
A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 1 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

A System Composition Pattern Language

Introduction
A modern software application seldom exists in isolation but instead within a set of related
applications, such as a product line or corporate information system, in a shared context.
Addressing such applications one at a time as the traditional application-oriented approach does,
treats many of the common aspects of the context independently and repeatedly with each
application. This approach results in higher costs for duplicated work, but more importantly it
inevitably produces redundancy – multiple defined data and logic – and hinders the effective
management of complexity and variation, all of which impair quality and reduce value. This
System Composition Pattern Language addresses how to reduce such problems by recognizing sets
of overlapping products and components as being a single system and optimizing the system as a
whole. Optimizing means to reduce cost and increase value especially in terms of integrity,
consistency, adaptability, and improved cycle time for new products.

Managing a system of related applications is a task too complex to be addressed by a single
pattern, even in the abstract. Instead a set of related patterns, called a pattern language, is
required. Table 1 summarizes the patterns of the System Composition Pattern Language.

Table 1. System Composition Pattern Language Summary
Problem Solution Pattern Name

How can you optimally build,
maintain, and evolve a set of
overlapping products (i.e.,
products with potentially
common components)?

View all of the related products and
components as a single system and
strive to optimize the system as a whole
instead of each product individually.
Address redundancy, variation, and
complexity at the system level, where
these issues can be effectively managed.

A.1. COMPOSABLE

SYSTEM

How can you ensure that
components created by different
groups at different times will
inter-operate and not overlap?

Define a common authority and a set of
global standards and policies.

A.2. COMMON

ARCHITECTURE

Partition the entire system into a
common set of nonredundant primitives
from which all the products can be
synthesized.

B.1. NONREDUNDANT

PRIMITIVES

Redundancy (i.e., multiple
definitions) is the source of many
quality problems, most notably
impaired consistency,
adaptability, and integrity. How
can you eliminate redundancy
across multiple products?

Segregate redundancy that cannot be
eliminated by NONREDUNDANT

PRIMITIVES into sets of primitive
components and control the redundancy
via common management of each set.

B.2. MANAGED

REDUNDANCY

How can you combine the
primitives into products without
creating redundancy or
unnecessary complexity?

Synthesize products in stages from
nonredundant primitives via
components at intermediate levels.

B.3. INTERMEDIATE

COMPONENTS

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 2 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

How can you ensure components
are not sub-optimized for a single
product or parochial purpose?

Manage components separately from
products. Charge component managers
to support all products but with clear
guidelines to prevent the de-optimizing
of the overall system. Maintain the
principle of component independence.

C.1. INDEPENDENTLY

MANAGED

COMPONENTS

How can you ensure that every
component is managed
effectively and the management
of related components is well
coordinated?

Group together components by
relatedness for management. Assign
every component to one and only one
group. Group groups recursively into a
hierarchy.

C.2. DISJOINT

COMPONENT

MANAGEMENT

GROUPS

How can you provide all of the
variation required across the
system but prevent unnecessary
variation?

Centrally manage variation. Define only
the variants necessary to meet bona fide
requirements across the system and no
more.

D1. SUFFICIENT

VARIATION

How can you minimize the
number of variant components
yet still support all required
variation?

Identify and separate all orthogonal
dimensions of variation. Define a single
set of variants for each dimension and
implement each variant with a separate
component with a common interface.
Allow variants of each dimension to be
selected independently and combined
dynamically.

D2. SINGLE-
DIMENSION

SUBSTITUTABLE

VARIANTS

The COMPOSABLE SYSTEM PATTERN (A.1) describes the general approach and could be termed the
primary pattern. The other patterns address in greater detail various aspects of that approach, and
thus are dependent on the primary pattern and do not necessarily stand by themselves. If the
COMPOSABLE SYSTEM PATTERN is not applicable to your problem, it is not likely that the other
patterns of the language will be applicable either.

Most of the patterns, except for the primary pattern, are described in a single page. The primary
pattern must establish a common context and is thus somewhat longer.

