The Annotated Test Step Pattern

MARCUS FLORIANO, Aeronautics Institute of Technology
DEBORA CHAMA, Aeronautics Institute of Technology
EDUARDO GUERRA, Aeronautics Institute of Technology
FABIO SILVEIRA, Federal University of Sao Paulo

In the development of automated tests, there is an increase in complexity when the initialization or assertion are related to shared resources.
Usually these issues are addressed and implemented in the test classes. This paper presents a pattern that suggests a solution to simplify
the initialization and assertion through tests metadata classes. This solution allows each method to has specific assertions and initializations,
isolation the solutions out of the test classes, allowing the reusage by other test classes. Current solutions like mock objects do not test actually
external dependencies, because they simulate the external resource. For initialization and verification in the tests of these dependencies, other
APlIs are required in the test class and thus the test becomes more complex.

Categories and Subject Descriptors: D.1.5 [Programming Techniques] Object-oriented Programming; D.2.11 [Software Architectures]
Patterns

General Terms: Initialization and Assertion
Additional Key Words and Phrases: Automated Tests, Metadata, Shared Resources

ACM Reference Format:
Floriano, M. and Chama, D. and Guerra, E. and Silveira, F. 2011.ANNOTATED TEST STEP . 18th Conference on Patterns Languages of
Programs (PLoP) - Portland, Oregon, USA (October 2011), 10 pages.

1. INTRODUCTION

There are some techniques that allows the interception of a method to execute additional functionality, such as
aspects [Kiczales et al. 1997], dynamic proxies [Forman and Forman 2005] and interceptors [JSR299 2009]. These
functionalities usually crosscuts the method functionality and are transparent for the method implementation. Since
this crosscutting module are often reused in different classes, it should execute the same functionality. However,
sometimes variations of the same crosscuting behavior should be considered for each method, which lead to a
question: How to differentiate and configure for each method the execution of a transparent crosscutting behavior?

The CROSSCUTTING METADATA CONFIGURATION [Guerra et al. 2010] proposes the usage of additional metadata
to differentiate the behavior of software components that add a crosscutting behavior transparently to an application
class. One of the positive consequences is that the same proxy add a custom behavior in each method invoked
keeping the decoupling with the application class. However if metadata has a verbose format, it can be more easy
to invoke utility methods than to create the declarative configurations.

Author’s address: Marcus Floriano, Rua Jose Gomes Faria, 163, Sao Paulo, SP, Brazil, 03819-170; email: marcus.floriano@gmail.com; Debora
Chama, Rua Nilza Medeiros Martins, 200, bl5, ap 83, Sao Paulo, SP, Brazil, 05628-010; email: deborachama@gmail.com; Eduardo Guerra,
Aeronautical Institute of Technology, Praca Marechal Eduardo Gomes, 50, VI Acacias, SJ Campos, SP, Brazil; email: guerraem@gmail.com;
Fabio Silveira, Science and Technology Institute, Rua Talim, 330, Vila Nair, S Campos, SP, Brazil; email:fsilveira@unifesp.br

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 17th Conference on Pattern Languages of Programs (PLoP).
PLoP’11, October 21-23, Portland, Oregon, USA. Copyright 2011 is held by the author(s). ACM 978-1-4503-1283-7

Automated tests can contain crosscutting functionality, specially when it needs to deal with shared resources. In
this context, this paper defines shared resource as a resource that should be accessed by the test for initialization,
assertion or finalization independently from the tested class. Examples of shared resources are databases, files
and remote services. External resources are examples of shared resources, but a singleton is an example of a
shared instance. Based on this definition, a mock object [Freeman et al. 2004] can not be considered a shared
resource when it should be injected in the tested class. In this context, the crosscutting functionality should vary
according to the test scenario or to the expected behavior.

The goal of this paper is to present a pattern that specialize CROSSCUTTING METADATA CONFIGURATION in
the context of test automation. This pattern could be included in the pattern collection presented in “Architectural
Patterns for Metadata-based Frameworks Usage” [Guerra et al. 2010] considering their usage for the creation
of test automation frameworks. It also could be classified as a test pattern and included in the pattern language
presented by [Meszaros 2007], as an alternative to decouple and reuse assertion, initialization and finalization
logic in test automation code.

