
Runtime Mixn and Match Design Pattern

Paul G. Austrem
Dept. of Information Science and

Media Studies
University of Bergen

Fosswinckels gt 6, 5007 Bergen
0047 55 58 41 18

paul.austrem@infomedia.uib.no

ABSTRACT
Ubiquitous computing is becoming reality, vendors are
introducing products that support ubiquitous entertainment and
media solutions, businesses are adopting service-oriented
architectures, and mobile devices are becoming service
consumers. To accomodate this foundational change, software
needs to be dynamic and adaptable. This work proposes a pattern
for resolving the need for dynamic actors by introducing the
concepts of Intents, IntentHandlers, IntentFilters and
IntentResponders. These four concepts express an abstraction
allowing for late dynamic runtime binding to solve functional
exigencies. Client software is no longer bound to specific
programs, functions or services to solve functional needs; instead
they can dynamically bind to IntentResponders to solve their
functional exigencies. The pattern may incur a slight performance
overhead, but allows for an extendable and dynamic solution.

Categories and Subject Descriptors
D.2.11 [Patterns]: Composite pattern – late binding, decoupling,
distributed solutions.

General Terms
Design

Keywords
Strategy pattern, runtime binding, architecture

1. INTRODUCTION
The ongoing movement towards the mobile and ubiquitous
computing is beginning to have implications on the way we
design software. The notion of ubiquity, and the concept of what
has become known as ”cloud computing” [1-3] promotes fresh
requirements at the architectural level when developing software.
The term ”cloud computing” is at present still a bit fluffy, and
depending on whom you ask the definition may vary.
This work defines cloud computing as meaning systems strongly
reminiscent of Service-Oriented Architecture based systems,

wherein clients (a client can be another service or an end-user),
also known as service consumers, can use published services to
fulfill functional needs (a service is a concept, and can be an
internal function, external application or an external data
provider). This imposes the need for software to be adaptable and
dynamic, beyond being just extendible and maintainable. By
saying adaptable and dynamic we mean systems that can
dynamically adapt to resolve functional challenges. A client
could, given a specific functional need, (hereafter referred to as an
intent) dynamically bind to a service at runtime to fulfill the
intent.
These novel needs will likely lead to a change in the foundational
architecture of systems. This work presents a pattern that can aid
in achieving this through the use of intents and resolvers. The
pattern is an architectural pattern, and is currently utilized in for
example the Google Android platform [4].
The following section will introduce some of the background
material motivating this pattern, this will be followed by the
pattern ”RUNTIME MIX’N MATCH”.

2. BACKGROUND
Since the emergence of the object-oriented paradigm developers
have tried to develop software that is extendable and
maintainable, however there is reason to believe that the quality
of autonomous should be added to this. The era of ubiquitous
computing will require that our software is adaptable and can
respond to challenges in its environment. The division between
installed applications running on a device and applications
leveraged as web services will be erased. Much work has been
done in the domain of service discovery especially in the area of
autonomous web service clients with dynamic discovery and
binding [5-7]. This is not a new concept; however this pattern
provides the essential architectural building blocks required to
allow for runtime switching between different applications or
services in order to fulfill a functional intent.

3. RUNTIME MIX’N MATCH

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented
in a writers' workshop at the 15th Conference on Pattern
Languages of Programs (PLoP).PLoP'08, October 18-20,
Nashville, TN, USA. Copyright 2008 is held by the author(s).
ACM 978-1-60558-151-4.

3.1 Intent
The Runtime Mix’n Match pattern allows for automated late
binding of interchangeable services to fulfill intents.

