations, positions on a city map, users rather remember where these are than how
these are named internally.

• An alternative would be offering the user to input complex commands via speech.
But some parameters such as file names, directory locations, positions on a city map
are frequently too cryptic and won’t be pronounced in a predictable way.

• Inputting spatial parameters or selecting objects displayed on the screen is most
easily done via pointing. But inputting actions or textual parameters would lead
to one or more additional interaction steps (button clicks, navigation in menus,
scrolling through drop-down lists).

• Early systems8 combined pointing gestures with typed natural language input. This
way the user could select objects directly via pointing and input commands and
queries with the keyboard. However this way, the user has to change his hands
regularly between keyboard and pointing devices which slows down interaction.

Solution Let the user interact via natural speech and provide pointing gestures simul-
taneously to specify locations or interactive objects. Consider folllowing cases:

• The user selects a file, says “copy this file there” and selects the target location.

• The user draws a rectangle onto a map and says “are there any supermarkets?”

• The user clicks the button create mail and says “to Margret Smith”.

At first blush it seems to be simply an application of the pattern Voice-based Interac-
tion Shortcut. But in the case of Gesture-enhanced Natural Speech the single interaction
steps need not be done in a strict sequence but may overlap in time. This requires the

8cf. Shoptalk (Oviatt 2003; Cohen et al. 1989) and XTRA (Kobsa et al. 1986; Wahlster
1991)

application of multi-modal recognition technology and grammar formats for specifying
multi-modal input such as MM-DCG (Shimazu et al. 1994). Consider approaches such as
those described in Shimazu & Takashima (1996), Vo (1998), Bui & Rajman (2004) and
Rajman et al. (2004) which include interaction corpus collection and training of recogni-
tion classifiers.

First time users need a way to explore the interface. That’s why Gesture-enhanced
Natural Speech should not be a replacement for alternative interaction styles such as direct
manipulation but rather intergrated into them.

Consequences

• Commands and textual data can be input as text.

• Parameters such as file or directory names, locations on a map etc. can be input
directly and naturally via pointing. There is no need to invent and remember cryptic
names.

• Typing and recognition errors can be reduced as pointing replaces the input of
cryptic strings.

• The user is able to utter simultaneously spoken language queries and pointing ges-
tures: This way inputting spatial parameters and selecting objects can be done
using pointing devices. At the same time, the input of textual data can be done via
spoken language. This way the user can choose to use the most appropriate input
modalities without having to change hands between different input devices.

• Screen clutter, the need of drop-down menus and popup dialogs which would obscure
the potentially scarse screen space can be minimised when combining pointing with
spoken natural language input. There is no need of additional buttons, dropdown
menus, popup dialogs.

• Even if user input can be accelerated this way, recognition errors might compromise
this advantage. Clarification and error corroboration dialogs have to be designed
with care. This is especially true when natural speech input is supported. The
system should find a stable way of error corroboration without discouraging the
user to make use of efficient interaction styles in future.

Rationale Cohen et al. (1989), Cohen (1992) and Huls & Bos (1995) have shown the
plausibility of combining direct manipulation and written natural language for some tasks.

Users prefer speech input to input descriptive data, or to select objects among large
or invisible sets (Grasso & Finin 1997; Grasso et al. 1998; Oviatt et al. 2000). Pointing
devices are preferred for inputting spacial or sketch-based data.

Known Uses This is one of the patterns found in the first multi-modal systems. Bolt
(1980) describes a voice- and gesture-based interface which integrates pointing with nat-
ural language. The title of Bolt’s article outlines this pictorially: “Put that there”.

Siroux et al. (1998) describe the GEORAL map-based system which allows the user
to input spoken multi-token natural language utterances while pointing to the relevant
position on the map. The user can touch on a locality (by pointing on a single point or

describing a zone) while asking questions such as Are there any beaches in this locality?,
Where are the campsites? or Show me the castles in this zone.

Further examples are CUBRICON (Oviatt 2003), MVIEWS (Cheyer 1998), MATCH
(Hastie et al. 2002; Johnston et al. 2002), SmartKom (Portele et al. 2003; Reithinger
et al. 2003), ARCHIVUS (Lisowska et al. 2005), COMPASS2008 (Aslan et al. 2005),
RASA (McGee & Cohen 2001) and DAVE G (Rauschert et al. 2002).

Related Patterns This pattern is a refinement of Content-appropriate Input, Context-
appropriate Modality Usage and Maximum Communication Bandwidth.

This pattern is related to Composed Command as found in Tidwell (1999). Further-
more it is related to Location-sensitive Gesture.

There are similarities to Voice-based Interaction Shortcut but Gesture-enhanced Nat-
ural Speech explicitly supports parallel processing of gesture and speech.

3.2.5 Location-sensitive Gesture

Context There are some frequently used action commands such as delete which require
some additional parameters.

Some devices support pointing actions being performed with so-called direct pointing
devices such as graphic tablets and pens.

There is no keyboard available or the user has only one hand free for interaction and
this hand controls the pointing device.

Speech input is not supported or not appropriate due to context factors.

Problem How to enable the user to input easily and quickly commands consisting of
selecting items and performing actions on them?

Forces

• Commands can be input efficiently textually or via speech. Command parameters
such as the selected files can be mapped onto text, too. But when neither keyboard
nor speech input is available annoying on-screen keyboards have to be used.

• Selecting areas or objects displayed on screen can be done easily via pointing. In-
putting commands via pointing is possible, too. But this would lead to at least one
additional interaction step (clicking on buttons, navigating through menus, scrolling
etc.) and to cluttered screens.

Solution Let the user interact with the system as he would do with paper: draw mean-
ingful symbols / pen gestures onto the object of interest – encircle items or cross them out,
draw arrows and the like. Onset and offset pen positions can be interpreted as positional
parameters.

Pen gestures have to be thoroughly planned. One aspect is that different gestures
should be designed in a way that they are not too similar and too likely to be confused
by the system. Design support might be provided by toolkits such as the one described
in Long et al. (2001).

Consequences

• There is no more need to find an awkward textual representation for items displayed
on screen. The user does not have to remember strange names to type them in or
to try to pronounce them. He has simply to recognise the desired object displayed
on screen.

• There is no need to require keyboard or speech input.

• Screen clutter, scrolling and menu navigation can be avoided.

• The user can input a complex action in one simple step: Drawing a meaningful
gesture onto an object displayed on screen leads to opening, copying, deleting and
the like. In usual graphic user interfaces the user would have to select the object
first and then select an action which would require more steps.

• Gesture recognition is not always fully reliable because of the high variability of
human gestures. Pen gestures can be misinterpreted: The system can miss user
input or recognise some, where there is none.

• Slips of pen can be misinterpreted as gestures and lead to unwanted actions.

• Although gestures should be designed to be meaningful first time users will require
some time of training before mastering the interfaces with all its advantages.

Rationale Gestures are easy to learn because they provide a means of natural inter-
action. Furthermore they provide a means of terse and powerful interaction, because
both position and movement patterns can be exploited to convey information (Baudel &
Beaudouin-Lafon 1993).

Known Uses The QuickSet System (Cohen et al. 1997, 2000) allows the user to place
military units onto a map via drawing a military icon directly onto a map. The form of
the icon designates the type of military base and the drawing position corresponds to the
desired target location. Furthermore QuickSet supports specific editing gestures such as
for crossing out (deleting) objects on the map.

Further examples can be found in TAPAGE (Cheyer & Julia 1998) and the systems
described in di Fiore et al. (2004) and Ou et al. (2003).

Related Patterns This pattern is a refinement of Content-appropriate Input, Context-
appropriate Modality Usage and Maximum Communication Bandwidth.

This pattern is related to Composed Command as found in Tidwell (1999) and Gesture-
enhanced Natural Speech.

Variant An imaginable variant of this pattern uses handwriting instead of gestures,
as with handwriting you can simultaneously input spatial and linguistic information,
too. However, combining separated deictic gestures with subsequent (and not parallel)
handwriting allows more precise input of spatial data. Such a combined input is supported
by the multi-modal map-based application described in Cheyer & Julia (1998) and by the
MATCH system (Hastie et al. 2002; Johnston et al. 2002).

4 Conclusion

This paper outlines an emerging pattern language for multimodal interaction which is far
from being complete. Despite the research history of over twenty years, multimodality
is still a research-centric field. It begins to reach some dissemination in the fields of
automotive, industrial and mobile applications. That is why interaction design support
is needed. Interaction design patterns constitute a challenging and exciting approach to
this domain.

5 Acknoledgements

I want to thank my shepherd Allan Kelly and the writers workshop group in Bergen com-
prising Robert Hanmer (chair), Bettina Biel, Birthe Böhm, Met-Mari Nielsen, Matthias
Rieger and Bart Van Rompaey for the helpful comments and suggestions.

References

IBM
IBM Wireless: Personal Speech Assistant. http://www-1.ibm.com/industries/wireless
/doc/content/resource/technical/296625104.html. – IBM

MiP
MiPad: Speech Powered Prototype to Simplify Communication Between Users and Hand-
held Devices. http://www.microsoft.com/presspass/features/2000/05-22mipad.asp.
– Microsoft

Aslan et al. 2005
Aslan, Ilhan; Xu, Feiyu; Uszkoreit, Hans; Krüger, Antonio; Steffen, Jörg:
Crosslingual Interaction for Mobile Tourist Guide Applications. In: al., M. M. (Hrsg.):
INTETAIN 2005. Berlin and Heidelberg: Springer, 2005 (LNAI 3814), S. 3–12

Baddeley 1986
Baddeley, Alan D.: Working memory. Oxford: Clarendon Pr., 1986 (Oxford psychology
series ; 11.)

Baddeley 2003
Baddeley, Alan D.: Human memory. Theory and practice. Hove [u.a.]: Psychology
Press, 2003

Baudel & Beaudouin-Lafon 1993
Baudel, Th.; Beaudouin-Lafon, M.: Charade: remote control of ob-
jects using free-hand gestures. In: Commun. ACM 36 (1993), Nr. 7, S. 28–
35. http://dx.doi.org/http://doi.acm.org/10.1145/159544.159562. – DOI
http://doi.acm.org/10.1145/159544.159562. – ISSN 0001–0782

Bernsen 1994a
Bernsen, Niels O.: Why are analogue graphics and natural language both needed in HCI.
In: Paternò, F. (Hrsg.): Design, Specification and Verification of Interactive Systems.
Proceedings of the Eurographics Workshop, 1994, S. 165–179

Bernsen 1994b
Bernsen, Niels O.: Why are analogue graphics and natural language both needed in HCI.
In: Paternò, F. (Hrsg.): Design, Specification and Verification of Interactive Systems.
Proceedings of the Eurographics Workshop, 1994, S. 165–179

Bernsen 1999
Bernsen, Niels O.: Multimodality in Language and Speech Systems - from theory to de-
sign support tool. Lectures at the 7th European Summer School on Language and Speech
Communication (ESSLSC). http://www.nis.sdu.dk/ nob/modalitytheory.html.
Version: July 1999

Bernsen 2001
Bernsen, Niels O.: Multimodality in language and speech systems – from theory to
design support tool. In: Granström, B. (Hrsg.): Multimodality in Language and Speech
Systems. Dordrecht: Kluwer, 2001

Bernsen & Verjans 1995
Bernsen, Niels O.; Verjans, Steven: From task domain to human-computer interface.
An information mapping methodology. In: Esprit Basic Research Project AMODEUS-2
Working Paper RP5-TM-WP17, 1995

Bers et al. 1998
Bers, J.; Miller, S.; Makhoul, J.: Designing conversational interfaces with multi-
modal interaction. In: DARPA Workshop on Broadcast News Understanding Systems
DARPA, 1998, S. 319–321

Bolt 1980
Bolt, Richard A.:

”
Put-that-there“: Voice and gesture at the graphics interface. In:

SIGGRAPH ’80: Proceedings of the 7th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM Press, 1980. – ISBN 0–89791–021–4,
S. 262–270