The target audience for this paper are software developers concerned about the test code quality. The test
quality is important to allow tests to evolve according to the software evolution. The greater the test quality, the
easier is its evolution. The patterns apply for the development of test automation frameworks or when an application
needs a large set of tests with the same kind of crosscutting concern. Software architects can use these patterns
to facilitate the test creation for architectural components which needs to access shared resources.

2. PATTERN: ANNOTATED TEST STEP
2.1 Context

One issue that complicates the creation of automated tests is when the test class should access shared resources.
Despite the functionality that access the shared resource can be isolated and simulated using mock objects
[Freeman et al. 2004], at some point it will be necessary to actually test this interaction. That make necessary
to initialize and finalize the shared resources respectively before and after each test method. For tested classes
whose effect is to change a shared resource, it is also necessary to assert if its final state is the expected after the
test. The access to the same type of shared resource usually happens in more than one test class in the same
application, so it is desirable to avoid the duplication of this code.

For the test method to be able to access the necessary shared resources it usually needs to use classes from
another API. This undesirable dependence can make the test code harder to understand, specially when the
developer does not know how this other AP| works. For instance, that can make hard to understand what is the
initial test scenario or what is being verified after the tested class execution. This lack of readability can prejudice
the test code maintenance and even prevent the usage of the test code as production code documentation.

Despite the access to a shared resource can be done independently from the tested class, the test functionality
that needs to access it usually is different for each test method. That happens because each one usually needs a
different scenario and to verify a distinct effect.

2.2 Problem

How to decouple logic associated to shared resources in automated tests, allowing its reuse by more than one test
class and reducing API dependence?

2.3 Motivating Example

To motivate the usage of the proposed pattern, it is used an example of a test class which needs to access a
database to setup initial data and to verify its state. For persistence layer testing in an application, it is necessary
to perform data loading, removing, updating and verification of such data. DBUnit [Laflamme et al. 2010] is an
example of a test automation framework that can be used to simplify this kind of test. Listing 1 presents a test
class using DBUnit classes for the persistence layer of a car rental company application.

The Annotated Test Step Pattern — Page 2

It can be observed that several points of the code has explicit reference to the DBUnit classes, which can make
this test hard to understand for developers that do not know its API. In the configureDatabaseConection()
method the integration with the test database is initialized. In addition, in the testing methods shouldAddCar ()
and shouldRemoveCar () is hecessary to understand the APl methods to create the set of expected data and
perform the comparisons. As data to setup or to assert the content of database tables is verbose, it is defined in
external XML files. An example of an XML file consumed by DBUnit in the example is presented in Listing 2.

LISTING 1: Test class CarDAOTest using DBUnit classes.
public class CarDAOTest {

private CarDAO carDAO = new CarDAO();
private static JdbcDatabaseTester jdt;

@BeforeClass
public static void configureDatabaseConection () throws ClassNotFoundException {

jdt = new JdbcDatabaseTester("org.hsqldb.jdbcDriver", "jdbc:hsqldb:file :./db/rentacar—db", "sa", "");
}

@After

public void clearDatabaseTable () throws Throwable {
jdt.onTearDown () ;

}

@Test
public void shouldAddCar() throws DataSetException, SQLException, Exception{
loadData (" /new—cars.dbunit.xml");

Car car = new Car("Chevrolet Cobalt", "Compact", true);
carDAO.add(car);
ITable actualTable = jdt.getConnection ().createDataSet().getTable("tb_car");

IDataSet expectedDataSet = new FlatXmlDataSetBuilder (). build (new File ("src—test/car.add.dbunit.xml"));
ITable expectedTable = expectedDataSet.getTable("tb_car");
Assertion.assertEqualsignoreCols (expectedTable, actualTable, new String[]{"ID"});

}

@Test

public void shouldRemoveCar() throws DataSetException, SQLException, Exception {
loadData("/car.dbunit.xml");
this .carDAO.remove (1);
ITable actualTable = jdt.getConnection ().createDataSet().getTable("tb_car");
IDataSet expectedDataSet = new FlatXmlDataSetBuilder (). build (new File ("src—test/car.remove.dbunit.xml"));
ITable expectedTable = expectedDataSet.getTable("tb_car");
Assertion.assertEqualsignoreCols (expectedTable, actualTable, new String[]{"ID"});

}

public void loadData(String dataFile) throws Exception {
DataFileLoader loader = new FlatXmIDataFileLoader ();
IDataSet dataSet = loader.load(dataFile);
jdt.setDataSet(dataSet);
jdt.onSetup ();

One of the problems of this test code is the coupling with the DBUnit API, which is used to access the database
shared resource. This dependence makes the test code more verbose and dependent of an API that is not from
the tested class. Despite some functionality could be extracted to more specific utility methods, they can be hard
to be reused in other similar test classes. On the other hand the utility methods can also be more general and
became a simple adapter of the DBUnit API, creating the same problem but with a different API. The data definition
in external files reduce the readability due its indirection, however to include this data in the method’s body can
have an even worst effect. The problem in this example is: how make the test class decoupled from the DBUnit
API making this logic easy to be reused by other test classes?