3.2 Motivation
Suppose we are building a system on a mobile device, which
allows us to edit an image taken with the device’s built-in camera
and to post this image to an FTP-server. There are three
applications on the mobile device that can assist us in achieving
this, 1) is a pure image editor, 2) is an FTP-application, and 3) is
an image editor with a built-in FTP-saving function. The only
caveat is that the third, and most appropriate option, can only be
run when the device is connected to the internet via a WLAN
connection. Currently, our user is not in an area with a WLAN
connection available. So the other two applications have to be
used to solve the functional intent.
The user doesn’t wish to know about how the data is uploaded to
the FTP-server, (s)he only needs to know that after the editing is
complete, and (s)he presses the upload button, the file will be
uploaded. The user’s intent is to upload a file, but how this is
functionally achieved is of no concern to him/her. An intent is
thus a desire to achieve a given functional goal, without having
beforehand knowledge of how it is achieved. This can be
achieved at the software level through the use of intents,
intentFilters, and intentResponders. The concept of intents is
central in this pattern – the notion of wishing to achieve a
functional goal without specifying exactly how it is to be
achieved. At the software level we are introducing a level of
abstraction between the desire, or intent to do something and the
actual function of doing it.1

3.3 Applicability
The pattern could be applied whenever you (as a client) are faced
with a situation in which a part of your application may need to
use an external application or service to achieve a functional
intent (e.g. open a webpage, upload a file via FTP, present an
image gallery). The specifics of how a functional intent is
achieved, that is which service/application was used, is forgotten
at the end of the session (a session in this respect could be the end
of the photo taking, or when closing a file – essentially the work
activity has been concluded) . The main artifact of knowledge that
is preserved is the intent, the desire to achieve a goal. Briefly
stated, the desired end result is remembered, but the means used
to reach it are discarded. There is a variation on this however,
wherein both the end and the means are stored, and until specified
otherwise the same means will be used in the following sessions
[8, 9].
Avoid hard-coding how the functional intent should be resolved,
for instance avoid direct calls to specific applications in your
code. Instead use an intent, and let the intentHandler decide how
to resolve the intent. The applicability of RUNTIME MIX’N
MATCH should be apparent if you have software that is strongly
coupled to a certain external service or application in order for it
to correctly execute.
Another scenario in which the pattern could be applied is within
the context of service-oriented architectures. The pattern would
then represent a significant infrastructural element. Essentially,
the entire messaging architecture would be based on the pattern,
and its concepts of Intents, IntenHandler, IntentFilters and
IntentResponders..

3.4 Participants
The following classes are the most central in the pattern.

• Client
- in this pattern is any element (person or application) that
has a functional intent that needs to resolve, but it does not
care about how this intent is resolved functionally. It merely
issues its intent to the IntentHandler and expects the intent to
be resolved.

• Intent
- declares the structural attributes required in order to submit
an intent and get a satisfactory reply. Contains an attribute of
type IntentResponder so it can keep a reference to any
suitable ExternalApplication to resolve that specific intent.
For instance if you consider streaming video, the first time
around the Client will submit an Intent and receive a
reference to an ExternalApplication (in the form of an object
of type IntentResponder) which can then be used at a later
occasion of video streaming.

• IntentHandler
- the IntentHandler receives the Intent from the Client. Its
task is to enquire as to whether there are any applications
that have IntentFilters that match the attributes of the Intent
of the Client. If a match is found, then this will be passed
back to the Client from the IntentHandler.

• IntentFilter
- The IntentFilter class contains some of the same attributes
as the Intent class, and similarily to the Intent class its task is
to function as a structural class holding the three attributes
that an Intent is matched against, namely action, type and
component. It will also hold a reference to the
ExternalApplication through an IntentResolver interface
type, so that the IntentHandler can pass this back to the
Client.

• IntentResponder
- this is, as previously mentioned, a marker interface2, thus it
declares no methods. It is used by the Client and the
IntentFilters to check that any potential ExternalApplication
actually does support intent resolvement, and also allows the
Client to bind to different IntentResponders at run-time.

3.5 Structure
The structure of the pattern contains the STRATEGY pattern
[10], thus it is a composite pattern. The Client class represents any
application or person with a desire to accomplish a functional
task, or more precisely in this nomenclature, it has a functional
intent. Thus, the Client may maintain an association to n Intents.
A Client may generate many intents during its execution that are
to be for example sequentially executed. Note however that these
intents are ”personal” to the Client, thus intents cannot be shared

2 Note that the concept of ”marker interfaces” is used in Sun’s

Java; for instance when marking a class as serializable, or
clonable by implementing the marker interfaces of Interface
Serializable in the package java.io and Interface Clonable in the
package java.lang respectively.