Bui & Rajman 2004
Bui, T.; Rajman, M.: Rapid Dialogue Prototyping Methodology.
citeseer.ist.psu.edu/bui04rapid.html. Version: 2004

Bürgy 2002
Bürgy, Christian: An Interaction Constraints Model for Mobile and Wearable Computer-
Aided Engineering Systems in Industrial Applications, Department of Civil and Environ-
mental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, Diss.,
2002

Calvary et al. 2005
Calvary, G.; Coutaz, J.; Dáassi, O.; Balme, L.; Demeure, A.: Towards a New
Generation of Widgets for Supporting Software Plasticity: The

”
Comet“. In: Bastide,

R. (Hrsg.); Palanque, P. (Hrsg.); Roth, J. (Hrsg.): EHCI-DSVIS 2004, LNCS 3425,
Springer, 2005, S. 306–324

Cheyer 1998
Cheyer, A.: MVIEWS: Multimodal tools for the video analyst. In: International

Conference on Intelligent User Interfaces (IUI’98). New York: ACM Press, 1998, S.
55–62

Cheyer & Julia 1998
Cheyer, Adam; Julia, Luc: Multimodal Maps: An Agent-Based Approach. In: Mul-
timodal Human-Computer Communication, Systems, Techniques, and Experiments. Lon-
don, UK: Springer-Verlag, 1998. – ISBN 3–540–64380–X, S. 111–121

Cohen et al. 1997
Cohen, P. R.; Johnston, M.; McGee, D.; Oviatt, Sh.; Pittman, J.; Smith, I.;
Chen, L.; Clow, J.: QuickSet: multimodal interaction for distributed applications. In:
MULTIMEDIA ’97: Proceedings of the fifth ACM international conference on Multimedia.
New York, NY, USA: ACM Press, 1997. – ISBN 0–89791–991–2, S. 31–40

Cohen et al. 2000
Cohen, Ph.; McGee, D.; Clow, J.: The efficiency of multimodal interaction for a map-
based task. In: Proceedings of the sixth conference on Applied natural language processing.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, S. 331–338

Cohen 1992
Cohen, Philip R.: The role of natural language in a multimodal interface. In: UIST ’92:
Proceedings of the 5th annual ACM symposium on User interface software and technology.
New York, NY, USA: ACM Press, 1992. – ISBN 0–89791–549–6, S. 143–149

Cohen et al. 1989
Cohen, Philip R.; Dalrymple, Mary; Moran, Douglas B.; Fernando; Pereia, C. N.;
Sullivan, Joseph W.; Jr, Robert A. G.; Schlossberg, Jon L.; Tyler, Sherman W.:
Synergistic use of direct manipulation and natural language. In: Human Factors in
Computing Systems, CHI ’89, ACM Press, 1989, S. 227–233

Comerford et al. 2001
Comerford, L.; Frank, D.; Gopalakrishnan, P.; Gopinath, R.; Sedivy, J.: The
IBM Personal Speech Assistant. In: Proc. of IEEE ICASSP’01 DARPA, 2001, S. 319–321

Elting et al. 2002
Elting, Christian; Zwickel, Jan; Malaka, Rainer: Device-dependant modality selec-
tion for user-interfaces: an empirical study. In: IUI ’02: Proceedings of the 7th interna-
tional conference on Intelligent user interfaces. New York, NY, USA: ACM Press, 2002.
– ISBN 1–58113–459–2, S. 55–62

di Fiore et al. 2004
Fiore, Fabian di; Vandoren, Peter; Reeth, Frank van: Multimodal Interaction in a
Collaborative Virtual Brainstorming Environment. In: Luo, Y. (Hrsg.): 1st International
Conference on Cooperative Design, Visualization & Engineering (CDVE 2004). Berlin,
Heidelberg: Springer, September 2004, S. 47–60

Gorniak & Roy 2003
Gorniak, Peter; Roy, Deb: Augmenting user interfaces with adaptive speech commands.
In: ICMI ’03: Proceedings of the 5th international conference on Multimodal interfaces.
New York, NY, USA: ACM Press, 2003. – ISBN 1–58113–621–8, S. 176–179

Grasso & Finin 1997
Grasso, M.A.; Finin, T.: Task integration in multimodal speech recognition environ-
ments. In: Crossroads 3 (1997), Nr. 3, S. 19–22

Grasso et al. 1998
Grasso, Michael A.; Ebert, David S.; Finin, Timothy W.: The integrality of speech
in multimodal interfaces. In: ACM Trans. Comput.-Hum. Interact. 5 (1998), Nr. 4, S.
303–325. http://dx.doi.org/http://doi.acm.org/10.1145/300520.300521. – DOI
http://doi.acm.org/10.1145/300520.300521. – ISSN 1073–0516

Hastie et al. 2002
Hastie, H. W.; Johnston, M.; Ehlen, P.: CONTEXT-SENSITIVE HELP FOR MUL-
TIMODAL DIALOGUE. In: ICMI ’02: Proceedings of the 4th IEEE International Con-
ference on Multimodal Interfaces. Washington, DC, USA: IEEE Computer Society, 2002.
– ISBN 0–7695–1834–6

Hiyoshi & Shimazu 1994
Hiyoshi, Mayumi; Shimazu, Hideo: Drawing pictures with natural language and di-
rect manipulation. In: Proceedings of the 15th conference on Computational linguistics.
Morristown, NJ, USA: Association for Computational Linguistics, 1994, S. 722–726

Huls & Bos 1995
Huls, C.; Bos, E.: Sutdies into full integration of language and action. In: Proceedings
of the International Conference on Cooperative Multimiodal Communication (CMC/95),
1995, S. 161–174

IBM 2002
IBM (Hrsg.): Developing X+V Applications Using the Multimodal Toolkit and Browser.
IBM, October 2002. – IBM

IBM 2003a
IBM (Hrsg.): Multimodal Application Design Issues. IBM, December 2003. – IBM

IBM 2004
IBM (Hrsg.): XHTML+Voice Programmer’s Guide. Version 1.0. IBM, February 2004. –
IBM

IBM 2003b
IBM Pervasive Computing (Hrsg.): Developing Multimodal Applications using
XHTML+Voice. IBM Pervasive Computing, January 2003. – IBM

Johnston et al. 2002
Johnston, M.; Bangalore, S.; Vasireddy, G.; Stent, A.; Ehlen, P.; Walker,
M.; Whittaker, S.; Maloor, P.: MATCH: An Architecture for Multimodal Dialogue
Systems. In: Proceedings of the 40th Annual Meeting of the Association for Computation
Linguistics (ACL) Association for Computational Linguistics (ACL, 2002, S. 376–383

Kobsa et al. 1986
Kobsa, A.; Allgayer, J.; Reddig, C.; Reithinger, N.; Schmauks, D.; Harbusch,
K.; Wahlster, W.: Combining Deictic Gestures and Natural Language for Referent

Identification. In: Proc. 11th International Conf. On Computational Linguistics. Bonn,
Germany, 1986, S. 356–361

Lisowska et al. 2005
Lisowska, Agnes; Rajman, Martin; Bui, Trung H.: ARCHIVUS: A System for Access-
ing the Content of Recorded Multimodal Meetings. In: Bengio, S. (Hrsg.); Bourland,
H. (Hrsg.): MLMI2004, 2005 (LNCS 3361), S. 291–304

Long et al. 2001
Long, A. C.; Landay, James A.; Rowe, Lawrence A.: ”Those look similar!” issues
in automating gesture design advice. In: PUI ’01: Proceedings of the 2001 workshop on
Perceptive user interfaces. New York, NY, USA: ACM Press, 2001, S. 1–5

Luz & Bernsen 2001
Luz, S.; Bernsen, N. O.: A tool for interactive advice on the use of speech in multimodal
systems. In: Journal of VLSI Signal Processing 29 (2001), S. 129–137

Mayer & Moreno 1998
Mayer, R. E.; Moreno, R.: A Split-Attention Effect in Multimedia Learning: Evidence
for Dual Processing Systems in Working Memory. In: Journal of Educational Psychology
90 (1998), Nr. 2, S. 312–320

McCaffery et al. 1998
McCaffery, Fergal; McTear, Michael F.; Murphy, Maureen: A Multimedia Interface
for Circuit Board Assembly. In: Multimodal Human-Computer Communication, Systems,
Techniques, and Experiments. London, UK: Springer-Verlag, 1998. – ISBN 3–540–64380–
X, S. 213–230

McGee & Cohen 2001
McGee, David R.; Cohen, Philip R.: Creating tangible interfaces by augmenting phys-
ical objects with multimodal language. In: IUI ’01: Proceedings of the 6th international
conference on Intelligent user interfaces. New York, NY, USA: ACM Press, 2001. – ISBN
1–58113–325–1, S. 113–119

Milota 2004
Milota, André D.: Modality fusion for graphic design applications. In: ICMI ’04:
Proceedings of the 6th international conference on Multimodal interfaces. New York, NY,
USA: ACM Press, 2004. – ISBN 1–58113–995–0, S. 167–174

Miyazaki 2002
Miyazaki, J.: Discussion Board System with modality variation: From Multimodality to
User Freedom, Tampere University, Diplomarbeit, 2002

Nigay & Coutaz 1993
Nigay, Laurence; Coutaz, Joëlle: A design space for multimodal systems: concurrent
processing and data fusion. In: Human Factors in Computing Systems, INTERCHI ’93
Conference Proceedings, ACM Press, 1993, S. 172–178

Ou et al. 2003
Ou, Jiazhi; Fussell, Susan R.; Chen, Xilin; Setlock, Leslie D.; Yang, Jie: Gestural

communication over video stream: supporting multimodal interaction for remote collab-
orative physical tasks. In: ICMI ’03: Proceedings of the 5th international conference on
Multimodal interfaces. New York, NY, USA: ACM Press, 2003. – ISBN 1–58113–621–8,
S. 242–249

Oviatt 2003
Oviatt, Sharon: Multimodal interfaces. In: Jacko, J. (Hrsg.); Sears, A. (Hrsg.):
The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and
Emerging Applications. Mahwah, NJ: Lawrence Erlbaum Assoc., 2003, S. 286–304

Oviatt et al. 2000
Oviatt, Sharon; Cohen, Phil; Wu, Lizhong; Vergo, John; Duncan, Lisbeth; Suhm,
Bernahrd; Bers, Josh; Holzman, Thomas; Winograd, Terry; Landay, James; Lar-
son, Jim; Ferro, David: Designing the User Interface for Multimodal Speech and Pen-
based Gesture Applications: State-of-the-Art Systems and Future Research Directions.
In: Human Computer Interaction 15 (2000), Nr. 4, S. 263–322

Oviatt & Kuhn 1998
Oviatt, Sharon; Kuhn, Karen: Referential features and linguistic indirection in mul-
timodal language. In: Proceedings of the International Conference on Spoken Language
Processing Bd. 6, ASSTA, 1998, S. 2339–2342

Portele et al. 2003
Portele, Thomas; Goronzy, Silke; Emele, Martin; Kellner, Andreas; Torge,
Sunna; Vrugt, Jürgen te: SmartKom-Home – An Advanced Multi-Modal Interface
to Home Entertainment. In: EUROSPEECH-2003, 2003, S. 1897–1900

Rajman et al. 2004
Rajman, M.; Bui, T.H.; Rajman, A.; Seydoux, F.; Quarteroni, S.: Assessing the
usability of a dialogue management system designed in the framework of a rapid dialogue
prototyping methodology. In: Acta Acustica united with Acustica 2004, 2004

Rauschert et al. 2002
Rauschert, I.; Agrawal, P.; Sharma, R.; Fuhrmann, S.; Brewer, I.;
MacEachren, A.: Designing a human-centered, multimodal GIS interface to support
emergency management. In: GIS ’02: Proceedings of the 10th ACM international sympo-
sium on Advances in geographic information systems. New York, NY, USA: ACM Press,
2002. – ISBN 1–58113–591–2, S. 119–124