The Annotated Test Step Pattern — Page 3

LISTING 2: XML file consumed by DBUnit.

<IDOCTYPE dataset SYSTEM "rentacar.dbunit.dtd">

<dataset>
<TB_CAR ID="1" NAME="Ford Escape" TYPE="Compact SUV" CANCELED="false" />
<TB_CAR ID="2" NAME="Dodge Grand Caravan" TYPE="Minivan" CANCELED="false"/>
<TB_CAR ID="3" NAME="Chevrolet Cobalt" TYPE="Compact" CANCELED="true"/>

</dataset>

2.4 Forces

—Tests that need to use shared resources through external API or through code written directly in test class

—A generic APl is more reusable but harder to use; a domain-specific API is easier to use but less broadly
reusable.

—A fixture setUp method shared by all test methods must satisfy all the tests

—Implement solutions for testing shared resources in the test class makes the test class complex, with additional
implementations that blend with the implementations of the test itself.

—Often the implementations to test the shared resources are present in several other test classes, and when it
is necessary to change something in these implementations, is necessary to search and change the various
implementations throughout the test suite.

2.5 Solution

ANNOTATED TEST STEP use annotations to configure a test step which deals with a shared resource. This
annotations are processed by a metadata processor which intercepts the invocation of test methods and test life-
cycle methods. This processor can execute a functionality before or after the intercepted method. The annotations
can indicate that an initialization should be done on the shared resource before test, or that an verification should
be done on the shared resource state after test or that an finalization should be done to clean the shared resource
for the next tests. A premiss of this solution is that the shared resource can be accessed by the processor
independently of the test class and the tested class, and consequently this logic can be executed separately.

The architect creates the annotations processor and the annotations when he defines tests of a component
that handles shared resources. After that, developers use these annotations in their tests and can also create
new ones. Frameworks already developed, like MakeATest [Floriano et al. 2011], may be used with the role of
annotations processor. In addition, pre-built annotations libraries can be reused from other projects.

2.5.1 Structure. To use this approach it is necessary to have a mechanism for identifying the Metadata
when the Test Executor starts the tests execution. This way, the Metadata of the Test Class is recovered and
processed, and the related functionality executed before or after the test method.

The Shared Resources Manager should be used to encapsulate access to Test Class by Test Executor. For
each execution of the test methods, the Shared Resources Manager invokes when necessary the Metadata
Processor for initialization of Shared Resources related to the Target Class, based on configured Metadata.
Then, it invokes the test method of the Test Class, and if necessary, invokes the Metadata Processor to verify
the expected modifications on the Shared Resources caused by the execution of the Target Class.

The initialization and verification processes related to Shared Resources use the Metadata of test method to
set the desired behavior to be executed.

The Shared Resources Manager, which controls the execution of test methods intercepting them and calling
the initialization and verification of Shared Resources, can be implemented as a dynamic proxy, an aspect or as
a part of the test runner.

Figure 1 depicts the pattern solution. When the Test Executor starts the tests execution, it is intercepted by a
Shared Resources Manager. For each Test Class, this manager delegates to the Metadata Processor the task

The Annotated Test Step Pattern — Page 4

/ / Test Class
Metadata for M [Test method
qL_) inicialization I | axecute actions
Execute test class that 1) 1
will manage the shared © Test Method | |that depend on
= 1 and/or shared
resources
© t; £ resources cause
z Q the class tested
Test AV $ % Metadata for
assertion
Executor o<
309 Test Method
n >
o X
x 9
S Metadata for
o— inicialization |€------
o\
© Metadata for e — — — — —
_g \\ assertion St
\ Resources

. K Test Method
\\

3

-

Retrieves the

Before and after the invocation of the test metadata of the

method, called the processor metadata to Metadata test methods

configure and verify the shared resources P rocessor and processes
your logic

Fig. 1: Graphical representation of communication of participants pattern solution.

of reading the Metadata on the test methods. After and before the invocation of the test method, the Metadata
Processor checks Metadata if there is a functionality that must be executed. These Metadata refer to Shared
Resources that should be initialized before testing the Target Class or should checked after the tests execution.