Figure 1. UML class diagram showing the structure. Abstract classes are omitted for brevity

between different Clients. This leads us to the abstract class Intent
and its derivative(s). The Intent class is essentially just a
structural class containing the constitutative attributes required to
express an intent. The attribute data contains the information
about what data you wish to edit or retrieve, for instance if you
wish to edit an image stored on your mobile device, then the
attribute data would contain the path to the appropriate file, or if
the image is treated in memory then it would contain a binary
datastream.
The other attribute, action, contains information about the action
that is to be performed. These actions could be expressed in the
form of an enumerated list, for instance EDIT_ACTION,
VIEW_ACTION, OPEN_ACTION, DELETE_ACTION,
ONLINE_ACTION, etc.

The three remaining attributes are not equally integral, for
instance the attribute type can hold a description of the data/file
type that is involved in the action, for instance it could hold
”text/html” for a webpage,”audio/wav” for an audio file or
”text/plain” for a generic text document. However this is not
necessarily necessary, because this information could be inferred
from the attribute data (but by all practical means the use of type
is encouraged to avoid unsightly string parsing when inferring the
type through data). The fourth attribute in the Intent class is
component. This attribute is concerned with explicitly denoting a
specific component to be used in order to resolve the intent, for
example if you wish to use a specific component to fulfill your
intent, maybe because the component is signed, or verified, or
you beforehand know that it is well suited (for example a
compression algorithm), then this can be declared in the
component attribute. The last attribute, extra is used to package
additional payload information, for instance if your intent is to
watch a streamed video then the extra attribute could contain the

stream data. Finally, the Intent class has an attribute
intent_responder of type IntentResponder (a marker interface
which will be discussed later).
The Intent class is an abstract class, thus variations on intents can
be added to the client without inducing changes to the client code.

The Client class is also associated with the class IntentHandler,
this associated class is the manager of all received intents. Note
that the class IntentHandler could potentially be a static class,
ensuring only one instance of it (alternatively the SINGLETON
pattern could be used although neither has been done in this
approach).
When a Client issues an Intent this is passed parametrically to the
IntentHandler. The IntentHandler will based on the contents of
the attributes data (or preferably type) and action (and possibly
the other attributes if they have been set), lookup whether there
are any IntentResponders that match the criteria set in the Intent
object’s attributes. This is accomplished by mapping the attributes
to the IntentFilters of an ExternalApplication implementing the
marker interface IntentResponder. This is the reason the
IntentResponder marker interface is included, in order to signal
that an application does offer intent resolution given the matching
of it’s intent.filters3. However a more sustainable solution when
dealing with proprietary External Applications where you do not
have preconditioned entry points for invocation would be to use
the Marker Interface as a fully operationalized interface.

3 In Java 1.5 this could be solved without the use of a marker

interface by using annotations to denote that certain applications
offer intent resolution. In C# it could be done with attributes.

Note also that there exists a strong composition relation between
the IntentFilter class and the ExternalApplication class, this is
because an IntentFilter cannot exist without it being associated
with an ExternalApplication. Once again the marker interface
IntentResponder makes its mark. This is due to the fact that an
IntentFilter can only be associated with an ExternalApplication
which implements IntentResponder.

3.6 Collaborations
Although some of the collaborations and behavior has been
outlined above in the sections Structure on page 2 and
Participants on page 2, this section will represent this in the form
of a sequence diagram, delineating all the operations and
messages that are involved in the whole process from Intent
creation to resolution.

Figure 2. Sequence diagram showing the messaging involved from intent creation to resolution

A client will initiate the process through creating an_intent object.
The intent object’s attributes data, action, etc. will be when it
(an_intent) is initialized. When this is completed, the Client
object a_client will parametrically pass the an_intent object to the
instance a_handler of type IntentHandler by calling the method
match_intent(…), which will invoke a_handler’s comparison
method (in this work, see section Sample Code on page 5, the
comparison has been handled through operator overloading).
This method will iterate through all IntentFilters and when an
application with a matching IntentFilter is found this will be
returned to the Client a_client as an object of the type
IntentResponder. Finally the Client a_client will set the
intent_responder attribute of the Intent an_intent object. When
this is done, the Client a_client will have a reference to an
external application which can be invoked whenever, in the future
as well, a need to resolve the same intent arises (for instance
video streaming, playing an audio mp3 file, etc.). The resolved
intent could moreover be serialized and reconstructed the next

time the application is started, thus allowing for a permanent
intent resolution.