Reithinger et al. 2003
Reithinger, N.; Alexandersson, J.; Becker, T.; Blocher, A.; Engel, R.; Löck-
elt, M.; Müller, J.; Pfleger, N.; Poller, P.; Streit, M.; Tschernomas, V.:
SmartKom: adaptive and flexible multimodal access to multiple applications. In: ICMI
’03: Proceedings of the 5th international conference on Multimodal interfaces. New York,
NY, USA: ACM Press, 2003. – ISBN 1–58113–621–8, S. 101–108

Ren et al. 2000
Ren, Xiangshi; Zhang, Gao; Dai, Guozhong: An Experimental Study of Input Modes
for Multimodal Human-Computer Interaction. In: ICMI ’00: Proceedings of the Third
International Conference on Advances in Multimodal Interfaces. London, UK: Springer-
Verlag, 2000. – ISBN 3–540–41180–1, S. 49–56

Schnelle & Lyardet 2006
Schnelle, Dirk; Lyardet, Fernando: Voice User Interface Design Patterns. In: Proceed-
ings of 11th European Conference on Pattern Languages of Programs (EuroPlop 2006),
2006. – to appear

Schnelle et al. 2005
Schnelle, Dirk; Lyardet, Fernando; Wei, Tao: Audio Navigation Patterns. In:
Proceedings of EuroPLoP 2005, 2005, S. 237–260

Sedivy & Johnson 2000
Sedivy, J.; Johnson, H.: Multimodal tool support for creative tasks in the visual arts.
In: Knowledge-Based Systems 13 (2000), December, Nr. 7–8, S. 441–450

Shimazu et al. 1994
Shimazu, Hideo; Arita, Seigo; Takashima, Yosuke: Multi-Modal Definite Clause
Grammar. In: COLING 1994, 1994, S. 832–836

Shimazu & Takashima 1996
Shimazu, Hideo; Takashima, Yosuke: Multi-Modal-Method: A Design Method for
Building Multi-Modal Systems. In: COLING 1996, 1996, S. 925–930

Sinnig et al. 2004
Sinnig, Daniel; Gaffar, Ashraf; Reichart, Daniel; Seffah, Ahmed; Forbrig, Peter:
Patterns in Model-Based Engineering. In: CADUI, 2004, S. 195–208

Siroux et al. 1998
Siroux, J.; Guyomard, M.; Multon, F.; Remondeau, Ch.: Modeling and Processing
of Oral and Tactile Activities in the GEORAL System. In: Multimodal Human-Computer
Communication, Systems, Techniques, and Experiments. London, UK: Springer-Verlag,
1998. – ISBN 3–540–64380–X, S. 101–110

Srinivasan & Jovanis 1997
Srinivasan, R.; Jovanis, P. P.: Effect of In-Vehicle Route Guidance Systems on Driver
Workload and Choice of Vehicle Speed: Findings from a Driving Simulator Experement.
In: Noy, I. Y. (Hrsg.): Ergonomics and Safety of Intelligent Driver Interfaces. Mahwah,
NJ: Lawrence Erlbaum, 1997, S. 97–114

Tidwell 1999
Tidwell, J.: COMMON GROUND: A Pattern Language for Human-Computer Interface
Design, 1999

Tidwell 2005
Tidwell, Jenifer: Designing Interfaces: Patterns for Effective Interaction Design.
O’Reilly, 2005

Vo 1998
Vo, Minh T.: A Framework and Toolkit for the Construction of Multimodal Learning
Interfaces, School of Computer Science, Computer Science Department, Carnegie Mellon
University, Diss., 1998

Wahlster 1991
Wahlster, Wolfgang: User and discourse models for multimodal communication. In:
Sullivan, J. W. (Hrsg.); Tyler, S. W. (Hrsg.): Intelligent User Interfaces, ACM Press,
1991, S. 45–67

van Welie & Trætteberg 2000
Welie, M. van; Trætteberg, H.: Interaction Patterns in User Interfaces. In: Proceed-
ings of the Seventh Pattern Languages of Programs Conference, 2000

van Welie 2001
Welie, Martijn van: Task-based User Interface Design, Dutch Graduate School for
Information and Knowledge Systems, Vrije Universiteit Amsterdam, Diss., 2001

van Welie 2003
Welie, Martijn van: GUI Design Patterns. In: www.welie.com – ...patterns in Interaction
Design, 2003

Wickens 1992
Wickens, C. C.: Engineering Psychology and Human Performance. New York: Harper
Collins, 1992

Wickens et al. 1984
Wickens, C. D.; Vidulich, M.; Sandry-Garza, D.: Principles of S-R-C compatibility
with spatial and verbal tasks: The role of display-control interfacing. In: Human Factors
26 (1984), S. 533–534

Wickens 1980
Chapter: The Structure of Attentional Resources. In:Wickens, C.C.: Attention and
Performance VIII. Hillsdale, NJ: Lawrence Erlbaum, 1980, S. 239–257

More Patterns for Software Companies
(VikingPLoP 2007)

Allan Kelly - allan@allankelly.net
Abstract
These patterns extend the author’s work on how software companies operate.
Together with earlier patterns the three patterns presented here look at how
combinations of products and services are marketed, how customers are managed
and how services are designed and delivered.

The patterns are presented here are: ACCOUNT MANAGEMENT, SALES/TECHNICAL
DOUBLE ACT and PACKAGED SERVICES.

1 Introduction
Many patterns have been written concerned with the design and architecture of
software systems, e.g. (Gamma et al. 1995; Manolescu et al. 2006; Schmidt et al.
2000) to name a few. Other patterns have been written describing the organizational
development of software organizations, e.g. (Bricout et al. 2004; Coplien and
Harrison 2004; Marquardt 2004) among many. The patterns presented here are
concerned with business strategy and operations of software companies.
Organizational structure will constrain the strategies available to an organization and
conversely the strategies a company pursues often dictate organizational structure.
For example staffing levels will be effected by the use of DOMAIN EXPERTISE IN
ROLES (Coplien and Harrison 2004). Similarly, a strategy of utilising offshore
development may bring JOIN FOR COMPLETION (Bricout et al. 2004) into use.

Through such mechanisms the patterns used at one level in the organization
constrain the options available at another level. As Conway (1968) suggested, the
organizational structure will influence the system structure. However, it is also true
that the system structure can effect the organizational structure (Hvatum and Kelly
2005). As Figure 1 shows, we can think of each level partially constraining the
others.

In contrast with strategy the tactics and implementation detail are often regarded as
less important. So it is that some patterns may appear to be relatively unimportant.
However, when viewed from a different perspective these details can take on
significant, and even strategic important. There are no firm boundaries between
what is tactical and what is strategic, details considered tactical today may be
strategic in future (Mintzberg 1994). Therefore one should not apply the labels
strategic, tactical or implementation too quickly.

Copyright (c) 2007 by Allan Kelly

Patterns for organizing software

development

Patterns for software design

and architecture

Patterns of software business and strategy

Gamma, et al, 1995;

Schmidt, et al, 2000

Coplien & Harrison, 2004

Kelly, 2005, 2006

Figure 1 - Patterns at one level are partially constrained by patterns at other

levels
The author’s earlier work (2005a; Kelly 2005b; 2006b) set out a framework for
applying pattern thinking in the business domain. The patterns in this paper add to a
series of patterns concerned with the interplay of product and service offerings from
an organization. Many software companies struggle to effectively deliver services
alongside products. Collectively these patterns explore why companies do this and
how they can do it effectively. Thumbnails of earlier patterns in this series are given
below.

The term software company is used broadly to refer to any commercial organization
that is reliant on sales of software based products to generate revenue. This includes
sellers of packaged software (e.g. Adobe), sellers of custom software solutions (e.g.
Accenture) and sellers of online software as a service product (e.g. SalesForce.com).
The definition does not include companies that develop their own software for
internal use (e.g. CitiGroup). Although such organizations may learn from these
patterns, they are not the primary focus of this work.

2 Audience
These patterns are intended to codify several common business practices in a pattern
language so that they may be better understood, communicated and studied. The
patterns given here are intended for those interested in how corporate strategies may
be applied. This group includes existing managers, future managers and
entrepreneurs.

In particular it is hoped that those who are on the receiving end of such strategies
and tactics will find these patterns informative and useful. Too often companies fail
to explain strategies and tactics to those whose work is affected. For example, in the
case of software companies it may be far from obvious that an ACCOUNT
MANAGEMENT pattern is being applied. Understanding what a company is
attempting, why and the implications can be beneficial to all.

The patterns in this paper, and others in the series may be read and applied outside
the domain of software companies. They may be applied to technology companies
in general and to non-technology companies in some instances. The author has
chosen to confine the domain and context of these patterns to software companies
for two reasons. Firstly this is the domain the author knows and has experience in.
Secondly, limiting the domain helps maintain the brevity of the patterns. Despite
these deliberate limitations the author believes many of these patterns may be
applied in contexts outside the software domain.
Many of the examples are drawn from outside the software domain. These examples
have been chosen primarily because they clearly illustrate the pattern in question.
Such examples also demonstrate the wider applicability of these patterns.

3 Patterns and Sequences
The patterns presented in this paper form part of a growing pattern language. As
additional patterns are added more are identified. Patterns within this language are
assembled together in sequences. It is natural to find the application of one pattern
creates the need, or opportunity, to apply another pattern. There is no mandated, or
even right, sequence through the language; each organization needs to find the
sequence(s) that works for it.
Patterns, by their nature, capture existing knowledge rather than create new
knowledge. In some cases this knowledge may not have been captured before,
although known to some individuals the knowledge may only have existed tacitly
inside the heads of individuals. Alternatively the knowledge may be embedded in
working practices, processes or market mechanisms.

These Patterns draw on experience and existing literature. Much of this knowledge
only exists as heuristics, or tacit knowledge, known only to individuals and
management groups. Presenting this knowledge in pattern form allows the
knowledge to be communicated and combined with other knowledge. Once
captured these heuristics can be examined, enhanced, refined or even deprecated.

By documenting this knowledge in literature it can be made more accessible to a
wider audience. These patterns should make this knowledge accessible to the
managers, engineers and others who need it and are tasked with implementing the
strategies.

Most of the patterns presented here have been identified by the author from his own
experience and investigation. During the pattern review process, (shepherding and
conference workshop review) additional patterns have been identified by reviewers.
Patterns are by their nature generative, as more are identified and documented more
become apparent; and as patterns are applied the need for others is revealed.
When patterns are applied together they are said to form a pattern sequence. There
may be many ways of combining the patterns in a pattern language, and each pattern
may appear in multiple sequences. Pattern sequences show the order patterns are
combined in order to make a whole.
It is not always obvious from a pattern description which patterns should be applied
together. Even if the pattern writer could specify this information they may choose

not too, either for the benefit of brevity, or to leave the reader with options. Pattern
sequences are used to describe which patterns are applied in tandem and to describe
the effect on the whole when several patterns are combined.

Naturally there are many ways in which patterns may be applied. Some patterns are
larger than others, they describe a large thing to build. The building of this thing
requires the use of smaller patterns. These in turn may require multiple patterns to
build. For example, in A Pattern Language Alexander starts with patterns for
distributing towns and cities in a region. He moves on to describe the organization
of the town and from there to the individual buildings.

It is not essential to apply every pattern in a language or a sequence. We choose
which patterns to apply and which not too. Few, if any, patterns are without
negative consequences along with the positive ones. In some cases we may decide
that despite the positive attributes we will not apply a pattern. There is nothing
automatic in the application of patterns; the decision to use, or not to use, a pattern is
purely a human one. Consequently the application of a single pattern language may
result in different systems being created.
(As an aside, it is worth noting that this implies that mechanical automatons cannot
apply a pattern language to create a whole system without human intervention. A
reoccurring themes in software engineering pattern literature are the automatic
discover and application of patterns. An understanding of pattern languages and
sequences so why this is not possible.)