In many cases one pattern addresses the context resulting from the application of another pattern.
For example, applying the NONREDUNDANT PRIMITIVES PATTERN produces many fine-grained
components, while the INTERMEDIATE COMPONENTS PATTERN addresses one aspect of dealing with
many components. This example illustrates pattern application order, which is a characteristic
typical of pattern languages. Figure 1 depicts the dependencies among the patterns and the
organization of this document. A double-headed arrow indicates alternative patterns, i.e., patterns
that address the same issue in different ways. One set of alternative patterns is included, i.e.,
NONREDUNDANT PRIMITIVES and MANAGED REDUNDANCY; alternatives to other patterns in this
language may also exist.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

t

T
s
i

A
P
w

A
t
a
p

T
g

B.1. NONREDUNDANT

PRIMITIVES

B.3. INTERMEDIATE COMPONENTS

manage complexity

cy

s

B.2. MANAGED

REDUNDANCY

contain redundancy

E

of
avoid sub-optimization
marzolf@ACM.org

his pattern langua
ystems. Opportun

n Table 2, in Appe

lthough this article
attern Language i
ell, such as docum

 running example
o solve the larger p
 relevant part of it
attern text.

he definition of imp
lossary in Append

C.1. INDEPENDENT

MANAGED

COMPONENTS
eliminate redundan

Cop

co

Fi

ge s
ities
ndix

 spe
s ve
ent

from
robl

 is de

orta
ix B.

LY
coordinate change
yright © 1999,
py for the PLoP

gure 1. Com

o far addres
abound for e
A. The rema

cifically add
ry broad; it t
ation and ma

 the docume
em. The exa
scribed in e

nt terms, inc

C.2. DISJ

COMPON

MANAGE

GROU
A.2 COMMON

ARCHITECTUR
A.1 COMPOSABLE

SYSTEM
 Thomas R. Mar
 1999 conferen

posable Sys

ses only a few
xtensions an
inder of the a

resses softwa
ranscends so
nufacturing.

ntation doma
mple is introd
ach pattern. T

luding product, c

OINT

ENT

MENT

PS
minimize
variation
zolf. Permission is
ce. All other rights

tem pattern rela

 of the major is
d refinements; s
rticle describes

re systems, the
ftware and can
 Some example

in is used to sh
uced in the COMPOSA

he example is italic

omponent, and v

D.1. SUFFICIENT

VARIATION
minimize the number
variant components
- 3 –
 granted to
 reserved.

tionships

sues of component-oriented
ome candidate patterns are listed

 the patterns listed in Table 1.

 scope of the System Composition
be applied in other domains as
s in other domains are discussed.

ow how the patterns work together
BLE SYSTEM PATTERN, and

ins to distinguish it from the

ariant is provided in a

D.2. SINGLE

DIMENSION

SUBSTITUTABLE

VARIANTS

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 4 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

Composable System Patterns

A.1. COMPOSABLE SYSTEM PATTERN

Problem
How can you optimally build, maintain, and evolve a set of overlapping products, i.e., products
with potentially common components?

Context
You have multiple products with a common context and overlapping content such as, a product
line, corporate information system, or application family.

This pattern is most applicable when
• many overlapping products exist
• the product overlap is large
• consistency and integrity across the system is important
• the system is large and complex
• extensive variation is needed
• rapid response to change is needed without sacrificing consistency and integrity.

Forces
+ Driving Forces - Restraining Forces

• The long-term economic success of the
enterprise depends upon overall quality and
productivity.

• Without a holistic focus, it is difficult to tell
whether a “solution” results in a net gain or
just moves problems to a less visible
location or costs to a future time period.

• Important quality issues, such as
redundancy, complexity, and variation, can
be effectively managed only at a global
level.

• The natural focus is on the short run
delivery of individual products.

• Urgent requirements may demand a “quick
fix” precluding a holistic approach.

• The whole is more challenging to deal with
because it is larger, more complex, and
controlled by less accessible managers.

• Addressing the whole requires initial
investment long before benefits are realized.

• Existing parts of the system may exert
constraints upon evolution.