3.7 Consequences
The following consequences have been identified and should be
considered when applying this pattern:
A list of selected benefits and liabilities follows, however note
that some of these may be mitigated through the implementation.

Benefits:

• Increases flexibility (at the cost of complexity and
performance). The pattern removes the need to strongly
bind any activity (playing a video, sending an email) to a
specific application. Instead this can be handled at runtime.
The cost of this is the increased complexity of the design,
and a potential reduction in performance (due to increased
messaging, pass-by-value, matching intent against intent
filters).

• Reduced coupling. The pattern encourages looser coupling
between software components in terms of “intent handler”
and “clients” separating the functional resolution from the
invoker.

Liabilites:

• Increased messaging and use of reflection. Because the
pattern relies so heavily on late/runtime binding, this will
cause increased use of reflection. For instance when
checking against the marker interface IntentResponder, this
could require checking whether the ExternalApplication
object implements the IntentResponder interface.
Additionally, the pattern is chatty; many messages are
exchanged between the Client, IntentHandler, IntentFilter
and IntentResponder. Performance-wise, using instanceof
(Java), dynamic cast (C++) or is (C#) to check whether an
ExternalApplication implements the IntentResponder
interface does not give a heavy performance hit, similarily
all the messaging will not noticeably affect performance.
However if the pattern is applied in a networked scenario
any network latency or congestion could affect the perceived
performance. The use of the marker interface is, as
mentioned, necessary in order to facilitate late/runtime
binding of intent resolvers to clients.

• Increased complexity. Since the pattern does introduce new
classes, and uses delegation and abstraction to achieve the
runtime matching and binding, this will increase the
complexity of the system.

3.8 Implementation
The pattern may utilize different models to handle certain parts of
the process. For instance, in this work the matching process is
performed by the IntentHandler as it maintains a registry of all
IntentFilters. Each IntentFilter is associated with only one
ExternalApplication. The IntentHandler iterates through all the
IntentFilters and returns the associated ExternalApplication as a
type IntentResponder of any IntentFilters that match the original
Intent.
However, another approach could be to associate the
IntentHandler directly with the ExternalApplications, this could
allow the IntentHandler to check if an ExternalApplication
implements the IntentResponder interface, in which case it could
lookup its IntentFilter and see if it matches. The advantage of this
model is it could be used in a more introspective approach. The
IntentHandler could thus check with newly added
plugins/applications whether they implement the IntentResponder
interface, in which case they can expect to find (an) associated
IntentFilter(s). This approach relieves the ExternalApplication
from having to register its IntentFilter(s) with the IntentHandler
upfront. Instead it can all be handled at runtime.
If implemented in a service-oriented architecture context, it could
be viable to place the IntentHandler on a separate server, thus all
the clients utilizing a Client’s Intents would be submitted to the
server, ensuring a centralized handler for all registered
IntentFilters.
The marker interface IntentResponder can be fully
operationalized to also provide entry points for invoking the
ExternalApplications. This is for instance done in COM’s
IDispatch [11], where the interface is operationalized with
methods that allows remote invocation of object’s implementing
it. In a heterogeneous environment this could be a platform
independent solution, whereas if you have full control over the
interfaces of all the external applications you could make do with
a marker interface. Frequently however this will not be the case,
and in which case you would need to operationalize the interface

(using for example IUknown or IDispatch [11]) so that all
ExternalApplications do provide a method for querying their
interfaces.