Some Metadata must be processed before the test method for the creation of the initial test scenario. Others
must be processed after the execution of the test methods in order to assert the expected Shared Resources
state caused by execution of the Target Class or to clean the changes in the Shared Resources for the execution

of other test methods.
After such assertions, Metadata Processor can verify if the test failed or if it passed. More than one Metadata
piece can exist in each method, and all Metadata should be processed to ensure that the desired behaviors were

achieved.

2.5.2 Participants. The participants of the pattern are:

—Shared Resources are resources that are part of the environment where the application runs that need to be
initialized before or checked after tests.

—Target Class are classes that perform some action which depends on shared resources or changes them.

—Test Class contains test methods with metadata for configuring or verifying the shared resources of the target
class.

—Test Executor is the executor that initiates and manage the tests execution.

—Shared Resources Manager manages the execution of actions and check shared resources during the tests
execution. Before calling the test method itself, it checks the metadata for initialization and, after running the
test method, it calls for verification of shared resources related to these metadata. Typically implemented as a
dynamic proxy or as an aspect (by using aspect-oriented programming).

The Annotated Test Step Pattern — Page 5

—NMetadata contains the information about the test class or the test method refers to initialization or verification of
shared resources.

—NMetadata Processor is responsible for retrieving and interpreting the metadata of the test methods and test
classes, and execute the functionality related with the metadata.

2.6 Resulting Context

The test annotations can be reused in more than one test class that needs to access the shared resource.
The annotation attributes can parametrize the annotation processor behavior, allowing the usage of the same
annotation for different test scenarios.

Since an annotation only configures metadata and do not add behavior, the coupling with the test class is only
semantic [Costa Neto et al. 2007]. This kind of dependence is weaker than a method invocation, for instance.
Changing the annotation processor, it is possible to easily change the implementation of how the shared resource is
accessed without changing the test class. This decoupling makes the test class independent of method invocations
from APlIs that access the shared resource. Consequently, the test methods body can depend only on tested class
API.

(+). The access to the shared resources are decoupled from the test class, but isolated in classes that handle
the annotations.

(+). Itis possible to add a configuration setting in each specific test method in addition to the shared settings
through the use of methods setup and teardown of the test class.

(+). Initializations, finalizations and assertions related to shared resources that are repeated in various test
classes can be configured via annotations and reused in different contexts.

(+). Test cases become simpler, making it easier to write and understand, since the use of annotations configure
in a declarative way the desired effects.

(+). The configuration and verification are isolated in annotations processors, and the maintenance of the
shared resource integration is easier since this behavior is isolated.

(+). The behavior to interact to the shared resource is isolated in the Metadata Processor, and consequently
the test programmers does not need to know the API to interact with it.

(-). Depending on how the annotation was built, the use of annotation restricts the parametrization change at
the time of the tests, being restricted only to the settings provided by it.

(-). The usage of annotation is more complex than utility methods and only worth when it can be reused in
more than one test class.

(-). This solution makes it more difficult to debug the test cases when problems occur, since the annotations
are being processed externally to the test.

2.7 Solution Example

Motivational Example section presented a test of the persistence layer using the DBUnit API. Listing 3 presents
these tests applying the pattern ANNOTATED TEST STEP . DBUnit APl is no longer used explicitly. Its usage was
encapsulated through annotations, and it is no longer necessary to know the the APl methods to understand the
test. The declarative nature of the annotations transform the invocation of method in configurations that are more
easy to understand.

In Listing 3, the configuration of the database is indicated by an annotation called @DatabaseConfiguration.
In the method shouldAddCar () the database setup with the desired data is indicated using another annota-
tion called @SetupDatabase, which configures the initial d ata t hat s hould b e o n the d atabase. Verifications
are performed by the processing of specific v erification an notations in the end of th e te st me thods. Exam-
ples are the @AssertTableRowCount, which checks the total of records in the table after running the test, and

The Annotated Test Step Pattern — Page 6

@AssertDatabaseContent, which checks if the content of the table indicated by the parameter table corre-
sponds the data indicated by the parameter expectedData. The @CleanDatabaseTable annotation is used in the
afterEachTest () method to remove all the lines in the car database table after each test.