Example: A vendor contracted to produce a family of about a dozen devices for a government
agency. Government documentation standards were in effect, which specified a document for
each device in a standard format. Although each document was unique, much of the required
documentation was common or similar across documents, including the required format, vendor
and contract information, general device requirements and context of use, the description of
common communications protocols, and many common hardware and software components.

Solution
Address the entire set of products and components as a single system and strive to optimize the
whole system rather than sub-optimize products individually. Establish a COMMON

ARCHITECTURE. Partition the system into NONREDUNDANT PRIMITIVES and synthesize
INTERMEDIATE COMPONENTS in stages from the primitives. INDEPENDENTLY MANAGE

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 5 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

COMPONENTS separately from products to ensure components are not sub-optimized for a single
product or parochial purpose, and that they adhere to the principle of component independence.
Assign components to DISJOINT COMPONENT MANAGEMENT GROUPS so changes across products
can be coordinated and variation can be controlled. Allow only SUFFICIENT VARIATION; partition
needed variation into SINGLE DIMENSION SUBSTITUTABLE VARIANTS to allow configuration by
simple selection.

Example Documentation Solution: The whole set of documents was analyzed to determine the
extent and location of the commonality.
• A few chapters and sections were entirely boilerplate or specific to the vendor or contract

and so were identical for all documents.
• Several chapters were identical except for certain terms, such as the device names and other

identifiers.
• Other chapters were significantly different, but contained sections which were either

identical or varied only slightly; the analysis was applied recursively through several levels.

 In this way the entire system of documentation was decomposed into a set of components
including chapters, sections, subsections, etc., terms and their allowable sets of values, a format,
and the set of deliverable documents. Each primitive component was defined, and each
composite component, up to and including complete documents, was defined as a combination of
constituent components.

 By addressing the system as a whole and decomposing it into disjoint components it was possible
to create a system with almost no redundancy and thus totally consistent, with a single point of
change for every modifiable aspect of the system, and of minimum total volume.

Rationale
Quality is dependent on minimizing redundancy and controlling complexity and variation. These
objectives can be accomplished only by managing at a global level. Strategies exist to deal
effectively with all of the restraining forces (see the other patterns in this pattern language).

The fundamental trade-off is between (1) the cost of coping with redundancy, complexity and
unnecessary variation and (2) the cost of avoiding them through better planning, organization,
analysis, and design. When considering a new approach, it is typical to underestimate the current
costs, which seem only natural, and to overestimate any new costs, which appear to be extra and
unnecessary. It is also typical to underestimate both the value of new benefits not yet experienced,
and how well and inexpensively a new approach can work after it has been perfected.

“Optimize the whole” is a key principle of the Total Quality approach, which includes a great body
of experience and supporting evidence; it is the whole that is of concern to the economic unit, not
products individually. Without a holistic focus, many “results” are illusory, and are actually trade-
offs against other goals that may leave the enterprise as a whole little better, and perhaps even
worse, off. It is easy to be fooled when focusing on only one piece of a large puzzle. It is important
to realize that the whole cannot be optimized by optimizing the parts individually.

 Example Rationale: Although a significant initial investment was required for analysis,
structuring, and setup, the system was thereafter able to adapt quickly to changes in either
content or format without any redundant updating while maintaining perfect consistency across

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 6 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

all documents. The value of such qualities in the longer run exceeded by a large factor the
initial investment. Moreover, it is difficult to see how such high adaptability together with
perfect consistency could be provided at any price without global partitioning into non-
redundant components. When the contract was later expanded to include several new devices,
documents were quickly created for the new devices consistent with the original set of documents
by reusing the existing system and the many already existing components.

 Upon delivery, the client stated that he had never before received such a set of documents on
time, up-to-date, and perfectly consistent.