3.9 Sample Code
The following code is written in C# using some of the idioms of
the language (such as generics and the C# take on Enums).
However the code is still representable as high-level code
providing an understanding of how the pattern can be
implemented.

class Client

{

/*conceptually equivalent of the Client*/

static void Main(string[] args)

{

 IntentHandler handler = new IntentHandler();

 /*register two IntentFilters with two external
applications*/

IntentResponder externalApp;
IntentFilter filter;

externalApp = new externalApplication("Notepad");
filter = new
IntentFilter((int)Utility.Actions.Edit, null,
"text/plain", externalApp);
handler.add_filter(filter);

externalApp = new ExternalApplication("Wordmate");
filter = new
IntentFilter((int)Utility.Actions.Edit, null,
"text/plain", xternalApp);
handler.add_filter(filter);

/*create concrete intent, and hand it over to the
handler*/
Intent myintent = new
ConcreteIntent((int)Utility.Actions.Edit,
"d:\\mytext.txt", "text/plain", null, null);

/*place the results in a List of viable
IntentResponders, if any exist*/
List<IntentResponder> matching_responders =
handler.match_intent(myintent);

/*check for results, if any responders are found,
print their names to the screen*/
Console.WriteLine("Found " +
matching_responders.Count.ToString() + " matching
IntentResponders");
for(int j=0; j<matching_responders.Count; j++)
 {

 ExternalApplication e =
(ExternalApplication)matching_responders[j];
 Console.WriteLine(e.ProgID);

 }
}

}

Listing 1. Code for the Client class
The Client is here bundled together with the entry point of the
sample code, thus it is entangled in the creation of the
IntentHandler and some IntentFilters.

abstract class Intent

{

/*the abstract class Intent with its associated
attributes and constructor*/
public int action
public string data
public string type
public string component
public string[] extras;

private IntentResponder intent_responder;

public Intent(int p_action, string p_data, string
p_type, string p_component, string[] p_extras)
{...}

}

class ConcreteIntent : Intent
{
public ConcreteIntent(int p_action,
string p_data, string p_type, string p_component,
string[] p_extras) : base(p_action,p_data, p_type,
p_component, p_extras)

{...}

}

Listing 2. Code for the Intent and ConcreteIntent classes

Listing 2 shows the core code for the structural classes Intent and
ConcreteIntent. Note that the ConcreteIntent class’ constructor
merely delegates the whole process to the super constructor (in
C# this is done by a call to ”base:”, whereas in Java the equivalent
would be ”super()”).
class IntentHandler
{

private List<IntentFilter> registered_filters;
private List<IntentResponder>
matching_responders;

public IntentHandler()
{registered_filters = new List<IntentFilter>();}

public void add_filter(IntentFilter filter)
{ registered_filters.Add(filter); }

public List<IntentResponder> match_intent(
Intent an_intent)
{
/*lazy initialization*/
if (matching_responders == null)
matching_responders = new
List<IntentResponder>();

/*clear it of previous results before adding
matching responders*/
matching_responders.Clear();

/*loop through all registered_filters and see
which ones match*/
for (int i = 0; i < registered_filters.Count;
i++)
{

/*if a match is found, add it to the array*/
if (an_intent == registered_filters[i])
matching_responders.Add(registered_filters[i].A
ssociated_responder);

}

/*return the array upon completion*/

return matching_responders;

}

}

Listing 3. Code for the IntentHandler

In the above Listing 3 we see the code for the IntentHandler, note
that in this sample we have applied operator overloading for the
relational operator = = (marked in yellow), the actual overloading
is shown in Listing 4. All matching IntentResponders are placed
in an array and returned to the Client upon completion.

In Listing 4 below we can see that a few C# idioms are applied in
the use of generics and the pairwise operator overloading (both =
= and != are overloaded). Depending on the implementation
language, and whether one chooses to use operator overloading to
achieve the desired effect of comparing IntentFilters with Intents,
the IntentHandler class could, like the Intent class, be a purely
structural class.
class IntentFilter
{
public int action;
public string component;
public string type;
public IntentResponder associated_responder;

public IntentFilter(int p_action, string
p_component, string p_type, IntentResponder
p_associated_responder)
{...}

public static bool operator ==(Intent
clientFilter, IntentFilter registeredFilter)
{
/*overload the relational operator == to check
Intent objects and IntentFilter objects*/
if (clientFilter.Action == registeredFilter.Action
&& clientFilter.Type == registeredFilter.Type)
 return true;
else
 return false;