LISTING 3: Test Class CarDAOAnnotationTest using annotations that encapsulate the functionality of DBUnit.

@DatabaseConfiguration(driver="org.hsqldb.jdbcDriver", url="jdbc:hsqgldb:file :./db/rentacar—db", user="sa", password="")
@RunWith (MakeATestRunner. class)
public class CarDAOAnnotationTest {

private CarDAO carDAO = new CarDAO();

@Before
@CleanDatabaseTable ("tb_car")
public void beforeEachTest() throws SQLException, Exception { }

@After
@CleanDatabaseTable("tb_car")
public void afterEachTest() throws DataSetException, SQLException, Exception { }

@Test
@GivenDbTableContains (table = "tb_car",
columns = { "id", "name", "type", "canceled" },
rows = {"1;Ford Escape;Compact SUV;false",
"2;Dodge Grand Caravan;Minivan;false" }

)
@DbTableShouldContainOnly (table "tb_car",
columns = { "name", "type", "canceled" },
ignoreCols = { "id" },
expectedData = { "Ford Escape;Compact SUV; false",
"Dodge Grand Caravan;Minivan;false",
"Chevrolet Cobalt;Compact;true" })
public void whenlAddACar () throws DataSetException, SQLException, Exception {
Car car = new Car("Chevrolet Cobalt", "Compact", true);
carDAO.add(car);

}

@Test
@GivenDbTableContains(table = "tb_car",
columns = { "id", "name", "type", "canceled" },
rows = {"1;Chevrolet Cobalt;Compact;true",
"2;Dodge Grand Caravan;Minivan;false" }

)
@DbTableShouldContainOnly (table

= "tb_car",
columns = { "name", "type", "canceled" },
ignoreCols = { "id" },
expectedData = { "Dodge Grand Caravan;Minivan;false" })

public void whenlRemoveACar() {
this .carDAO.remove (1);
}

In this example the framework MakeATest [Floriano et al. 2011] is used to support the processing of annota-
tions, simplifying the task shown in the Sample Code section. The test runner used (indicated by the annotation
ORunWith(MakeATestRunner.class)) delegates to the framework the identification and process of these config-
uration and verification annotations.

It may be observed that now the dependency on DBUnit APl is isolated. This approach also makes possible
to replace the implementation of the annotation processor to integrate with another API, without affecting the
test code. The data used for initialization and verification in the tests are no longer in the XML files, reducing the
indirection and without polluting the method body with a lot of method calls. Due the fact that annotations are
parameterized, it is possible to reuse these annotations in tests that deals with other database tables. As a result it
could decrease code duplication in a test suite and increase the productivity in the creation of such tests.

The Annotated Test Step Pattern — Page 7

2.8 Known Uses

The JUnit framework [JUnit 2010] [Tahchiev et al. 2010] provides the Excepted Exceptions that aims to determine if
the tested code has thrown or not an expected exception. The annotation @Test(expected= IndexOutOfBound-
sException.class) in a test method indicates that it is expected that an exception of type IndexOutOfBoundsEx-
ception is thrown. The Spring Framework [Spring 2011] [Walls and Breidenbach 2007] also provides a set of
annotations called “Common annotations” that can be used in the tests. In this group there is an annotation similar
to JUnit Expected Exceptions, called @ExpectedException. If it is thrown the exception of the type expected
during the test execution, the test is successfully executed. If not, then the test fails.

The JQuati [Santana et al. 2009] is a tool for testing pointcut descriptors in aspect-oriented applications, which
simulates and verifies execution contexts and verifies the expectations in advices execution in a more simple
and practical way. It contains the annotations @MustExecute and @MustNotExecute which receive an Array
with names of advices that are expected to be executed or not, and are assigned in the test cases methods. To
use them, it is necessary that the test class be annotated with @RunWith (JQuati.class), which indicates what
Runner interferes in the test process, in order to process these annotations.

The MakeATest framework [Floriano and Chama 2011] allows the creation of annotations for assertions related
to shared resources for the test classes. It enables the creation of test annotations sets to various context domains,
supporting the implementation of this pattern.