When applying a pattern language we will be faced with choices. Not only must we
choose whether to apply a pattern or not but on occasions we will have to choose
between different patterns. For example, faced with limited space for a house we
may be forced to choose between WORKSPACE ENCLOSURE and DRESSING ROOMS
(Alexander 1977). Pattern writers cannot foresee every context, problem or force
that may lead to modifications when applying a pattern. Human judgement is
needed to select and adjust individual patterns and sequences.
On other occasions we may find that the application of one pattern forces us to use
another. The negative consequences of applying one pattern will create forces,
resolving these forces may require the use of another pattern.

So it is that patterns from a common language are applied in sequence. Such a
sequence forms a path through a pattern language, the result is a single whole
(Coplien and Harrison 2004).
A sequence may be a well known one or it may be one we have devised ourselves.
Individual patterns may play a role in multiple sequences; indeed the outcome of
applying one pattern in two different sequences may be different. Even when
patterns come from the same language not all possible sequences will be useful or
even make sense. Patterns taken from different languages might work together, or
they might not.
The sequences contained in this paper, indeed in any pattern paper containing
sequences, are merely suggestions and record what the author has seen work. All
but the smallest problems are likely to differ in some element from previous

problems. We should not expect to be able to apply a previous pattern sequence
exactly. Readers are encouraged to make up their own sequences.
When writing patterns it is natural to find one pattern leading to another. In writing
this collection of business patterns the discovery and documentation of one pattern
has more often then not led to the discovery of another pattern. Thus as patterns are
describe sequences are mapped out.
The application and creation of patterns is an exercise in stepwise-refinement. The
details of a large pattern are often implemented with a set of smaller patterns. These
in turn may require the use of several smaller patterns, and so on.

In part the patterns one discovers depends on the granularity of patterns, one lengthy
pattern may cover many scenarios. Alternatively, one short pattern may require
several more patterns to cover the same scenarios. It is the writer’s decision to
decide which course best explains the problems and solutions to the reader.

Figure 2 shows how the patterns in this paper connect with the other patterns in this
series. In this sequence we envisage a start-up company that uses SERVICES BEFORE
PRODUCTS in order to bootstrap itself into business. Once in established the
company uses START-UP SERVICES FOR PRODUCTS to help new customers use their
products. Over time the company continues to support customers by using
CONTINUING SERVICES FOR PRODUCTS.

At this point the established company faces a number of opportunities, some of
which are complementary and others mutually exclusive. The company may decide
to change the nature of its products business, it might decide that the supply of
services are a more lucrative endeavour and adopt SERVICES TRUMP PRODUCTS and
COMPLEMENTOR, NOT COMPETITOR. Whether moving to a service only model or
continuing to supply products the company may also adopt a PACKAGED SERVICES
model to simplify the sale and delivery of service offerings.
When services are the main offering from the company the role is constant. But
when services are offered to supplement a product their role their role changes over
time. Recognising this change will help organize and structure the services
provided.
Whether pursing the services route or not, the company may decide to leverage its
existing customer base by using SAME CUSTOMER, DIFFERENT PRODUCT. In order to
implement this pattern ACCOUNT MANAGEMENT can be used. However since active
customer management is a time consuming business the company may also adopt
SALES/TECHNICAL DOUBLE ACT to spread the work.

Figure 2 - Map of the Products & Services Pattern Language and possible
sequences

4 The Patterns

4.1 Pattern thumbnails
PACKAGED SERVICES

Page 9

Services can complement a product offering and
provide a good revenue stream. However, they
can also be expensive to operate. Treating
services more like products can make them easier
to sell and help keep costs down. Therefore
package them as products with defined cost and
outcome.

ACCOUNT MANAGEMENT
Page 13

Existing customers are an asset to your business;
it is more cost effective to sell more to existing
customers than find and sell to new customers.
There is value in the relationship itself.
Therefore, actively manage the relationship. You
can improve customer retention and provide
opportunities for new sales and co-operation.

SALES/TECHNICAL
DOUBLE ACT
Page 17

Managing the commercial and technical aspects
of a customer relationship can be a big job and
requires different skills. Therefore use two
people, one with a technical focus and one with a
commercial focus to manage the different aspects
of the customer relationship.

PRODUCTS AND
SERVICES
(Kelly 2006a)

Technically complicated products are not
commodities; they can be hard to use. Therefore,
offer services to help the customers in addition to
the product, e.g. a support desk and training
courses.

SERVICES BEFORE
PRODUCTS

(Kelly 2005b)

You are creating a start-up company but you are
short of money and/or need a better
understanding of the market. In order to get a
better understanding of the market you need to
get into the market. Therefore, sell consultancy
services to start with, you will generate money
and increase understanding of the market before
you start work on your product.

START-UP SERVICES FOR
PRODUCTS

(Kelly 2005b)

Your product serves a complicated market,
consequently your product is complicated.
Customers need help to get the most from the
product. Therefore, create a professional services
group within your organization and sell
consultancy services to help the introduction of

your product.

CONTINUING SERVICES
FOR PRODUCTS

(Kelly 2005b)

Complex products often require ongoing
maintenance and support. The company that
makes the product already knows a lot about the
product is well positioned to do this activity too.
By sharing knowledge between services and
products operations both can be improved.

COMPLEMENTOR, NOT
COMPETITOR

(Kelly 2005b)

Choosing to compete in multiple product
categories against multiple competitors’ means
you sometimes compete against companies who
could help sell your other products. Therefore,
withdraw weaker and less strategic products, you
can now complement your former competitors
and increase sales of your leading products.

SERVICES TRUMP
PRODUCTS

(Kelly 2005b)

Your company has been successful selling
products but you are running out of growth, you
may already be loosing money. Therefore, use
your knowledge of the products to move up the
value chain and sell services instead of or in
addition to products.

SAME CUSTOMER,
DIFFERENT PRODUCT

(Kelly 2007)

Existing customers are easier to sell to than new
ones. But if you only have one product you have
nothing more to sell. Therefore have additional
products you can sell to existing customers.

4.2 Packaged Services

 Compare two descriptions taken from the internet on 27 November

2007:
“Blue Skyline offers a mixture of consultancy and mentoring to
assist the team at the same time as enabling the delivery of the
system.” http://www.blueskyline.com
“We help companies in the chemicals industry drive their
performance to new heights by capitalizing on important business
and technology opportunities.” http://www.accenture.com

Which gives the best description of what the consultants actually
do?

Context Your business delivers technology services to corporate customers.
Problem How do you explain to customers what your services are?

Forces Services can infinitely flexible, but that makes it difficult to explain
to customers what those services are. The more variable the service
is the harder it is to explain. Using value statements and
generalisations in the descriptions makes it difficult to explain what
you do in a few words.
Customers expect consistency in service delivery. They may come
to know and trust an individual consultant. But if they only buy this
consultant’s time you loose the flexibility sell her expertise
anywhere else. If each consultancy assignment depends on a named
individual consultant it is difficult to grow a business. To be
effective consultancy businesses need to be able to swap individuals
on assignments.

Many customer problems look alike on the surface; managing a data

centre for corporation X can be a lot like managing a data centre for
corporation Y. But there are also unique problems; applications
developed for corporation X might be very different to the ones for
corporation Y.
Customers often engage consultants to reduce costs, but sometimes
they are looking for strategic services to create a competitive
advantage. And sometimes cost reduction is strategic.

Solution Think of your services like products; explain what you do as a

well-defined product. Demonstrate that you understand the
customer problems your services are addressing. Add product-
like attributes to your services. Market your services as products
with defined problems, defined actions, and defined outcomes.
Segment your customers, potential customers and their problems;
identify the common problems that occur again and again. Devise
common service solutions that can address these problems.
(Separate the unique problems and deal with them as unique
projects.)
Initially you need to work on marketing. Market your services as
products. Next you need to work on your delivery to create common
solutions to common problems.

Marketing:
• Identify the common problems, common causes and common

‘pain points.’
• Produce case studies and datasheets for your services. Show

how your services solved the problems.
• Identify organizations that you expect to have the same issues

and engage with them.
Delivery:

• Break the services down into repeatable steps and where possible
offer a defined price for a defined benefit or outcome.
Commonality will allow economies of scale to be extracted.

• Consultants need to start assignment thinking about what they
have done before and what they can reuse.

• Consultants need to be trained to find, and rewarded for finding,
commonalities across services and service engagements.

• Consultants need to be motivated to share personal findings with
each other.

You will need to decide the financial model behind your service
products. A defined problem resulting in a defined outcome
suggests a fixed price service rather than charging for services on a

time and material basis.

Consequences Treating your services like products makes it easier to describe what
you actually do, and what the end result is. The more you make
your services look like products the more consistency customers can
expect, and will come to expect.

Customers are buying a specific product not a specific individual so
it is easier to swap consultants during the assignment. This does not
mean they will welcome the replacement of an experienced
consultant with a new hire. Sometimes it may pay to send new hires
out as “shadow consultants” (no charge to customers) until they
learn the basics.

Commonality benefits customers because services are delivered
more quickly, at a lower cost with fewer complications. However,
offering different customers the same packaged service treats all
customers the same – all solutions come from the same cookie-
cutter. The specific needs of an individual customer may be lost.
Where needs are different they must be treated differently.

When a customer is seeking to minimise cost they may be happy
with a cookie-cutter approach because it delivers maximum cost
reduction. But then they will not recognise any competitive
advantage if you deliver them the same services as their competitors.

Over time commoditisation of these services may occur. When this
happens you may either lead the transition to commoditisation or
change your strategy.
Managing services like products entails cost. You will need to
appoint product managers or senior consultants who are responsible
for identifying and managing the service products.

Offering a customer a fixed price on a service contract can be
difficult and leave little room for unexpected problems. Indeed
many organizations find charging for unexpected problems to be
profitable. (Consult the discussion in CONTINUING PRODUCTS FOR
SERVICES (Kelly 2005b).)

Variations -

Examples “These days, IBMers talk about "productising" services, turning
them into clearly defined offerings that can be marketed and
delivered in much the same way that new mainframe computers are.
[IBM’s] small and medium-sized business unit, for example, now
distributes a catalogue outlining its main services.” Financial Times
(Waters 2006)

Also known
as

-

Related work -

Sources Financial Times 11 July 2006 - “IBM repackages brain power”
(Waters 2006). Image from iStockPhoto.com (4179993)

4.3 Account Management

 Big customers who spend a lot of money with you can represent a

big chunk of your income so they are not “just another sale.” When
your product is important to their company you are more than just a
supplier and your relationship is about more than just products.
There is value in the relationship itself not just the sales.
Understanding your relationship will help you better serve your
customers, secure future revenue and create opportunities to
increase your profits.

Context You are selling technical products and services to corporate
customers. SAME CUSTOMER, DIFFERENT PRODUCT (Kelly 2007)
suggests you benefit the most when you sell more products to your
existing customers. You might be using

Problem How do you avoid losing existing customers? How do you
understand what customers really want?

Forces Finding and selling to new customers is expensive but, by definition,
existing customers already have at least one of your product(s) so
there is no obvious sale to be made.
Corporate customers face multiple opportunities and problems in
their own business and market. Some of these issues may create
opportunities for your products and services but you need to know
what these issues are.
Making a sale should create opportunities for further sales and
support contracts. But your customers are your competitor’s
prospects; you still need to ensure your customers remain your
customers. You want them to buy more from you but once you have
made the sale you need some reason to stay in contact.

Sales staff are selected and rewarded on the basis of their ability to
win sales, but managing an account over the long term requires more
than just selling. Customer may be deterred from talking to people
in your company if every time they do a salesman tries to make
another sale.

Solution Treat customers as valued collaborators; continue to actively
work with customers after a sale has closed. Appoint named
account managers who can build a relationship with both the
enterprise and the individuals who work there.

Seek to understand how the customer is using your products, the
challenges facing the customer and opportunities that exist for
helping customers meet these challenges. Ask lots of questions: How
they are doing with the product? Was it what they expected? Do
they need any help? What else could the product do?
Managing a customer account goes beyond selling and there is more
to keeping customers happy than selling at a low price. It includes
the post-sales experience: support services, training and customer
follow-up. This is provided by a team not an individual.
Rather than focus on the next sale, focus on keeping your customer
happy. In the process find out what else they need and who else in
the organization may benefit from use of your product. Continue to
learn about your customer’s needs and their problems. When the
time is right offer them your solutions.

