A Framework and Patterns for the Specification of
Reactive Systems

Leonor Barroca Pedro Henriques
Dept. of Computing Dep de Informatica
The Open University Universidade do Minho
Milton Keynes, U.K. Braga, Portugal

Abstract

We defend the need of a dual approach for specifying reactive systems and reasoning
about their timing properties; this dual approach uses a notation for the specification
of behaviour, preferably a graphical one, and a temporal logic to express formally, and
reason about, this behaviour. The combination of two representation schemes forms the
basis of a generic framework that can be instantiated for different choices of notations.
Two instantiations of the framework, illustrating its use, are discussed. To describe in
detail one of the instantiations, the ArchSM method, we use the pattern form.

1 Introduction

This paper discusses the application of patterns to detail the development of software envi-
ronments, namely object-oriented frameworks for the specification of, and reasoning about,
the behaviour of reactive systems and their timing properties. Reactive systems are those
whose behaviour is strongly determined by the response to the occurrence of external and
internal events, with or without time constraints.

We have been developing notations that are formally underpinned and that can be used
pragmatically to build models of systems with important timing constraints. We defend the
need of a dual approach that uses a notation for the specification of behaviour, preferably a
graphical one, and a temporal logic to express formally, and reason about, this behaviour.
We made specific choices for the notations to be used when developing our specifications.
However, we recognize that these choices are not the only ones possible. When developing
environments to support specification and verification we opted for taking a more generic
approach that would allow for different choices. This led us to define a generic framework
that can be instantiated for each specific approach. In this paper we define the generic
framework and two of its possible instantiations to illustrate its use.

One of the instantiations of the framework is described in detail using the pattern form. As
suggested by Johnson[Joh92], the use of a pattern to give the details of the design is a good
way of documenting the framework. The development of the framework led us smoothly to
the identification and acceptance of the patterns used.

An object-oriented framework [WB88] is a set of classes that are integrated and interact
in a well defined way to provide a set of services. The use of object-oriented technology
brings in a set of facilities. The encapsulation provided by the classes supports abstraction,
and the interaction through message passing facilitates the interface between components.
Frameworks provide a structured way of defining the architecture of the system to be devel-
oped, by describing an abstract model to solve similar problems. They represent a strategy

for reuse in a specific domain or across a wide set of applications.
The framework discussed in this paper captures specific problem domain expertise, environ-
ments for the specification and verification of reactive systems.

According to [GHIV95], an object-oriented pattern is a set of interrelated objects, with
well-defined interfaces, aiming at the characterization of a problem, and its context, and
describing a reusable solution for it.

Three components will be defined when describing a pattern, namely:

e pattern name
e problem description: intent, motivation and applicability

e proposed solution: participants and their structure

It is often suggested that a clear identification of the forces and consequences of adopting
that solution should also be present. We omit these components as our use of patterns is
in the context of detailing frameworks. The concept of pattern does not restrict the kind of
problems to be solved. It can be used to describe how to apply a methodology to accomplish a
given task. In this case, the proposed solution is not concerned with implementation details;
it contains the steps to be followed, or the strategy to be used.

1.1 Paper Overview

In the next section we introduce the architectural framework for the specification of reactive
systems. We define its purpose, the sets of participating classes, and two known examples
of use.

Section 3 is devoted to present two of the patterns designed to instantiate the proposed
framework. We describe the approach followed to derive the patterns and the notation used.
Section 4 summarizes the proposal presented.

2 The Architectural Framework

The problem we want to address is the representation of, and reasoning about dynamic
behaviour of reactive systems using a dual notation approach.

2.1 Purpose of the framework

The purpose of this framework is to describe the architecture of a specification method based
on a dual approach. This description is intended to support the construction of environments
for the pragmatic application of the proposed formal method.

By dual approach we mean the use of two different notations; a graphic notation to represent
the behaviour of a system, and a mathematical notation to formally describe the properties
of models and reason about the behaviour.

2.2 Definition of the framework

This framework consists of seven classes divided into three groups. Two main classes model
the two notations; three application classes model application specific knowledge; two oper-
ational classes define the interconnections between the application classes.

Main Classes

e Diagram Notation—describes the diagrammatic notation used to specify the temporal
behaviour of the system components and their interactions.

e Logic Notation—defines the axiomatisation of the formal language used to represent
the properties and the axioms.

Application classes

e Behaviour diagrams—contains a set of drawings (in the diagrammatic notation defined
above) that represent the system behaviour.

e Behaviour axioms—contains a set of sentences (in the logic defined above) that ax-
iomatizes the system behaviour; generated by the mapping class (see below).

e Properties—contains a set of sentences (in the logic defined above) that defines the
system properties to be proved; defined by the user.