Resulting Context
• Many components are created (and must be managed).
• Component evolution is required as well as new components to support new products and

new product requirements.
• Some components become common to multiple products; changes to such components must

be managed to avoid unintended effects.
• A component-oriented as well as a product-oriented organization emerges.
• Effective communications becomes more important both from product managers to

component managers (requirements pull) and vice-versa (capabilities push).
• More and earlier planning is required; (e.g., to identify needed components and ensure they

will be made available when needed for a product).
• Redundancy is reduced or eliminated. To the degree that data and logic is defined once and

only once, consistency will be perfect, adaptability will be high, and bulk will be minimized.
• Future investment in enhancements is highly leveraged. All of the enhancements to a

component are available to all of the system’s products. Furthermore, more enhancements can
be justified because greater value is realized and the cost is spread across more beneficiaries.

• Related new products can be constructed more quickly. The existence of components at
many levels (assuming they are composable) along with a mechanism for combining and
managing them allows new components and products to be constructed with less time and
effort. In particular, operating prototypes can be assembled quickly from existing production-
quality components.

• New unplanned products can often be assembled from available components. Even though
they have been designed for the construction of a specific set of products, the components can
be combined in other ways to construct products that had not been anticipated.

• The availability of components suggests new products that might otherwise not be
considered and which often can be created inexpensively and quickly with the development or
enhancement of relatively few components.

• Parallel work is enabled. Partitioning a system into loosely-coupled components allows each
component to be addressed separately and work on multiple components to be done in parallel.

• Division of labor is facilitated. The components of a product are typically diverse (e.g.,
engines and brakes, processor chips and power supplies, operating systems and financial
systems, excavation and steel erection) and require radically different aptitude, knowledge,
skills, and experience to master. Organization by application usually requires developers to
deal with many different specialties, and to learn new ones with each new application; this
often produces jacks-of-all-trades but masters of none. Labor can be more effectively divided
and specialization exploited around stable sets of related components.

• Productivity is improved both by producing more valuable output and by reducing costs.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 7 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

• Product evolution by incremental change is facilitated. The existence of components
facilitates incremental change and evolution.1 Each component can be modified separately,
with small and well-understood effects on clients (assuming proper encapsulation). This
allows continuous evolution by many small changes, avoiding the trauma and risk of large
replacements, and the waste of discarding entire applications.

• Testing can be confined to the affected components. Rigorous use of contractually specified
component interfaces can reduce or eliminate the need for product regression testing.

• Resources can be allocated more effectively. Resources can be directed to where they will
provide the greatest benefit to the whole over the long term, such as to components that
support multiple current products or lay the foundation for future products, or to new
components that will allow existing components to be reused for new products.

• System structure is stabilized. Domain abstractions tend to be very stable: businesses have
customers, accounts, products and services -- they always have and always will; autos have
engine, braking, and steering subsystems; all electrical appliances have a power supply. When
systems are partitioned into components based upon stable domain abstractions, the structure
of the system, especially the interfaces and high-level component collaborations, also becomes
stable. While each component may evolve individually, the overall structure is unlikely to
change much or frequently. A stable system structure in turn allows other facets of operations,
e.g., team organization, to be stabilized.

• Variation can be reduced and managed. Unnecessary variation can be avoided. Necessary
variation can be made coherent, available across the system, and easily selectable.

• Complexity is reduced. Partitioning a system into many components may seem to increase
rather than reduce complexity. But on the contrary, a well-partitioned and organized system is
less complex if it separates concerns, and allows a system to be understood at various levels
while suppressing irrelevant detail. Also, a Composable System will be smaller, have little
redundancy, coherent variation, and adhere to global organizing principles -- all of which
facilitate human understanding and management. An automobile, for example, is
understandable despite its approximately 10,000 parts because it follows a stable organization
and has layers of intermediate components.

 Known Uses:
• The documentation system that is described here in a running example.
• Unix provides many components along with simple yet powerful means to combine them, and

could be considered a Composable System. Common architectural features, such as a standard
data format, facilitate interoperability.

• Various product line and domain engineering strategies take a Composable System approach.
• Most complex hardware, such as automobiles, and indeed most complex artifacts of any type,

are built with a Composable System approach.
• A pattern language, such as this one, is in some sense a Composable System.