Create a culture that encourages ongoing contact and dialogue with
customers. Build continuity in the relationship; be responsive to the
customer needs and de-emphasis contact based purely on sales. Aim
to stay involved over the long time and build a trusted relationship
with customers.
Sales people may not be the right people to manage an ongoing
relationship. While they may be good at opening doors, making first
contact and closing a deal they may lack the skills and motivation to
maintain an ongoing relationship.
One option is to split the sales and account management roles. Once
a sale is made, or even before, introduce an account manager who
will continue the relationship and look after the customer. However
some sales people may resist “handing over” an account they have
won. Alternatively supplement your sales people with account
managers who look after the account when there are no sales in
prospect. Use SALES/TECHNICAL DOUBLE ACT in both cases to split
commercial and technical issues. Product managers (and business
analysis) can supplement account managers to increase the depth of
customer understanding.
When recruiting account managers look for people who will be
interested in building a relationship rather than just making the next
sale. Account managers who are simply sales staff working on
commission may not be motivated to keep a relationship going when
there is not sale in prospect. Balance remuneration so staff can
afford to build the relationship rather than just sell, sell, sell.

According to McKenzie (2001) a customer relationship is a
conversation with exchanges. There is value in the relationship
itself, not just the product/money exchanges. Customers who see
value in the relationship will continue the conversation by buying
more products. Active account management represents an
investment to maintain and increase that value.
No one pattern or single set of actions can guarantee your customers
return to buy more from you. By building a trusting relationship and
continuing to learn about your customers you should at least see
problems before they occur, and position yourself to find
opportunities.

Consequences Selling additional products and services to existing customer can be
cost effective and information rich. Technology change creates
opportunities for everyone: customers, competitors and yourself.
Engaging with a customer on a regular basis will allow you to learn
their future growth plans and requirements. Knowing customers’
future needs can inform your own business decisions leading to
better products and benefiting both customer and supplier.
Competitors – especially new entrants – lack the customer assets
you have. Investing in your customers will create a deeper
relationship thus making it more difficult for competitors to poach
business.
Account managers will need to make visits to the customer and
spend time to understand the customer. Too much customer contact
may annoy the customer and make them feel they are being
constantly sold too. Having other points of contact, like customer
care and product managers, will help build trust and collect
information without a sales motivation.
An active account management programme will cost. You will need
to employ additional staff; pay salary, travel and entertainment
expenses even when sales are not being made. Such expenses may
be seen as easy savings when times are tough but they represent
investment in your relationship with customers and keep open the
prospect of future sales.

Variations -

Examples A London software company supplied applications to most of the
major players in the mobile telecoms market. The remaining sales
prospects were small fry. New sales had to come from selling more
products to existing big customers so it was important to create a
positive sales, and post-sales, experience. A hard sales approach
might secure the immediate sale but damage the relationship and
future prospects. Account management was handled by a
SALES/TECHNICAL DOUBLE ACT, one for commercial issues (sales)
and one for technical issues (everything else).

Another London software company, this time in the media sector,
had salesmen make an initial sale. They then handed accounts over
to dedicated account managers. However the hand-over was poorly
defined, sales staff didn’t like giving up customers and the account
managers lacked technical skills. In some cases it worked, in others
it didn’t.

Also known
as

-

Related work This pattern can be used to help implement ITS A RELATIONSHIP NOT
A SALE from Customer Interaction Patterns (Rising 2000). BUILD
TRUST and other patterns from the same language are also useful.

CONTINUING SERVICES FOR PRODUCT (Kelly 2005b) describes how
to continue services as additions to your product sale. Services like
technical support and training can generate continuing revenue over
the lifetime of a product.

Sources Image from iStockPhoto.com (4583601)

4.4 Sales/Technical Double Act

 Allan was responsible for evaluating and selecting an enterprise

search engine. Downloading and installing the trial software was
easy but then technical problems and questions arose.
When the search engine salesman called he brought a technical
consultant with him. The consultant was knowledgeable about the
things the salesman wasn’t and could discuss technical issues in
detail. Even after the sale the technical consultant kept in touch.

Context You are using ACCOUNT MANAGEMENT to sell high margin technical
products to business customers.

Problem How do your avoid overwhelming your account managers with
commercial and technical issues? - Both before the sale and the
after.

Forces Selling a technical product involves more than talking about
technology; there are commercial (e.g. price) issues to discuss. But,
technical people aren’t usually good at commercial aspects and sales
people aren’t usually proficient in technical aspects.
Even when you can find someone who can cover the commercial
and technical aspects of a product there is often too much for one
person to take in. Technical products often require in-depth
technical knowledge and commercial knowledge.
Within customer organizations the people who make the technical
decisions are often different from the people who make the decisions
on expenditures. These groups may expect to deal with different
levels of seniority and expertise in your organizations.
Discussing commercial and technical questions for a complex
product takes a lot of time and energy. But you don’t want to spend
all your energy on these questions. At the same time as negotiating
the deal you want to gain insights into your customer’s business and
how they want to use the product.

Solution Have your customer account managers work in pairs, one
handles the commercial aspects of the product and the other
handles the technical aspects. This will allow you to hire the best
possible sales people and technical people for your product.
Individuals can focus on what they do best rather than trying to
master diverse skills.

Technical managers should come from a technical domain and
should be trained in-depth on the product. Some technical managers
may come from internal groups like development or support. Sales
people may not need to understand the product in-depth but they
should know the benefits and advantages of its application. Each
group needs to respect the other and refer questions when
appropriate.
While technical managers may be involved in pre-sales calls their
contact with customers should also extend beyond the initial sale.
As technical manager win the trust and confidence of customer’s
staff your overall corporate relationship will deepen. You will better
understand your customers and serve them better.

Technical managers may help clients with technical support issues,
configuration, installation and training. Be careful to not overload
the technical manager with too much work, most likely they will be
working with several customers. With growth you may want to
create dedicated groups to deal with specific issues and relieve
pressure from technical managers, e.g. a technical support desk and
a training team.
The sales oriented commercial managers can concentrate on the
financial and business aspects of the deal, e.g. pricing, terms and
conditions, license renewals, support agreements, etc. They can take
a strategic view and look for opportunities to sell more products.
Both managers should talk regularly about the customer, their
current needs and their future needs. They should meet with the
customer regularly and conduct periodic account reviews that bring
together everyone involved with managing the customer account.
Such reviews can help identify sales prospects and future client
needs.

Consequences Using more than one person to manage the customer relationship
allows people to specialise in what they are good at. It is easier to
find dedicated individuals than expect individuals to be proficient in
very different fields.
Having more than one person involved in a customer relationship
acts as a safeguard against people leaving your company. Losing a
sales person can be unfortunate; if they take your customers with
them it can be a disaster. With two people managing the account

you can provide continuity.

Where more than one person is involved in a sale the customers may
become confused about who deals with which aspects. Even if
customers wish to clarify the relationship you might prefer to leave
the boundaries vague. Blurring the lines may create opportunities
for extra contact and information exchange. Still be careful not to
confuse your customer too much.

Customers will receive better commercial and technical service.
You will gather more information because different staff talk about
different things to different people. Over time you will gain a more
complete view of your customer. Customer employees will come to
trust and share information with your representatives. Having two
views of the customer will improve your understanding of the
customer and issues, particularly political ones, involved in a sale.
Having multiple account managers further increases the costs of
managing a customer account. This is feasible for high margin
products, for low margin products you might need to use service
teams rather than individuals.

Variations When customers are very large one account manager may not be
enough to cover all contacts. Multiple account managers will allow
responsibilities to be divided. Different managers may deal with
different customer divisions or geographical areas.

Examples Many organizations employ pre-sales consultants or sales engineers
as technical contacts before the sale is made. This is a form of
double act but sometimes ends once the sale is made.

Also known
as

-

Related work Sales/Technical Double Act can be used to help implement
ACCOUNT MANAGEMENT.

Software developers sometimes use DEVELOPING IN PAIRS (Coplien
and Harrison 2004) to increase productivity. One developer reviews
work as it is performed and helps with the decision process. This is
a form of double act but the developers have similar skills and
periodically switch the roles of reviewer and coder.

Sources Image from iStockPhoto.com

5 Acknowledgements
I am indebted to my shepherd for VikingPLoP 2007, Uwe Zdun, for his time,
comments and observations. I would also like to thank the participants of the
VikingPLoP workshop who reviewed this paper, and in particular Cecilia Haskins,
Jim Coplien, Jan Reher, Jürgen Salecker and Kristian Elof Sørensen.

6 History
Date Event

December 2007 Post conference revision published to web prior to
proceedings.

September 2007 VikingPLoP 2007 conference

Summer 2007 Shepherding for VikingPLoP

January 2007 Extracted from EuroPLoP submission

December 2006 First draft

7 Bibliography
Alexander, C., et al. 1977. A Pattern Language: Oxford University Press.

Bricout, V., D. Heliot, A. Cretoiu, Y. Yang, T. Simien and L. Hvatum. 2004. "Patterns for
Managing Distributed Product Development Teams." In 9th European Conference on Pattern
Languages of Programs (EuroPLoP), eds. K. Marquardt and D. Schutz.
Conway, M.E. 1968. "How do committees invent?" Datamation(April 1968).

Coplien, J.O. and N.B. Harrison. 2004. Organizational Patterns of Agile Software
Development. Upper Saddle River, NJ: Pearson Prentice Hall.

Gamma, E., R. Helm, R. Johnson and J. Vlissides. 1995. Design Patterns - Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

Hvatum, L. and A. Kelly. 2005. "What do we think of Conway's Law not?" In 10th European
Conference on Pattern Languages of Programs (EuroPLoP), eds. A. Longshaw and W. Zdun.
Irsee, Germany: UVK Universitatssverlag Knstanz GmbH.
Kelly, A. 2005a. "A few more business patterns." In EuroPLoP 2005, eds. A. Longshaw and
W. Zdun. Irsee, Germany: UVK Universitassverlag Konstanz GmbH.
Kelly, A. 2005b. "Business Strategy Patterns for Technology Companies." In VikingPLoP
2005. Espoo, Finland.
Kelly, A. 2006a. "Patterns for Technology Companies." In EuroPLoP, eds. L. Hvatum and
W. Zdun. Irsee, Germany: UVK Universitassverlag Konstanz GmbH.
Kelly, A. 2006b. "Positioning Business Patterns." In EuroPLoP, eds. W. Zdun and L.
Hvatum. Irsee, Germany: UVK Universitassverlag Konstanz GmbH.

Kelly, A. 2007. "More patterns for Technology Companies." In EuroPLoP, eds. L. Hvatum
and T. Schümmer. Irsee, Germany: UVK Universitassverlag Konstanz GmbH.
Manolescu, Dragos-Anton, Markus Voelter and James Noble. 2006. Pattern Languages of
Program Design 5. Upper Saddle River, N.J. ; London: Addison-Wesley.
Marquardt, K. 2004. "Ignored Architecture, Ignored Architect." In 9th European Conference
on Pattern Languages of Programs (EuroPLoP), eds. K. Marquardt and D. Schutz. Irsee,
Germany: UVK Universitatssverlag Knstanz GmbH.

McKenzie, R. 2001. The Relationship-Based Enterprise: McGraw-Hill Ryerson.
Mintzberg, H. 1994. The Rise and Fall of Strategic Planning: FT Prentice Hall.

Rising, L. 2000. "Customer Interaction Patterns." In Pattern Languages of Program Design 4,
eds. N.B. Harrison, B. Foote and H. Rohnert: Addison-Wesley.

Schmidt, D., M. Stal, H. Rohnert and F. Buschmann. 2000. Pattern-Oriented Software
Architecture. Chichester: Wiley.

Waters, R. 2006. "IBM repackages its brain power." In Financial Times.