Operational Classes

e Mapping—defines the translation rules deriving the axiomatisation from the diagram-
matic description of the behaviour of a system.

e Theorem Prover—defines the representation schemas to describe the logic notation
in the logic of the theorem prover; this class is only present in case the environment
provides tool supported verification.

The main classes correspond to the philosophy of each specification approach; they define
the concepts used in the specification.

The operational classes represent the strategy of transformations; they are instantiated by
engines that can be implemented manually or supported by software tools.

The application classes are repositories of information used by the engines and built accord-
ing to the main classes.

Figure 1 illustrates the proposed framework. The main classes are shown on top with a
thick border; the application classes below with a thin border; the operational classes in the
bottom with a dashed border. The links between the main and application classes represent
a satisfaction relationship; the arrows connecting the application and operational classes
establish the direction of transformation.

2.3 Uses of the Framework

In this section we present two instantiations of the framework, ArchSM and TRIO.

2.3.1 Example 1: ArchSM

A collection of techniques has been proposed under the name of Architectural Specification
Method (ArchSM), for the formal specification of real-time systems [AB96, BFS95]. ArchSM
supports modelling and reasoning about three important aspects of a reactive system: tim-
ing properties, behaviour, and structure. ArchSM uses a graphical notation based on Timed
Statecharts (TSC) for describing the dynamic behaviour, and Real Time Logic (RTL) for
reasoning about the temporal properties.

4 N
Diagram Logic
Notation Notation
\ J
e B\ e ™ e
Behaviour Diagrams Behaviour Axioms Properties
N J N J N
T P\ T
1 \ !
I \ !
| \)
| | |
i I \
\ / \
N\ - - - "= -=-=-=-=-=-= N P / \ N P ~
-7 T ~~__1 Theorem Prover

Figure 1: The Framework

This environment has been applied to the specification of several real-time systems [AB96,
CBF195, BFS95, BHV96).

Temporal Behaviour

State transition diagrams have been widely used as a design tool in industry. We chose to
represent the timing behaviour of systems with a graphical notation, based on TSC. This has
the advantage of being accessible to those without a great level of mathematical background,
while being sufficiently expressive and formal. Statecharts [Har87] are an extension of state
transition diagrams for the specification of reactive systems. Timed Statecharts [HMP91]
extend this notion to deal with time constraints.

Reasoning about Temporal Behaviour

The production of rigorous arguments is important for the verification process. In ArchSM,
RTL is used to construct the arguments about time properties of systems whose timing be-
haviour is expressed using TSC. Real Time Logic [JMS88] is a formal language for capturing
the time constraints of real-time systems. It deals with time quantitatively, instead of just
relative temporal order. In ArchSM, to produce rigorous statements and proofs of timing
properties, statecharts are treated as theories in RTL.

ArchSM as an instantiation of the framework

ArchSM can be seen as a specialization of the generic framework defined above, according
to the following instantiation.

Diagram notation | Timed Statecharts (TSC)

Logic notation Real Time Logic (RTL)

Mapping a set of translation rules TSC —RTL
Theorem Prover HOL (alternatively Isabelle, .. .)

2.3.2 Example 2: TRIO

TRIO[GMMO0)] is a first order temporal logic augmented with temporal operators to spec-
ify properties that change with time. A method has been proposed at the Politecnico di
Milano[FMM94] to combine Timed Petri Nets (TPN) [MF76] with TRIO. This method is
also a dual-language approach for the analysis of real-time systems. Behaviour is expressed
using TPN; and the axiomatisation of the behaviour is expressed in TRIO axioms and proof
rules. There are many similarities between this approach and ArchSM: TPN is used to de-
scribe the dynamic behaviour instead of TSC; TRIO is used to reason about the temporal
properties instead of RTL.

TRIO as an instantiation of the framework

TRIO is also an example of the specialization of the proposed framework with the following
instantiation.

Diagram notation | Timed Petri Nets (TPN)

Logic notation TRIO

Mapping axiomatisation in TRIO of TPN
Theorem Prover The proof is carried out manually

2.4 Design of the framework

To complete the definition of the framework we need to specify the classes identified above.
For each class we have to define its attributes, their type, and, if appropriate, its operations.
The classes that describe notations (main classes) and those that contain application specific
knowledge (application classes) are static and have no relevant behaviour to be described.

In the next section we specify the two main classes, give the ArchSM instantiation for each,
and describe their design using the pattern form.

3 Patterns describing the Framework

In the previous section we mentioned the ArchSM realization of the proposed framework. In
this section we describe patterns to give detail of that instantiation.

We considered the specification of the DiagramNotation class and LogicNotation class
of the framework; this led us systematically to understand the information of, and the design
of the patterns.

3.1 Notation

The notation used to define the types of attributes is based on set theory.