 Related Patterns: The STOVEPIPE ENTERPRISE ANTIPATTERN [Bro98] describes the symptoms of
not using the COMPOSABLE SYSTEM PATTERN and is in some sense its antithesis. SEAMLESSNESS

[DSo98] addresses reducing complexity by choosing the structure of a system to mirror a model of
the problem domain.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 8 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

A.2. COMMON ARCHITECTURE

Problem
How do you ensure that a system of multiple components of multiple products built by multiple
groups over an extended period of time will be composable, interoperable, and non-redundant.

Context
You have a Composable System with multiple products and common components across products.
Components will be built by multiple groups and used by multiple groups over an extended period.

Forces
• A Composable System implies multiple components that can be combined in some way. To be

combinable requires at least a common combination mechanism which in turn compels each
component to meet a common architectural standard.

• A system cannot be optimized by optimizing the parts individually but only by optimizing the
system as a whole; this implies the need for system-level management.

• Important system characteristics, such as redundancy, complexity, variation, and scalability,
can be effectively managed only at the system level.

• Centralized management can cause a bottleneck that impedes progress.

Solution
Establish a system-wide architecture governing authority and architecture governance process. The
governing authority must define the rules and policies necessary at the global level for the set of
products and components to function as a Composable System based upon the requirements and
aims of the system; these include:
• Standard definitions and semantics (i.e., an ontology)
• Allowable component forms
• High level system organization including definition of the major interfaces
• Who will own, support, and manage each component, and how they will be organized (see

DISJOINT COMPONENT MANAGEMENT GROUPS PATTERN)
• How components may be combined
• How variation will be managed (see SUFFICIENT VARIATION PATTERN)
• How components will be uniquely identified and versioned, and how they can be accessed
• How the architecture can evolve over time.

Develop streamlined processes and provide sufficient resources so that architecture governance
does not become a bottleneck.

Example Documentation Solution: An executive committee was established and sanctioned by
the existing management. The committee established the necessary global standards:
• Form: Components would be in the form of standard text components, i.e., words, sentences,

paragraphs, sections, chapters, etc., maintained in separate files on a common file system.
The top-level document was created as a component and used to define all formatting.

• Naming: File (component) names would be based on the document structure (e.g.,”Preface”,
“Introduction”, “Chapter 1”) and device structure (e.g., “Subsytem X”, “Capability Y”,
”Component Z”).

• Combination: The available documentation system would act as the assembly mechanism via
its capability to insert referenced files prior to formatting; this capability could be nested to
any degree.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 9 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

• Variation: Most variation would be implemented using M4, the Unix general macro
processor. A symbolic name was defined globally for each variation point (e.g.
$DeviceName), and a value defined for each variant (e.g., Device1, Device2). A
configuration, i.e., set of variants selections, was defined for each component having
variation points.

• Ownership: One and only person would own each component and variant set.
• Evolution: Existing mechanisms would be used to define new components and variants; new

global issues would be brought to the committee to resolve globally.

Rational:
An essential pillar of the Composable System Pattern is to view related products and their
components as a single system thus allowing system issues to be identified and addressed where
they can be dealt with most effectively and efficiently. System issues not dealt with at the system
level will be dealt with sub-optimally and perhaps redundantly elsewhere.

Resulting Context:
• A system emerges from separate products and components through establishment of common

definitions, standards, forms, and common global management.
• An authority is created with responsibility for each global aspect of the system that must be

managed.
• A central authority must get involved with all system-level architectural changes.
• All mechanisms, organizations, and standards needed at the system level to support the

development of new components and products are put into place.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 10 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

B.1. NONREDUNDANT PRIMITIVES

Problem: How do you eliminate redundancy across a system of multiple products.

Context: You have a Composable System for which integrity, consistency and adaptability are
important objectives, and you thus want to avoid redundant definitions of logic or data.

Forces:
• Many important qualities such as adaptability, consistency, and integrity depend on having

only a single definition of logic and data (see redundancy in Glossary).
• Extra resources are required to design, build and support redundant software.
• Partitioning into non-redundant primitives creates many components that must be managed.
• Partitioning causes a unit of processing (i.e., a scenario) to be split across multiple

components, making it more difficult to follow and understand as a whole, and possibly
causing extra control transfers.