}

/*dummy implementation of != relational operator
due to C# enforcement of pairwise overloading*/
public static bool operator !=(Intent
clientFilter, IntentFilter registeredFilter)
{return false;}

Listing 4. Code for the IntentFilter class
The final listing, Listing 5, shows the class ExternalApplication
and the marker interface IntentResponder. Further descriptions of
the role of the marker interface is not needed, note that the
ExternalApplication class does provide an attribute progID. This
is merely used in the code to differentiate between
IntentResponders.

class ExternalApplication : IntentResponder
{
public string progID

public ExternalApplication(string p_progID)
{...}

/*the marker interface – which could of course be
operationalized, e.g. as in IDispatch*/

interface IntentResponder { }

Listing 5. Code for the ExternalApplication implementing the
marker interface

The output of the code sample above would yield:

Figure 3. Output from code sample

The only aspect missing from this simplified code sample is a
mechanism allowing ExternalApplications to register their
IntentFilters. If this is done at runtime the IntentHandler would
need to supply an accesible method for registering an IntentFilter.
However some implementations utilize a static approach by
loading the information about IntentFilters from a serialized
source, e.g. a flat file, or an XML file.

3.10 Known Uses
The pattern is applied by Google in their Android framework [4,
12] for development of software for mobile devices. In Android, it
forms a substantial part of the core infrastructure and provides an
abstraction allowing developers save time normally spent on
resolving functional activities at compile time, by deferring it
until runtime where decisions about how to handle an activity can
be resolved through runtime binding. Practically in Android when
developing a solution you can define an Intent as an abstract
description of an operation to be performed. This intent can then
be broadcast by using sendOrderedBroadcast() or
sendStickyBroadcase() [13] to a registry of BroadcastReceivers. If
any of the receivers are able to resolve the intent in the broadcast
then they method. There are many variations on how the intent
resolution can be handled in the Android framework. The
interested reader is referred to [4, 12, 13].
The pattern is also used in the Windows XP operating system
through the ”OpenWith ProgIDs” and ”OpenWithList” verbs [8],
wherein it is possible to right-click a file and select ”open with”.
This will generate a list of applications that may resolve your
intent (to open a file of a specific type). Windows XP offers
various verbs (”open”, ”edit”, ”play”, ”print”, ”preview”) [9] to
express the action of the Intent Thus, the operating system
functions as an IntentHandler, maintaining in its registry (under
HKEY_CLASSES_ROOT) information (the equivalent to an
IntentFilter) about which applications that are registered to handle
the desired verb (refered to as the action attribute of the Intent in
the pattern) for this filetype (refered to as the data attribute of the
Intent in the pattern). Finally the IntentResponder is then selected
from the list that appears in the ”Open With” list, and the Intent is
fullfilled.

3.11 Related Patterns
The pattern incorporates at its heart the essence of the
STRATEGY pattern [10]. The STRATEGY design pattern
encourages two important design principles; namely ”program to
an interface not implementations” and ”encourage composition
over inheritance” [14] (page 32). The intent of the STRATEGY
pattern is ”define a family of algorithms, encapsulate each one,
and make them interchangeable. It lets the algorithm vary
independently from clients that use it.” [10] (page 315), in its
essence animates the two aforementioned principles. In

RUNTIME MIXN MATCH the same concept applies, but it is
only in solutions where the “Marker Interface” is operationalized
to a “full” interface that the similarity becomes obvious. When
this is done the various ExternalApplications implementing the
interface become the ConcreteStrategies [10].

The FACTORY METHOD pattern could be used when creating
concrete Intents, because if it ever becomes necessary to add new
concrete intent types (you could for instance have system intents
that deal with low level system functions, then these could easily
be added without inducing any change in the closed part of the
design (the Intent, IntentHandler, Client).

The COMMAND pattern [10] could be used in the case of the
IntentResponder to encapsulate the actual invocation of the
ExternalApplication. The SINGLETON pattern [10], could be
used to ensure there is only one instance of the IntentHandler.