To describe the patterns we have adapted the template suggested by Gamma et al in [GHIV95].
The diagrams presented to define the structure of each pattern follow the OMT [RBPL91]
object model notation.

3.2 Pattern 1: TScSpec

The definition of this DiagramNotation class is as follows.

class: DiagramNotation
attributes:
atomic-elements: P Token
compound-elements: P Token
start-element: Token
structural-rules:
P(compound-elements — P (atomic-elements U compound-elements))

operations:
restrictions:
"the start-element must be a compound-element"

In the context of ArchSM, where the chosen notation is based on TSC, the class defined
above is instantiated as follows.

object: TSC instance-of DiagramNotation
attributes:
atomic-elements: {state, event, action, condition, time—interval}
compound-elements: {system, eventflowdiagram, class,
machine, transition, label, effect,
trigger, source, target, initial—state}
start-element: system
structural-rules: {transition — state X state X label,
label — trigger X effect,
trigger — event U time-interval,
effect — P event X action
machine — initial-state X PP state X PP transition,

}

SYSTEM

T

Class

components
represented broadcast J
created
(EventFlowDiagram W
L representation

_
?events (Machine 1
M

Event

W
I w

initialstate

Name

? transitions

L e a

states

Name

T
-

(Transition 1 State
L Condition source '
Name
target
N Y,
e
K)\
Effect 1 ’ ‘
(Event 1 (Time Interval
Action
Name L ower bound

Upper bound

Figure 2: The pattern for Timed Statecharts Specifications

The instantiation above is described in detail by the following pattern.

Name

TScSpec (Timed Statecharts Specification Pattern)

Intent

Given a reactive system, describe its behaviour based on the idea of a set of machines with
their own internal state, reacting to events.

Motivation

Reactive systems interact with the environment by changing state as a result of the occur-
rence of events or of time elapsing. As a consequence of this change of state, new events are
generated and actions performed. This behaviour is usually represented by state transition
machines preferably with time annotations. This pattern represents the concepts that are
common in the representation of this type of behaviour.

Applicability

This pattern is applicable to all specification problems where reactive behaviour is identified.
It is particularly suitable when a system can be split into interacting components exhibiting
independent behaviour.

Structure

From the information about TSC given by the class definition it is easy to infer the objects,
their attributes and interrelations, involved in that specification approach. The diagram
shown in figure 2 illustrates the structure of the pattern.

Participants

e System—the entire problem to be specified.

e Event Flow Diagram—the partition of the system into components and the com-
munication between them.

e Event—an instantaneous occurrence of and external or internal stimulus to the sys-
tem.

e Class—a component that encapsulates an individual reactive machine as a black box.
e Machine—representation of the behaviour of a reactive machine.

e Transition—representation of a firing, its causes and consequences

e Label—annotation of a transition.

e Trigger—cause of a transition firing.

e Effect——consequence of a transition firing.

e State—a snapshot of a reactive machine that determines how the machine reacts.

e Time Interval—a pair of two time bounds.

SYSTEM

representedBy

Proposition

TruthVaue Inequality K%

Symbol K>

OccurrenceW
QuantifiedFormula LogicaFormula <>

Symbol Logical Conective > ‘

Formula

Term —

[Addton <>
)) _

Figure 3: The pattern for Real Time Logic Specifications

Known Uses

The pattern proposed here has been used in the development of an environment for the
application of ArchSM [BHV96].
This pattern is also used to present ArchSM every time we want to teach it.

3.3 Pattern 2: RTLSpec

The definition of the LogicNotation class is as follows.

class: LogicNotation
attributes:
atomic-elements: P Token
compound-elements: P Token
structural-rules:
P(compound-elements — P (atomic-elements U compound-elements))
operators: P Token
axioms: P Rewriting-Rule
operations:

restrictions:

In the context of ArchSM, where the chosen notation is RTL, the LogicNotation class is
instantiated as follows.

object: RTL instance-of LogicNotation
attributes:
atomic-elements: {truth—value, variable, constant, event}
compound-elements: {formula, quantified-formula, logical-formula,
proposition, inequality, occurrence-proposition,
term, addition }
structural-rules: {formula — proposition U quantified-formula U
logical-formula,
proposition — truth-value U occurrence-proposition U
inequality,

operators: {4+, predicate-symbols (<, <, >, >, =),
occurrence-symbol 6 ,
logical-connectives (A, V, -, =),
quantifiers (3, V)}
axioms: {Monotonicity-Axioms, Start-Stop-Event-Axioms,
Transition-Event-Axioms}

The instantiation above is described in detail by the following pattern.

Name

RTLSpec (Real Time Logic Specification Pattern)

Intent

Given a reactive system, describe its behaviour based on the idea of a set of logical formulas
written in RTL.