• To create components that are non-redundant within a domain requires addressing the entire
domain.

Solution: Partition the System into primitive components of sufficiently fine granularity to
eliminate multiple definitions of logic or data. Minimize the need to deal directly with fine-grained
primitives, by combining the primitives in stages into INTERMEDIATE COMPONENTS, and ultimately
synthesize products from these larger components. Assign every component to one and only one
DISJOINT COMPONENT MANAGEMENT GROUP where it can be managed with related components
and changes can be coordinated to avoid redundancy and maximize efficiency. Factor out any
emerging redundancy into new NONREDUNDANT PRIMITIVES. Make enhancements to primitives, not
products.

Example Documentation Solution: The documents were decomposed into chapters. Each
chapter that was unique, i.e., contained no significant redundancy with other sections, was
designated to be a primitive component and implemented once for all of the documents. The
chapters that were not unique but contained significant commonality were further decomposed
and the common sections designated primitives. This process was continued recursively until no
two components included significant redundancy.

Rationale:
Redundancy severely limits quality, especially consistency and adaptability, and also impairs
integrity and increases bulk; it should thus be considered a quality defect. Rather than attempting
to remove defects later (or coping with them), it is better to avoid creating them in the first place.

Resulting Context:
• Many fine-grained non-redundant components are produced.
• Applications cannot independently define components.

Related Patterns:
When it is difficult to apply NONREDUNDANT PRIMITIVES, MANAGED REDUNDANCY may be used as
an alternate pattern. The INTERMEDIATE COMPONENTS PATTERN addresses the complexity of using
many small components. COMMON ARCHITECTURE provides the foundation for a component-
oriented system.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 11 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

B.2. MANAGED REDUNDANCY

Problem
How do you eliminate redundancy across a system of multiple products.

Context: You have a Composable System for which integrity, consistency and adaptability are
important objectives, and you thus want to have one and only one set of definitions. You cannot
apply the NONREDUNDANT PRIMITIVES PATTERN in every instance.

Forces:
• Some dimensions, such as text semantics and style, are difficult to separate so that redundancy

results if variants are required in one of the dimensions, i.e., variant styles may result in
redundant semantics.

• The other forces are the same as those stated for NONREDUNDANT PRIMITIVES.

An example where it may be difficult to apply NONREDUNDANT PRIMITIVES is versions of
documentation that have the same semantics but must be tailored for different purposes (e.g.,
versions that are legalistic, full detail, condensed, and summary) or audiences (e.g., technical and
managerial; or in-house and external).

Solution: Segregate each instance of redundancy that cannot be eliminated by NONREDUNDANT

PRIMITIVES into a minimal number of primitive components and provide common management for
the set of components. Hold the set manager responsible to maintain the consistency of the
redundant definitions across each component set.

Example Documentation Solution: Some corresponding sections of different documents had
identical intent and some identical text, but the text was interspersed with too many small
sections of unique text to be worth partitioning into NONREDUNDANT COMPONENTS. Instead of
partitioning these sections further, they were recognized as being mutual redundant and one
person was given responsibility for maintaining all of them while ensuring that the redundant
parts remained consistent across the set of components.

Rationale:
The best way to deal with redundancy is to avoid it completely via NONREDUNDANT PRIMITIVES.
The next best alternative is to confine it to minimal sets of components and control each set under
common management. To be nonredundant means to have one and only one definition within the
system. In the former case the single nonredundant definition is the nonredundant primitive; in the
latter case the nonredundant definition must exist in the head of the component set manager, and he
must ensure that all of the components reflect that single definition.

Resulting Context:
• Many components are produced.
• Applications cannot independently define components.
• Component sets are created which require common management.

Related Patterns:
NONREDUNDANT PRIMITIVES, when it can be applied, is a preferred alternate pattern to MANAGED

REDUNDANCY.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 12 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

B.3. INTERMEDIATE COMPONENTS

Problem: How can you best synthesize multiple products from many small primitive components
with managed complexity and minimal redundancy.

Context: You have a Composable System and have applied NONREDUNDANT PRIMITIVES and/or
COMMONLY MANAGED COMPONENT SETS and have created many primitive components.