2.9 Related Patterns

This pattern can be considered as an specialization of CROSSCUTTING METADATA CONFIGURATION [Guerra et al.
2010]. Both of them use the metadata to define crosscutting behavior of application components by using a
crosscutting component that interprets the metadata performing the desired behavior. The main difference of
ANNOTATED TEST STEP is that it deals specifically with test crosscutting concerns.

To assist in the annotations reading, it can be used the pattern ANNOTATION READER [Guerra et al. 2010],
since this pattern proposes the creation of an annotation that can mark the test annotations indicating the class
responsible for its reading. The combination of ANNOTATION READER with patterns METADATA PROCESSOR and
DELEGATE METADATA READER [Guerra et al. 2009] can be used for reading and processing metadata to allow
extension of the metadata schema.

ANNOTATED TEST STEP is an alternative to test patterns which allows reuse of the test code in the test
initialization, assertion and finalization, such as IMPLICIT SETUP, DELEGATED SETUP, CUSTOM ASSERTION
and IMPLICIT TEARDOWN. Considering the problem-pattern cross reference presented in the pattern language
proposed by [Meszaros 2007], this pattern can be an alternative for the question “How do we reduce test code
duplication?”.

LISTING 4: Using of DELEGATED SETUP and CUSTOM ASSERTION on the motivating example

@Test
public void shouldAddCar () throws Exception {
loadCars (" 1;Chevrolet Camaro SS; Specialty;true"”,
"2;Dodge Grand Caravan;Minivan;false"));
Car car = new Car("Chevrolet Cobalt", "Compact", true);

carDAO.add(car);

assertCarTableContains("1;Chevrolet Camaro SS; Specialty ;true",
"2;Dodge Grand Caravan;Minivan;false",
"3:Chevrolet Cobalt;Compact;true"));

An additional question that could be added in this cross-reference is “How do we decouple the test code from
external APIs?”, and would be part of this category the patterns ANNOTATED TEST STEP, DELEGATED SETUP and
CusTOoM ASSERTION. The greatest difference between the two other patterns from the one proposed in this paper

The Annotated Test Step Pattern — Page 8

is that they delegate the functionality to utility methods while this pattern uses annotation configuration with an
associated processor.

The usage of the ANNOTATED TEST STEP is more restrict, since it only applies if the test step being encapsulated
deals with shared resources and needs to be reused in more than one test class. The Listing 4 presents an
example which uses DELEGATED SETUP and CUSTOM ASSERTION in the same motivating example presented.
The utility methods 1loadCars () and assertCarTableContains() encapsulate the use of DBUnit API solving
the problem of this test class.

One of the drawbacks of the solution presented in the Listing 4 is that the utility methods are specific to the
car table and cannot be reused in others test classes that need to access the database. It is possible to create
more general utility methods, however with many information to be configured, the APl can became complicated
going back to the same initial problem. Due to annotations nature, it separates the configuration of how the shared
resources should be handled from the method body where the tested class APl is being invoked. Listing 5 shows a
generic version of listing 4 with the equivalent API to the annotation. Accordingly, the tested class methods are not
mixed with methods from other APlIs in the test method body. For teams familiar with the annotation notation, this
separation can improve test readability and, consequently, its maintenance.

LISTING 5: Generic version

@Test
public void shouldAddCar () throws Exception {
TableConfiguration tbConfig = new TableConfiguration("tb_car");
tbConfig.setColumns("id" , "name" , "type" , "canceled");
tbConfig.addLine("1;Chevrolet Camaro SS;Specialty;true");
tbConfig.addLine("2;Dodge Grand Caravan;Minivan;false");
tbConfig.configure ();
Car car = new Car("Chevrolet Cobalt", "Compact", true);
carDAO.add(car);
tbConfig.assertTableContent("1;Chevrolet Camaro SS; Specialty;true",
"2;Dodge Grand Caravan;Minivan;false",
"3:Chevrolet Cobalt;Compact;true"));

With a simple configuration, the use of annotations can be considered very similar to the utility methods for test
readability. Listing 6 presents an example when the readability is very similar using both solutions. On the one
hand, the greatest drawback of ANNOTATED TEST STEP is the complexity to implement the annotation processor,
which can be reduced with a framework like MakeATest [Floriano et al. 2011]. On the other hand, annotations
provide a greatest decoupling between the test code and the API that access the shared resource. In these cases,
the better solution is usually driven by the preference and familiarity of the development team.