Easy GUI maintenance

Met-Mari Nielsen

Systematic Software Engineering A/S

Søren Frichs Vej 39

DK-8000 Århus C

+45 89432000

mmn@systematic.dk

Abstract: Throughout an applications lifetime style guides are employed to create and

maintain consistency. Features covered in such documents range from code syntax to

interaction flows and visual elements. The patterns presented in this paper will help

control and maintain aspects of the GUI in the simplest possible way, by addressing these

considerations in the system architecture and ensuring that the GUI design is easily re-

configured.

Intended audience

If you are in the process of designing architecture and/or defining an implementation

processes these patterns will help you to reduce development and test effort as the

application evolves.

As the aim of these patterns is to reduce testing and implementation effort introduced by

the use of visual guidelines, people with interest in visual guidelines, such as user

experience engineers, graphics designers and testers may be relieved to know that such

patterns exist and will have an interest to promote such patterns in the development

process.

Note that although this paper is written using a pattern format I have only observed two

projects actually implement the solutions described. If you have any extensions,

comments and actual uses of these “proto-patterns” please feel free to contact me at

mmn@systematic.dk.

Table of contents

Intended audience...1
Visual Consistency Framework... 3
Problem ..3
Getting the picture ..4
Discussion ..5
Solution ..6
Related patterns ..8

Evolution of Visual Guidelines ... 9
Problem ..9
Getting the picture ..10
Discussion ..11
Solution ..12
Related patterns ..13

Known uses ... 14
Acknowledgments ... 14
References ... 14

Visual Consistency Framework

Thumbnail: It has been decided that your project needs some visual consistency

guidelines. When, how and where can you verify that the application adheres to this?

When a guideline, such as a color guide, is implemented in the code and not subsequently

changed or overruled, the code itself will assure that the guide is adhered to. If the

guideline is encoded in a central well-known place, implementation of GUI-features will

be easier. Utilize an object oriented component framework and use inheritance to limit

the “hotspots” of code impacted by visual consistency guidelines.

Problem

Visual consistency is one of the elements that give an UI a “professional” look and to

achieve this projects often use some kind of guidelines and/or process such as review or

test. Below is an example of common mistake when implementing a GUI component:

In Example 1 the spacing between individual fields will probably look okay if the two

panels, Task and Version, are implemented and reviewed separately, but when put

together on a single screen the layout looks slightly unbalanced, and users may think that

the items in Version are more related to each other than the items in Task. If this is not

your aim then Example 2 is what you want in the final version.

Getting the picture

The following stories are brief descriptions of two actual projects. In the first case the

implemented layout characteristics worked and in second case it did not.

The team implemented a school-maintenance system (covering scheduling of classes and

teachers, computation of salaries and administration of pupils) using Smalltalk and

VisualWorks for the code. The style guide had been coded into the framework from the

very beginning and was actually never used in its paper incarnation. It was an integrated

part of the component hierarchy and everybody knew to look in the code for the GUI

definitions of BaseWindow, BaseButton and BaseLabel and not to overrule these settings.

The team used these settings to implement complex schema-components and to

reconfigure the GUI when screen real estate became scarce. There was never an actual

need to verify distances between input labels or sizes of components against the written

style guide.

Another project implemented a large diagnostic tool showing system status data, using

JAVA and Swing components. From the very beginning all GUI constants were grouped

and implemented in property files, but according to feature and not component type. All

GUI settings were separated from the actual implementation via these property files (to

the degree of each label having uniquely named width and height properties). Each time a

new window was added to the application the property had to be hunted down in the

property file, or more commonly visually checked that it approximated the guide. It was

even harder to ensure that labels from different screenshots, showing similar data, would

have the same layout. Not to mention the rework each time a parameter needed to be

shown with new layouts such as number of decimals or another text alignment. Actually

the project had to have separate work tasks just for estimating the impact of such rework.

Discussion

Both the projects had their textual style guides in place and visual consistency guidelines

played a large part in these documents. None the less none of the developers on either

project ever really read the style guide.

The team implementing the diagnostic tool relied on formal reviews of the GUI as part of

the development process. They also used focus groups, expert users making draft designs

and several reviews during the implementation phase to ensure usability and visual

consistency. The school maintenance project relied on one small user group to define

requirements and two tester/expert users to verify that requirements were met. After

initial development no special considerations towards usability or visual consistency were

made, it was not needed during the last year or so of development.

Style guides in textual form are common tools in software projects and two excellent

guides on how to develop and use style guides are found in [Wilson] and [Gayle]. But

personal experience says that developers will avoid reading documentation if they can

and just copy what they need from the existing code base. It can be tedious work to verify

that a printed style guide actually is followed as opposed to an implemented one; its time-

consuming tasks both to verify and implement graphical content. If one can ease the

“burden” of copy paste coding and still ensure that visual consistency is maintained, time

and effort can be eased when it comes to verifying that the GUI actually follows the

guide lines.

Existing GUI frameworks are often large and full of settings and details to ensure that the

framework can accommodate all kinds of programmer needs. Most projects do not have

resources to ensure the framework is used as intended. Somebody will find something

that works and that will be it. Sometimes it will be a team member, who knows how to

use the framework, but this will not always be the case and there will always be copy-

paste programming to propagate the bad solutions as well as the good ones.

[Reed & Davies] consider the following elements important: font styles, font sizes, colors

and contrast. When combining these elements in a conceptual hierarchy and applying this

hierarchy consistently throughout the application. the user can easily decode the

information displayed by the system and react accordingly. The problem then remains to

settle on limited set of graphical effects and how maintain this set throughout the

applications life time.

Solution

Use your architecture to impose limits on your GUI framework. Enforce visual

consistency rather than implementing ad-hoc solutions and relying on visual tests of

guide line compliance. Develop the framework in a controlled way to keep it simple but

applicable to your project.

The solution consists of equal parts programming and process as underlined in the

following sections.

Do not rely solely on some off-the-shelf framework without analyzing your project

specific needs first. Most applications usually settle on some small subset of components

during development and if this subset is defined and controlled early in the projects

lifetime this can add greatly to visual consistency.

Control is important. Even though most of these frameworks have default settings that

allow them to comply with industry standards, it is possible even with a fixed set of

guidelines, for two developers or two teams to develop widely different interfaces.

Ensuring that developers use a baseline, such as a project-specific set of components

helps emphasize and control when implementation deviates from the common

framework.

public abstract class MyBaseGroupBox extends JPanel{
private Insets baseInsets;

public MyBaseGroupBox(){
 setVisualElements();

}

private void setVisualElements(){
GridBagLayout layoutManager = new GridBagLayout();
setLayout(layoutManager);
baseInsets = new Insets(3, 20, 10, 15);

}

public void addElement(Component element, GridBagConstraints constraints){
if (constraints == null){

constraints = new GridBagConstraints();
}
constraints.insets = baseInsets;
add(element, constraints);

}
}

Code example 1: Simple (JAVA SWING) example of an abstract root class controlling
margins

When it comes to simple and “global” stuff which are the guts of visual consistency-

parameters, data that define visual consistency should be controlled using a hierarchy.

Using inheritance to define this hierarchy will make it very clear what impact changes

will have on the system, which components are affected and what subclasses are needed

to support all necessary visual elements.

Code design

Ensure that root classes are defined for each type of visual element, and let these classes

“hard-code” the needed settings defined in the style guide.

A good way to signify a root class is give it a ‘base’-name.

Inheriting from the class MyBaseGroupBox shown in Code example 1 would ensure that

components adhere to a guideline stating that components inside panels should have the

following margins: top = 3, left = 20, bottom = 10 and right = 15.

Development Process

Let your development process ensure that:

All GUI-elements use these root classes, without overruling the base settings.

Set up checkpoints, such as code reviews, where deviations from the general component

interface can be caught and discussed before being added to the projects code base.

Keep deviations few and well documented. It should be clarified both in code and the

textual style guide why, when and where deviations were made.

Consequences

Using a component hierarchy as suggested above would eliminate inconsistencies such as

the one in Example 1. The initial effort on deciding how, where and what interfaces to

implement will pay off when it comes to the later stages of implementing and testing.

All GUI elements by default follow the visual guide, and thus testing is reduced to

ensuring that the root-classes are implementing the needed settings.

If a GUI element does not adhere to the guide, the deviation is documented and facilitates

tracking of visual inconsistencies.

Related patterns

If the system accumulates deviations from the root classes or visual guide lines are

changing then look to “Evolution of Visual Guidelines”.

Evolution of Visual Guidelines

Thumbnail: Laying down a style guide in concrete doesn’t work well within an iterative

development process. Visual guides are often redefined during the implementation phase,

fonts are not readable, labels are too small, margins are badly balanced, and screen real-

estate is limited. But as systems mature and content is released GUI changes become

expensive in terms of development hours and systems testing. To lower the cost of GUI-

implementation and recapturing let your architecture contain a minimal implementation

of “Visual Consistency Framework” and expand this in small and controlled increments.

Problem

Visual consistency is one of the elements that give an UI a “professional” look. As

customer needs are analyzed, implemented and tested, visual guidelines change. If the

architecture is not in place incremental updates to visual consistency becomes close to

impossible.

When potential users are introduced to a working GUI, development is often at a stage

where process, architecture and 3rd-party tools have been decided. If you haven’t made

allowance for user feedback, how will you get from Example 3 to Example 4 late in the

development process. User objections at this stage could range from the fact that it’s just

plain unreadable or that screenshots print badly to the fact that the color signifies

something special in a system already part of the user domain. You can never uncover all

user needs, or even what they believe they need, up front.

Getting the picture

The following examples are brief descriptions of two actual projects. In first case the

architecture and design decisions worked against the visual consistency patterns, in the

second visuals was what sold the product.

A company decided to develop a multiplayer online game. The GUI-interaction

components would be based on an open-source library, Qube, which had no generic

controls. Qube only had limited capabilities for importing fonts, displaying text and had

no window/component hierarchies. Thus the GUI-framework was developed in-house in

C++. All graphics design lay in the hands of one chief designer. To ensure consistency

within the game-elements, graphics design included visual consistency of user controls

and in-game windows. From the beginning visual consistency elements was only

implemented when needed, adhering to “the rule of three” [Fowler]. This gave the GUI

freedom to move later in the process when feedback was received. New framework

elements were added as game concepts were implemented and their graphics elements

were designed. There was no need at any point of the development process to decide

upon a fixed future set of components.

Another project had decided to use C#, windows forms and Infragistics components to

define the user interface for a “very large and complex database system”. Using windows

forms provided the project with default implementation of visual consistency guidelines.

Initially fast GUI-development was ensured by the GUI-builder and its grid-guide for

placing components. But about 5 months after project kick-off it became clear that some

new guidelines were needed and these guidelines would cover already implemented

content. Using windows “default” styles had left considerable space for developer-

specific visual styles even when adhering to the textual style guide. Unfortunately the

GUI-builder did not politely tolerate reverse-engineering of its code files and tended to

crash the development environment. The project opted to live with these crashes and with

each style-change update the relevant components, one by one.

Discussion

If the GUI-architecture is in place, incremental updates to component look-and-feel need

not have great impact on the code. But often the team runs into problems. Even if the

product is developed with a focus on usability, the style guide is not quite done when the

first features are getting implemented. And style guides change over time as needs

change. A font once thought nice doesn’t work in the needed point size, adding new

elements to an already developed GUI may change the margins impacting layout for the

whole application. Adding user interface “polish” is an activity postponed to late in the

development process, when the layout is finalized.

The team developing computer game designed their architecture such that changes to

look-and-feel would not have great impact on development and test. Their focus was such

that importing and maintaining the library of graphical assets should be easy and that

GUI was easily reconfigured during development. The team developing the database

system decided to minimize the use of application-specific components. They also

wanted to avoid GUI-code being written by developers. But as GUI guidelines developed

a growing amount of time was spent on refactoring and reviewing the GUI.

If the project team grows beyond a few developers and the technologies chosen hinder

GUI refactoring, then the GUI will likely suffer from growing visual inconsistency. This

result in a project where knowledge gained (regarding customer needs and professional

look and feel for that particular domain) is not utilized. Besides the obvious consequence:

that the application will loose that overall “professional” look, developers and User

Interaction Specialists will loose job satisfaction knowing that the job done should have

been better.