Forces:
• Many primitives may be required to synthesize a product (e.g., an auto has about 10,000

components, a processor chip millions of transistors, an application many instructions).
• It is tedious and time-consuming to deal individually with many fine-grained primitives.
• It is difficult to understand the working of many primitives without intermediate structure.
• Many problem state abstractions occur at intermediate levels and each should have a

corresponding component.
• The existence of intermediate components facilitates evolution1.
• The same combinations of primitives tend to reoccur within and across products.
• Coordination logic is most easily understood when distributed close to the components directly

coordinated (i.e., within intermediate components).

Solution: Combine the primitives in stages into larger components. Create a leveled structure with
NONREDUNDANT PRIMITIVES at the bottom, products at the top, and layers of intermediate
components in between. Create intermediate components that relate closely to problem state
abstractions. Encapsulate details at each level to control complexity. INTERMEDIATE COMPONENTS

can be identified before as well as after primitives (i.e., the identification process may proceed top-
down as well as bottom-up).

Example Documentation Solution: The most primitive components, such as bare sentences and
variables, were combined into complete sections, the sections into larger sections, chapters, etc.
Each conceptual level directly combined the components of the next lower level; thus each
document (product) combined the title, all of the chapters, and the variants specific to it. Each
component was named for a well-defined domain entity, such as a part of the standard document
format or a hardware component.

Rationale:
It is necessary to partition a system into fine-grained components to eliminate the quality defects of
redundancy. But it is difficult to deal with many fine-grained primitives, and with products built
directly from primitive components without intermediate structure. Intermediate components that
mirror components in the problem domain make a system more understandable, and supports more
efficient handling, both mentally and physically, of the primitives. Structure is a fundamental
device for managing complexity, and the more stable the structure the better.

Resulting Context:
• Many intermediate components are created (in addition to the many primitive components)
• Larger, more capable components are created, allowing products to be assembled (directly)

from fewer components.
• Coordination logic can be built up in stages and is distributed over multiple intermediate levels

rather than centralized at the top.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 13 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

• Products acquire a leveled structure that reflects, and becomes as stable as, the problem
domain.

• The structure submerges details and allows the system to be understood at multiple levels of
abstraction.

• The intermediate component interfaces further isolate the effects of change.

Related Patterns:
“The WHOLE-PART design pattern helps with the aggregation of components that together form a
semantic unit.” [Bus96] WHOLE-PART addresses the following three types of relationships:
assembly-parts, container-contents, and collection-members.

COMPOSITE [Gam94] describes how to organize component hierarchies so that Wholes and Parts
can be handled uniformly. “CASCADE is a generic pattern for layering and ordering the parts of a
complex whole. Each layer is itself a COMPOSITE PATTERN.” [Fos99]

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 14 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

C.1. INDEPENDENTLY M ANAGED COMPONENTS

Problem: How can you ensure components are not sub-optimized for a single product or parochial
purpose.

Context: You have a Composable System and have created components used in multiple products.

Forces:
• Each product manager, by charter, strives to optimize an individual product (i.e., a part).
• The best interest of the whole requires optimizing across all products (i.e., the whole).
• Products may have differing or even conflicting requirements for a common component.
• Component-orientation requires additional organization and risks creating a bureaucracy.

Solution: Manage components separately from products. Charge component managers to support
the products but without de-optimizing the whole, and to maintain the component independence
principle (see Glossary). Ensure that every component is assigned to one and only one DISJOINT

COMPONENT MANAGEMENT GROUP. Channel all requirements for a component to the component
owner so that they can be most effectively and efficiently supported as a whole. Forbid product
managers to create components themselves or to own existing components. Avoid bottlenecks by
providing the component organization with sufficient resources to be responsive to the product
organization, and by requiring the product organization to plan ahead to identify requirements.
Establish an effective mechanism to communicate the existence and capabilities of components.