4. ACKNOWLEDGEMENTS
I would like to thank my shepherd Bob Hanmer for his insights,
contributions and encouragement during the work with this paper.
Thanks also go to my supervisor Andreas Opdahl for his
suggestions and comments to the early versions of this paper.
Finally I would like to thank my fellow PLoP participants for
their valuable and constructive feedback.

5. REFERENCES
[1] Weiss, A., Computing in the clouds. netWorker, 2007. 11(4):

p. 16-25.
[2] Korman, K., Clouds and connections. netWorker, 2007.

11(4): p. 3-3.
[3] Lohr, S., Google and I.B.M. Join in ‘Cloud Computing’

Research, in The New York Times. 2007: New York.
[4] 4. Google. Android - An Open Handset Alliance Project:

android.content.Intent. 2007 23rd of April 2008 12:29 [cited
2008 11th of April 2008]; Available from:
http://code.google.com/android/reference/android/content/Int
ent.html.

[5] 5. Hoschek, W., The Web Service Discovery Architecture,
in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing. 2002, IEEE Computer Society Press:
Baltimore, Maryland.

[6] 6. Friday, A., N. Davies, and E. Catterall, Supporting
service discovery, querying and interaction in ubiquitous
computing environments, in Proceedings of the 2nd ACM
international workshop on Data engineering for wireless and
mobile access. 2001, ACM: Santa Barbara, California,
United States.

[7] 7. Yang, K., C. Todd, and S. Ou, Model-based service
discovery for future generation mobile systems, in
Proceedings of the 2006 international conference on
Wireless communications and mobile computing. 2006,
ACM: Vancouver, British Columbia, Canada.

[8] 8. Microsoft. Visual Studio SDK: Specifying File Handlers
for File Extensions. 2008 2008 [cited 2008 11th of April];
Available from: http://msdn2.microsoft.com/en-
us/library/bb166549(VS.80).aspx.

[9] Microsoft. Registering Verbs for File Name Extensions.
2008 2008 [cited 2008 19th of March]; Available from:
http://msdn2.microsoft.com/en-
us/library/bb165967(VS.80).aspx.

http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/content/Intent.html
http://msdn2.microsoft.com/en-us/library/bb166549(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb166549(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb165967(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb165967(VS.80).aspx

[10] Gamma, E., et al., Design Patterns: Elements of Reusable
Object-Oriented Software. 1994: Addison-Wesley
Professional. 416.

[11] Blexrud, C. The IDispatch Interface. APress Inside Windows
2008 17/11 [cited 2008 28/10]; Available from:
http://microsoft.apress.com/asptodayarchive/71780/the-
idispatch-interface.

[12] Google. Android - An Open Handset Alliance Project:
Anatomy of an Android Application. 2007 23rd of April
2008 12:29 [cited 2008 11th of April 2008]; Available from:
http://code.google.com/android/intro/anatomy.html.

[13] Google. Android - An Open Handset Alliance Project:
android.content.Context. 2008 25/10-2008 [cited 2008
28/10]; Available from:
http://code.google.com/android/reference/android/content/Co
ntext.html#sendOrderedBroadcast(android.content.Intent,%2
0java.lang.String).

[14] Freeman, E., et al., Head First Design Patterns. First ed.
Head First, ed. M. Loukides. 2004, Sebastopol, CA, USA:
O'Reilly Media. 638.

http://microsoft.apress.com/asptodayarchive/71780/the-idispatch-interface
http://microsoft.apress.com/asptodayarchive/71780/the-idispatch-interface
http://code.google.com/android/intro/anatomy.html
http://code.google.com/android/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)
http://code.google.com/android/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)
http://code.google.com/android/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)

	1. INTRODUCTION
	2. BACKGROUND
	3. RUNTIME MIX’N MATCH
	3.1 Intent
	3.2 Motivation
	3.3 Applicability
	3.4 Participants
	3.5 Structure
	3.6 Collaborations
	3.7 Consequences
	3.8 Implementation
	3.9 Sample Code
	3.10 Known Uses
	3.11 Related Patterns

	4. ACKNOWLEDGEMENTS
	5. REFERENCES