A GUI style guide will never stop evolving unless you stop listening to users or terminate

development on the project. Even if you have implemented a “Visual consistency

framework” it can easily evolve into the generic monolith of GUI frameworks that we all

have encountered or even implemented at some point in our careers. The story about the

“Generic component” that grew in complexity and at last had to be refactored at great

cost or even disposed (at great cost) is one often told about GUI components. When

designing and evolving a GUI such tendencies must be kept in check.

Solution

Guideline and implement only the components needed for the GUI to keep consistency,

and use a rule like “the rule of three” to determine when something is generic.

Consider a “Visual Consistency Framework” as a means to accomplish an architecture

that supports easy system wide GUI changes, but keep it limited to avoid the “Generic

component”. Use your development process to determine what component parameters are

relevant for refactoring/extending the framework.

Code design

The initial phase of the project visual guidelines need not cover the whole problem

domain. Thus the component framework need only cover the initial set of guidelines, just

long as there is a central “hotspot” in the code from where the GUI-settings can be

controlled. Limit the component framework to the bare basics and extend as needed.

Labels, buttons and window definitions will cover most initial demands.

In Code example 2 and 3 MyBaseTextField easily makes the requested change in

background color (described in Example 3 and 4). Even if MyBaseTextField had not

been controlling color settings, the change from JAVA defined settings to application

specific settings would not be difficult. If all relevant components inherit from

MyBaseTextField it is a matter of overriding JtextField’s setBackground method and

documenting the deed.

Development Process

Couple the code design with a development process which ensures that when new GUI

elements are needed or deviations grow beyond one or two GUI elements, the code is

refactored and a new base for these elements is included in the framework. If there is

some sort of non-code based documentation of the visual guidelines, remember to mirror

the new base settings there as well.

Consequences

If a GUI element does not adhere to the guide, the deviation is documented and it’s easy

to fingerprint such changes by examining the component hierarchy and thus determine

when the style guide should change.

Experiments with new styles can be easily prototyped and tested as the code changes are

limited to the base-classes.

Verification of new global guides can be carried out by glancing through the GUI to

verify that the new style looks okay in already implemented features. You already know

that all GUI elements adhere to the visual consistency guide, and thus there is no need to

measure screen elements manually. If something looks wrong then it’s easy to redefine

the layout.

Related patterns

Implementing a “Visual Consistency Framework” will allow “low-cost” refactoring of

the GUI

Known uses

The pictures used to illustrate the patterns all come from projects where I in some way or

another had opportunity to work with the user interface. The oldest project was initiated

in 1994 (the one with Smalltalk), while some are to run for a few years yet.

Acknowledgments

Thanks to Peter Sommerlad for his shepherding and to Katrine Ravn for encouragement.

References

[Gale] Stephen Gale ” A Collaborative Approach to Developing Style Guides”, CHI 96 APRIL 13-18,

1996

[Wilson] Chauncey E. Wilson, “Guidance on Style Guides: Lessons Learned”, in STC Usability SIG

Newsletter: Usability Interface, Vol 7, No. 4, April 2001

[Leadly et. Al.] Brenda Leadley, Haunani Pao, Sara Douglas ” Creating a User Experience Culture at a Non-

Software Company” ACM International Conference Proceeding Series; Vol. 135

[Reed & Davies] David Reed, Joel Davies “The convergence of computer programming and graphic design”,

Journal of Computing Sciences in Colleges, Volume 21 , Issue 3 (February 2006) Pages: 179 –

187

[Fowler] Martin Fowler “Refactoring Improving the Desing of Existing Code”, Addison-Wesley 1999

Content Adaptation for Mobile Web Applications

Bettina Biel, Volker Gruhn
University of Leipzig

Department of Computer Science
Klostergasse 3, 04109 Leipzig, Germany

[biel,gruhn]@ebus.informatik.uni-leipzig.de

www.lpz-ebusiness.de

Abstract: Since multiple devices with different needs access mobile
Web applications, content must be adapted to each device’s
capabilities. However, to maintain different versions of one
application’s content is tedious. Therefore automatic authoring and
adaption of content becomes necessary. Depending on whether content
can be generated from scratch or whether it already exists or is
possibly provided by a third party, implementations for content
adaptation vary. This paper presents two patterns: one that generates
device specific content at the server, and another one that adapts
existing content at an intermediate component.

1. Introduction
Users accessing the Internet with mobile devices such as cell phones, smart phones, or
Personal Digital Assistants (PDAs) are faced with constrained resources and processing
capabilities making the mobile devices non-suitable for the vast majority of web pages that
were designed for larger screens, i.e. laptops and desktop computers.

Reading and interacting with a mobile web application is more difficult than interacting in a
desktop environment due to small screens, cumbersome input methods and environmental
distractions. If content providers have to deal with a lot of pages, pictures and video data, they
do not want a costly manual re-design for each type of mobile device. Of course, this problem
can be handled by producing for the lowest common denominator, but the resulting pages do
not meet user requirements: The majority of devices cannot provide their usual and optimal
interactions; and the resulting usability is poor. Hence, content needs to be adapted to the
capabilities of the different devices. Content adaptation renders one original content version
for different devices by selecting, generating, or modifying content.

Mobile Web applications run on a Web server and allow user interaction only via a Web
browser (client). Such client/server architectures fall into a spectrum of full and thin client
architectures, or flexible client/server architectures [1]. There are three basic approaches to
adapt content: server-side, intermediate, and client-side content adaptation.

Copyright © 2007 by Bettina Biel, Volker Gruhn

It depends on the distribution to what extend a developer can control the response to a
browser request. Server-side dynamic content adaptation can generate marked-up content
from raw material in well-known formats which allows full control, intermediate content
adaptation and client-side adaptation have to process existing content with an existing
markup.

This paper presents two patterns. SERVER-SIDE DYNAMIC CONTENT ADAPTATION is a server-
side-only content generation pattern, INTERMEDIATE CONTENT ADAPTATION can be
implemented on the server-side or on an intermediate tier (e.g. a proxy). A pattern for CLIENT-
SIDE CONTENT ADAPTATION is presently being investigated.

The next section shows how the patterns of this paper are related. It is followed by a section
that contains the patterns and a summary. In the Appendix, a table lists summaries of related
patterns.

2. Relations between the Patterns
SERVER-SIDE DYNAMIC CONTENT ADAPTATION for the server-side-only content generation and
INTERMEDIATE CONTENT ADAPTATION for the server-side or intermediate tier (e.g. a proxy)
address one main goal, i.e. CONTENT ADAPTATION.

Fig. 1 illustrates the relations between the three patterns. Note that the arrows follow UML
class diagram semantics, i.e. the specialized patterns inherit all information provided by their
parent pattern.

SERVER-SIDE DYNAMIC
CONTENT ADAPTATION

INTERMEDIATE CONTENT
ADAPTATION

CONTENT ADAPTATION

Figure 1. Relations between the patterns of this paper

Sections of the patterns include context, scenario, problem, forces, solution, consequences,
related patterns and evidence/known uses.

To help the reader keep the relation between the patterns in mind, the parent pattern’s sections
are labeled “common”. This general pattern will not have a section about specific solutions,
consequences and evidence/known uses. Analogous, the specialized patterns do not include
the sections scenario and problem.

3. Patterns
This section describes the patterns: first of all the parent pattern containing the common
ground (esp. regarding the scenario, problem and forces), followed by the inheriting patterns
SERVER-SIDE DYNAMIC CONTENT ADAPTATION and INTERMEDIATE CONTENT ADAPTATION.

Pattern: CONTENT ADAPTATION

Common Context: Multiple devices with different needs access mobile Web applications,
that have to deliver content suitable for each device.

Common Scenario: A user traveling by train wants to get some information about her train
connection and tries to access the mobile Web site of a railroad company. But her mobile
phone cannot display the web site properly: the browser cannot interpret the markup code and
shows an error message.

Common Problem: Different mobile devices have different input/output capabilities and thus
require data in different formats. To prepare content only for a few particular devices would
exclude many users, and development and maintenance of the different versions would be
very time-consuming. How do you adapt dynamic or static content automatically to device
properties?

Common Forces:

• There are a lot of different mobile devices, and for a smooth user experience, it is
necessary to present content that is adapted to the needs of a certain mobile device.

• Manually re-authored content maintenance is very time-consuming; and simple
automatic re-authoring does not produce user friendly results. Often the same content
is just minimized, resulting in too many and too small pictures, too small font sizes,
too many interaction steps, too large forms, too much costly network traffic. For these
reasons, a more sophisticated approach to deal with content is necessary, although this
will consume effort at the beginning of the development process.

• Content must be prepared with some editorial skill: it must be written for the Internet
(see the pattern INVERSE PYRAMID WRITING STYLE in Duyne et al. [2], summarized in
the Appendix).

• It may be necessary to establish a Secure Socket Layer (SSL) to ensure secure direct
connections between two parties. This is important for user trust and acceptance in m-
business, e.g. for the use of services such as m-payment, m-banking, e-mail.
Customers will not use such services if there are no reliable security mechanisms like
for example SSL-technology.

• If there are adaption-based changes to web pages and content, copyright questions
regarding abridged text or cut pictures might be raised.

• Due to the extra time delay introduced by the adaption of content, scalability and
resulting performance problems have to be considered.

Common Solution: Use semantic information, device profiles and according style sheets to
adapt content to device properties.

Related Patterns: Different client-server architectures make different approaches possible.
The pattern refers to three specialized patterns: SERVER-SIDE DYNAMIC CONTENT ADAPTATION
presents a server-side-only content generation; INTERMEDIATE CONTENT ADAPTATION can be
implemented on the server-side or on an intermediate tier (e.g. a proxy); a pattern for CLIENT-
SIDE CONTENT ADAPTATION, that adapts the content at the client, is presently being
investigated (and therefore not in the scope of this paper).

Pattern: SERVER-SIDE DYNAMIC CONTENT ADAPTATION

Context: Consider a thin client architecture with a thin mobile client without caching and
data storage and a fat server that adapts the content and stores data. The server is responsible
for all logic: It will generate content for each kind of device, considering the format of the
code, the screen size, and the input/output capabilities of the devices.

Forces:

• A set of new markup tags and attributes could be implemented to write device-specific
source code, but such an extension of markup standards like HTML would not be
understood by many browsers.

• For general forces, see parent pattern CONTENT ADAPTATION.

Solution: Implement dynamic generation of tailored content for mobile devices by using
semantic information in raw content, device profiles and according style sheets.

event
generate

Figure 2. Coarse-grained structure of SERVER-SIDE DYNAMIC CONTENT ADAPTATION

A client sends a HTTP request to a server. Using this information the (mobile) device type
can be detected by a DEVICE SELECTOR. A controller uses a profile data base to determine the
device’s capabilities and constraints. It holds all necessary information for the adaptation:
screen size, input/output capabilities, and the requested source code format of the device. The
controller will use this information to decide on a device class. This device class is needed for
the selection of a specific style sheet of a class which will be used by the controller to process
the content data and generate a mask that will be sent to the device later.

The raw content needs to include Meta information, i.e. semantic information that indicates
possible fragmentation of content and content’s priorities. It should be prioritized what
content must and what content can be presented (depending on importance) and what atomic
elements have to be presented on one page together, i.e. which dialog fragments must not be
separated (for example form fields) to ensure a user-friendly SMALL SCREEN PAGE FLOW. The
page flow consists of all paths possible that a user can take “walking through” an application.
This information is important for pagination.

Depending on the device class a controller can decide what page flow is used. This implies
that different page flow versions have to exist for different screen size classes. Style sheets for
each device class are used to provide information about how the controller should render the
elements and what media variants the source code should refer to (see Fig. 1). This way, rule
changes at that level do not require recompilation of the transcoding component, and many
different device-specific style sheets can be provided.

This solution is also usable for language translation, Web accessibility and speech-enabling
efforts.