Motivation

Reactive systems interact with the environment by changing state as a result of the occur-
rence of events or of time elapsing. As a consequence of this change of state, new events are
generated and actions performed. This pattern represents an approach that is useful to prove
properties of systems exhibiting reactive behaviour, mainly when absolute time constraints
are imposed.

Applicability

This pattern is applicable to all specification problems where reactive behaviour with time
constraints is identified.

Structure

The diagram shown in figure 3 illustrates the structure of the pattern.

10

Participants
e System—the entire problem to be specified.
e RTL spec—the temporal logic description of the behaviour of the system components.
e Formula—an axiom of the behaviour of the system.
e Logical Formula—the connection of propositions by a logical operator.
e Quantified Formula—an assertion universally or existentially quantified.
e Proposition—an assertion on the system dynamics.
e Term-—absolute time representation.
e Inequality—a relational operation between terms.
e Addition—the addition of two terms.
e Truth Value—true, or false.

e Occurrence Proposition—assertion about the n-th occurrence of an event at a
certain time.

e Event—an external or internal instantaneous stimulus to the system.

Known Uses

This pattern is used to develop specifications in RTL, and to present ArchSM every time we
want to teach it.

4 Conclusion

We have been working with a group of techniques under the name of ArchSM for the formal
specification of real time systems. ArchSM is intended to support modelling and reasoning
about time properties and behaviour of reactive systems. When we began the development
of tools for the pragmatic application of these techniques we opted to stick to a dual repre-
sentation approach without necessarily adhering to a particular choice of notations.

This decision led us to model in an abstract way the method we were working with. The
notion of framework proved to be suitable for this purpose. Although not its most common
use, we found the concept of pattern interesting to describe detail of the framework; its ap-
plicability has also been demonstrated in the subsequent development of the tools referred
above.

By using an architectural framework and patterns in the context of rigorous specifications, we
believe that this work is a contribution to the cross-fertilization between the formal methods
area and the object-oriented patterns research.

Acknowledgements
We thank the British Council and JNICT (Portuguese Junta Nacional de Investigagao

Cientifica e Tecnoldgica) for the grant under the BC/JNICT protocol, project 67/proc.423/RU,
that has supported this research.

11

We also thank Norm Kerth who was the EuroPLoP’96 shepherd for this paper for making
helpful comments that led to improvements to its first version.

We acknowledge the valuable contribution of the participants in the Writers Workshop 1:
Pattern Languages at EuroPLoP’96.

References

[AB96]

[BFS95]

[BHV6]

[CBF+95]

[FMM94]

[GHJIV95)

[GMMO90]

[Har87]
[HMPO1]

[IMS8S8]

[Joh92]

[ME76]

[RBPLY1]

[WBSS)]

J. Armstrong and L. Barroca. Specification and verification of reactive system
behaviour: The railroad crossing example. Real-Time Systems, March 1996.

L. Barroca, J. Fitzgerald, and L. Spencer. The architectural specification of an
avionic subsystem. In Proceedings of the Workshop on Industrial-Strength Formal
Specification Techniques, Boca Raton, Florida, April 1995.

Leonor Barroca, Pedro R. Henriques, and Maria Joao Varanda. Language and
Environments for the Pragmatic Applications of Formal Methods: project re-
ports. JNICT/BC — Project Report UMDITR(9507—9601), Departamento de
Informatica da Universidade do Minho, February 1996.

A. Coombes, L. Barroca, J. Fitzgerald, J. McDermid, L. Spencer, and A. Saeed.
Formal specification of an aerospace system: The attitude monitor. In M. Hinchey
and J. Bowen, editors, Applications of Formal Methods. Prentice-Hall, 1995.

M. Felder, D. Mandrioli, and A. Morzenti. Proving properties of real-time sys-
tems through logical specifications and petri net models. IEEFE Transactions on
Software Engineering, 20(2):127-141, 1994.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

C. Ghezzi, D. Mandrioli, and A. Morzenti. Trio: A logic language for executable
specifications of real-time systems. Journal of Systems and Software, 12:107-123,
1990.

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987.

T. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In Proceedings
of the REX Workshop—Real-Time: Theory and Practice, 1991.

F. Jahanian, A. K. Mok, and D. Stuart. Formal specification of real-time systems.
Tr-88-25, Dept. of Computer Sciences, The University of Texas at Austin, Austin,
Texas 78712, 1988.

R. Johnson. Documenting frameworks using patterns. In Proceedings of OOP-
SLA’92, 1992.

P. Merlin and D. Farber. Recoverability of communication protocols — implica-
tions of a theoretical study. IEEE Transactions on Communications, September
1976.

J. Rumbaugh, M. Blaha, W. Premerlani, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice Hall, 1991.

R. Wirfs-Brock. Object-oriented frameworks. American Programmer, 4(10),
1988.

12