LISTING 6: Using of DELEGATED SETUP and CUSTOM ASSERTION on the motivating example

// With ANNOTATED TEST STEP

@Test

@CreateFile("testfile.xml")

public void exampleTest() throws Exception {
//test code

}

// With DELEGATED SETUP

@Test

public void exampleTest() throws Exception {
createFile ("testfile.xml");
//test code

The Annotated Test Step Pattern — Page 9

3. CONCLUSION

This paper presented a pattern where the metadata usage helps to decouple logic associated to shared resources
in automated tests, allowing its reuse by more than one test class. This decoupling makes the test class independent
of method invocations from APIs that access the shared resource.

However, the way the logic is decoupled must be suitable for the scenario, since the usage of annotation is more
complex than the traditional utility methods and only worth when it can be reused in more than one test class.

ACKNOWLEDGMENTS

We would like to thank our shepherd Gerard Meszaros for all the suggestions during the writing of this paper. We
also would like to thank for the essential support of FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao
Paulo) to this research.

REFERENCES

CosTA NETO, A., RIBEIRO, M., DOSEA, M., BONIFACIO, R., AND BORBA, P. 2007. Semantic dependencies and modularity of aspect-oriented
software. In Proceedings... WORKSHOP ON ASSESSMENT OF CONTEMPORARY MODULARIZATION TECHNIQUES, 2007.

FLORIANO, M. AND CHAMA, D. 2011. Makeatest - core. Available on: http://github.com/marcusfloriano/makeatest-core.

FLORIANO, M., CHAMA, D., GUERRA, E., AND SILVEIRA, F. 2011. Makeatest: Um framework para constru¢do de anotagdes de validacéo e
inicializacao de recursos externos em testes automatizados. 5th Systematic and Automated Software Testing (SAST2011), Sao Paulo, SP,
Brazil.

FORMAN, I. AND FORMAN, N. 2005. Java Reflection in Action. Manning Publications Co.

FREEMAN, S., PRYCE, N., MACKINNON, T., AND WALNES, J. 2004. Mock roles, not objects. In Proceedings... OOPSLA ’04: Companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications, New York, NY, USA,
236-246.

GUERRA, E., FERNANDES, C., AND SILVEIRA, F. 2010. Architectural patterns for metadata-based frameworks usage. In Proceedings... 17th
Conference on Pattern Languages of Programs (PLoP), Reno, Nevada, USA.

GUERRA, E., MENANES, C., SILVA, J., AND FERNANDES, C. 2010. Idioms for code annotations in the java language. In Proceedings... 17th
Latin-American Conference on Pattern Languages of Programs (SugarLoafPLoP), Salvador, Bahia, Brasil, 14.

GUERRA, E., SouzA, J., AND FERNANDES, C. 2009. A pattern language for metadata-based frameworks. 16th Conference on Pattern
Languages of Programming, Chicago.

JSR299. 2009. Jsr 299: Contexts and dependency injection for the javatm ee platform. Available on: http://jcp.org/en/jsr/detail?id=299.

JUNIT. 2010. Junit.org resources for test driven development. Available on: http://junit.org/.

KiczALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C. V., LOINGTIER, J.-M., AND IRWIN, J. 1997. Aspect-oriented programming.
In Proceedings... EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, 220-242.

LAFLAMME, M., GIAccO, R. L., LEME, F., AND PUGH, E. 2010. Dbunit is a junit extension targeted at database-driven. Available on:
http://www.dbunit.org.

MEsSzARoOS, G. 2007. XUnit test patterns: refactoring test code. Person Education, Inc.

SANTANA, E. C., TANAKA, S. H., GUERRA, E. M., FERNANDES, C. T., AND SILVEIRA, F. 2009. Towards a practical approach to testing
pointcut descriptors with jquati. In Proceedings... lll Latin American Workshop on Aspect-Oriented Software Development - LA-WASP’2009,
Fortaleza.

SPRING. 2011. Spring framework. Available on: http://www.springsource.org.

TAHCHIEV, P., LEME, F., MASSOL, V., AND GREGORY, G. 2010. JUnit in Action, Second Edition. Manning Publications Co.

WALLS, C. AND BREIDENBACH, R. 2007. Spring in Action, Second Edition. Manning Publications Co.

PLoP’11, October 21-23, Portland, Oregon, USA. Copyright 2011 is held by the author(s). ACM 978-1-4503-1283-7

The Annotated Test Step Pattern — Page 10