Consequences:

+ Full control of the content generation is allowed and should provide the best results as
the server generates adapted content.

o The pattern resents a useful realization of the concept “once authored, used
everywhere”. It is necessary to spend time to design content and its structure.
Although extra time spent at the beginning saves time in the maintenance of the basic
content compared to the labour-intensive maintaining of multiple content versions.

+ This solution prioritizes content to decide what is sent to a smaller device. Depending
on the language that is used, a sophisticated control is possible.

+ Regarding security of transactions for example in m-commerce applications, this
pattern allows to establish direct Secure Socket Layer (SSL) connections.

+ There are also no copyright issues if one’s own intellectual property is changed.

+ There is only the typical delay for generated web pages at run-time.

+ The pages/masks that are generated are device specific.

o The quality of the results depends on correct and stable device detection. A device
profile data base has to be kept up to date and complete (for example using the User
Agent Profile that describes all characteristics of a device available at public or
commercial Web sites).

Related Patterns: If a third party has to deal with delivered content and needs to prepare it
for processing, the server-side solution is not very helpful: alternatively, an INTERMEDIATE
CONTENT ADAPTATION can be accomplished. The parent pattern of both patterns is CONTENT

ADAPTATION. The pattern DIALOG FLOW MANAGER ([3], summarized in the Appendix) can be
used to control such page flows dynamically.

Evidence/Known Uses: DiaGen generates content using an annotated XML-language, but
does not provide multimedia elements [5]. Goebel et al. [6] present a Java software
architecture for the adaptation process including device identification, classification, session
management, data input validation, dialog fragmentation, and transcoding.

Pattern: INTERMEDIATE CONTENT ADAPTATION

Context: The content cannot be generated but is received from a third party, e.g. there are
many Web sites to be adapted, or existing content should be used as is.

Consider a Web proxy (or an extra tier on the server side) which enables browsing of mobile
web applications on PDAs or mobile phones without changes on browsers or servers, by
working as an intermediary between clients and server.

Forces

• For general forces, see parent pattern CONTENT ADAPTATION.

Solution: Implement a dynamic adaption of content, by using a pipeline that holds all
information how content is produced in response to a request.

The central idea of a pipeline {Buschmann, 2002 #190} is to combine components in a
sequence configuration to process incoming data that is passed along. The output of one
component is piped as input into another component.

Figure 3. Coarse-grained structure of INTERMEDIATE CONTENT ADAPTATION

There are three types of pipeline components for this pattern. Generators take the static or
dynamic content from an incoming request and provide a method to feed data (i.e. generate
XML as SAX events). This stream of events is processed by one or more transformers.
Transformers use style sheets to transform the raw content into other content by using style
sheets. At the end of the pipeline, the stream of events is serialized by a component called
serializer that produces a HTTP response.

The best results can be achieved by using style sheets for different device classes and if
received content is organized in a very structured way (XML, XHTML). If the content is not
very structured, a generator has to transform non-processable content into standardized
processable content by using annotations (in the source code text or by an external annotation
file). The annotation needs to hold Meta information, i.e. semantic information that indicates
possible fragmentation of content and content’s priorities. It should be prioritized what
content must and what content can be presented (depending on importance) and what atomic
elements have to be presented on one page together, i.e. which dialog fragments must not be
separated (for example form fields) to ensure a user-friendly SMALL SCREEN PAGE FLOW. The
page flow consists of all paths possible that a user can take “walking through” an application.
This information is important for pagination and can be used by the style sheets.

Which style sheet can be used for one content type or device class is defined in one pipeline
document (see Listing 1), defining a work flow, i.e. the sequence and which requests are
diverted to go through a particular set of components.

<?xml version="1.0" encoding="iso-8859-1"?>
<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
 <!-- use the standard components -->
 <map:components>
 <map:generators default="file"/>
 <map:transformers default="xslt"/>
 <map:readers default="resource"/>
 <map:serializers default="html"/>
 <map:selectors default="browser"/>
 <map:matchers default="wildcard"/>
 </map:components>
 <!-- let cocoon know how to process requests -->
 <map:pipelines>
 <map:pipeline>
 <!-- respond to *.html requests with
 our docs processed by doc2html.xsl -->
 <map:match pattern="*.html">
 <map:generate src="{1}.xml"/>
 <map:transform src="doc2html.xsl"/>
 <map:serialize type="html"/>
 </map:match>
 </map:pipeline>
 </map:pipelines>
</map:sitemap>

Listing 1. The minimal “sitemap” configuration for the Cocoon Framework [4] defines
components and then defines in what order and how they are used.

To reduce response time, not all content should be generated anew. XSLT-based transcoding
lacks of performance due to the time necessary for interpretation. It is recommended to pre-
process the code, i.e. general content, graphical and multimedia elements for typical screen
sizes should be prepared for variant selection according to the quality of service and the
detected device type.

Consequences:

+ This pattern might be accomplished by a third party, who receives third party content and
needs to prepare it for processing. By that, the content adaptation can be outsourced.

+ It is possible to use the pattern as an add-on to an existing Web site that can remain.

+ Although content is tailored to the devices needs, the quality of the results depends on to
what extent the pipeline can gain full control of the content and the annotation.

o The less structured and multifaceted the original content is the more difficult and time-
consuming it becomes to implement generators. It might become too costly to implement
this pattern.

- If this solution is implemented as a proxy, it can access but not decode and modify the
content that flows through a Secure Socket Layer (SSL) connection; at least not without
violating security and provoking messages to users about this.

- If there are adaption-based changes to Web pages and content, copyright questions might
be raised. This has to be negotiated with the content providers.

o XSLT-based transcoding lacks of performance due to the time necessary for
interpretation. Response time can be reduced, I not all content should be generated anew
but if the code is pre-processed and stored in a data base and selected at run time (variant
selection).

Related Patterns: The pattern SERVER-SIDE DYNAMIC CONTENT ADAPTATION does not need
to use annotation in an external file. Instead, this Meta information is included in the raw
content from which device specific content is generated. The parent pattern of both patterns is
CONTENT ADAPTATION. The pattern implements a Pipeline (PIPES AND FILTERS, {Buschmann,
2002 #190}).

Evidence/Known Uses: IBM WebSphere Transcoding Publisher is a plug-in for the product
“Caching Proxy” and combines transcoding technology with caching proxy functions on one
location. It uses a chain of filters for the dynamical adaption of web content. It uses the
WebSphere Transcoding Publisher's XML-based annotation language that is used to identify
and extract specific portions of a document, without having to touch the HTML source. [7]
Cocoon is an open-source publishing framework that uses a pipeline that organizes in what
order different kinds of contents are adapted, i.e. generated into a SAX stream (prepared
formats are for example XML, XHTML, XML-based Web services, XSP, JSP, Flash, Python,
WebDAV, Plain structured text), transformed and serialized to new documents (for example
XML, HTML, PDF, OpenOffice, RTF, Flash, SVG, Text) [4].

4. Summary
We presented patterns that show how content can be dynamically adapted for mobile use. The
main difference between the patterns is what content can be used and how the content is
adapted. SERVER-SIDE DYNAMIC CONTENT ADAPTATION allows full control of the content
generation and enables best results as the server generates adapted content, and presents a
realization of the concept “once authored, used everywhere”. The INTERMEDIATE-SIDE
CONTENT ADAPTATION is expected to work with very good structured content to provide
optimal results. A pattern for CLIENT-SIDE CONTENT ADAPTATION, that adapts the content at
the client, is presently being investigated.

5. Acknowledgments
We would like to thank our shepherds Wolfgang Keller and Alejandra Garrido for their
valuable comments that helped to improve the paper. We would also like to thank the
participants of the VikingPLoP 2007 workshop for their insightful feedback and suggestions.
The Applied Telematics/e-Business Group is endowed by Deutsche Telekom AG.

6. Appendix: Thumbnails
This table lists thumbnails of related patterns. These patterns address the problem of allowing
different mobile devices to access a desktop or mobile web application.
Table 1: Pattern Thumbnails for improving screen control multichannel access

Pattern Name Problem Solution

DIALOG FLOW
MANAGER [3]

How do you ensure that nested
dialogs can be handled in an
intuitive way? For predictability,
systems should be able to
encapsulate complex tasks and
remember how far users have
come in performing a task.

Introduce a central dialog manager
that is responsible for managing the
dialog flow dynamically.

DEVICE
SELECTOR
(work-in-
progress)

There are multiple mobile device
types, each representing a different
channel, i.e. with different output
formats, interaction schemes and
network connectivity. How can a
system decide which kind of
content it has to provide?

Classify the devices using a profile
database.

SMALL SCREEN
PAGE FLOW
(work-in-
progress)

Different screen sizes and limits to
transmitted file sizes (“deck size”)
make it necessary to decompose
the original content into many
pages. How do you ensure that
certain dialog fragments are not
separated?

Decide which content is relevant,
and which is additional. Define
small page flows1 at design time,
i.e. parts of a complete page flow
that must or can be presented
together.

MULTICHANNEL
ACCESS (work-
in-progress)

Mobile devices' capabilities range
too widely to manually provide
and maintain content for all of
them. A web application should be
accessible via each channel and
present content that is tailor-made.
How do you provide interpretable
masks and the smaller dialog flow
for different devices?

Use a profile database to look up
device properties, break up the
dialog flow into a suitable number
of steps and generate the masks
afterwards.

1 The page flow consists of all paths possible that a user can take “walking through” an application.

Pattern Name Problem Solution

MODEL VIEW
CONTROLLER
(first described
in [8])

How can data be presented using
many different presentation styles?

The three components model (data
storage), view (different ways of
content presentation) and controller
(management of application and
presentation logic) have different
and strictly separated tasks – to
enable many views of one data
model (for example a desktop web
channel and different mobile web
channels).

INVERSE-
PYRAMID
WRITING STYLE
[2]

“People move about quickly on the
Web, skimming for information or
key words. If a site’s writing is not
quick and easy to grasp, it is
usually not read” [2]

“Start with a concise but descriptive
headline, and continue with the
most important points. Use less text
than you would for print, in a
simple writing style that uses
bullets and numbered lists to call
out information. Place embedded
links in your text to help visitors
find more information about a
related topic. Experiment with
different writing styles for
entertainment purposes.” [2]

7. Bibliography
1. Jing, J., A.S. Helal, and A. Elmagarmid, Client-Server Computing in Mobile

Environments. ACM Computing Surveys, 1999. 31(2).
2. Duyne, D.K.V., J. Landay, and J.I. Hong, The Design of Sites: Patterns, Principles,

and Processes for Crafting a Customer-Centered Web Experience. 2002, Boston, MA
Addison-Wesley.

3. Biel, B. and V. Gruhn, Dialog Flow Manager, in 11th European Conference on
Pattern Languages of Programs (EuroPLoP 2006). 2006: Irsee, Germany.

4. Cocoon. The Apache Cocoon Project. 1999 [cited 2007 30 Apr 07]; Available from:
http://cocoon.apache.org/.

5. Book, M., V. Gruhn, and M. Lehmann, Automatic Dialog Mask Generation for
Device-Independent Web Applications, in 6th International Conference on Web
Engineering (ICWE2006). 2006: Palo Alto, CA, USA.

6. Goebel, S., et al., Software Architecture for the Adaptation of Dialogs and Contents to
Different Devices, in ICOIN 2002. 2002, I. Chong, LNCS 2344.

7. Spinks, R., et al., Document clipping with annotation. 2001.
8. Reenskaug, T., MODELS - VIEWS - CONTROLLERS. Xerox PARC technical note

December 1979, 1979.

	coverpages.pdf
	1-SustainableIndustrialParks_Haskins_VP07_final
	Sustainable industrial park
	Acknowledgements
	References

	2-VikingPLoP2007_DynamicExtension_final
	2.blank-page
	3-RiegerStateMachines
	4-Reher VikingPLoP 2007
	4.blank-page
	5-ratzkaViking2007
	5.blank-page
	6-Proceedings Kelly V2007
	6.blank-page
	7-Easy_GUI_maintenance
	8-Biel-VikingPLoP07-final

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