Example Documentation Solution: Every component was assigned to an owner independently of
the documents (although in some cases one person wore two hats). Permission to modify a
component was given only to the owner; all others were required to funnel their requirements to
the owner. Each owner periodically provided the current status of the owned components, and
announced new planned and available capabilities. Differing requirements were resolved in
several ways without creating redundancy, such as by eliminating a misunderstanding, reaching
a compromise, or creating component variants.

Rationale:
Product managers and developers are not well positioned to own and manage common components,
by virtue of their perspective and motivation, and often also by their knowledge and skills2. A
separate component organization with a different charter and focus is thus needed. Gathering and
analyzing all related requirements together is a key to optimizing the whole. Many options exist to
resolve differing and conflicting requirements, but they are not likely to be found unless someone is
in position to view all relevant requirements and charged to find common optimized solutions.

Resulting Context:
• The organization becomes component-oriented as well as product-oriented.
• A flow of requirements emerges from product managers to component managers, and a flow of

information about capabilities, plans and status emerges in the reverse direction.

Related Patterns:
DISJOINT COMPONENT MANAGEMENT GROUPS addresses how to manage related components.
SUFFICIENT VARIATION addresses one way to deal with differing or conflicting requirements.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 15 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

C.2. DISJOINT COMPONENT MANAGEMENT GROUPS PATTERN

Problem: How can you ensure that every component is managed effectively and the management
of related components is well coordinated?

Context: You have a Composable System, have applied NONREDUNDANT PRIMITIVES, COMMONLY

MANAGED REDUNDANT SETS, and INTERMEDIATE COMPONENTS, and have many components to
manage.

Forces:
• Components must continue to change and evolve to support current and new products.
• Some sets of components are closely related and may require coordinated changes, or at times

may need to be refactored to avoid redundancy, for example:
� a superclass and its subclasses
� sets of variants of the same dimension
� components and their specialized subcomponents

• In a component-oriented system it is necessary to be able to find a component if it exists, or to
determine its absence if it doesn’t, and to know where to direct requirements.

Solution: Assign every component to one and only one component management group. Assign the
most closely related components, i.e., those most likely to require coordinated changes, to the same
group. Define the group organization as part of COMMON ARCHITECTURE. Partition component
responsibility disjointly, i.e., so that group responsibility does not overlap and one and only one
group is responsible for each component. Publicize the group organization and responsibilities.

Example Documentation Solution: Variants for device and document identification were
assigned to the same group since device and document names and numbers are closely related,
and if one changes, the others were likely to as well. When a new device was defined, a new
variant was required for each of the related components.

Rationale:
Every component must be managed, and related components should be managed together.

The distinction between grouping for use and grouping for management is an important one. It is a
good thing for a component to be included in multiple use groups (e.g., products, intermediate
components); this represents reuse that leverages the component’s value. But it would be a bad
thing for a component to be in multiple management groups, as this would represent redundant
definition or ownership, which would reduce quality and value. Thus use may overlap, but
ownership must be disjoint.

Resulting Context:
• A hierarchical component organization based upon component ownership is created

independent of the product organization based upon component use.
• A natural home is created for every component, and components are managed in groups whose

proximity reflects their relatedness.
• The hierarchical component ownership organization provides a structure for component

searching and for collecting related requirements.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 16 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

D.1. SUFFICIENT VARIATION

Problem: How can you provide all of the variation required across the system but prevent
unnecessary variation.

Context: You have a Composable System that requires variation (as virtually all do).

Forces:
• Variation is valuable and necessary in almost all systems.
• Unnecessary variation creates extra complexity and costs.
• Insufficient variation encourages redundant development.
• Arbitrary variation is a natural result of independent redundant development, i.e., independent

developers can be expected to introduce arbitrary differences into common functionality (above
and beyond any required variation).

• Variation is a global phenomenon and can only be managed at the global level.

Solution: Establish a manager for each variation dimension (see DISJOINT COMPONENT

MANAGEMENT GROUPS PATTERN) with the sole authority to define variants for that dimension.
Collect centrally all of the variation requirements across the entire system by variation dimension.
Define only the minimum number of variants necessary to support the combined requirements for
each dimension. Direct all requests for new variation to the cognizant manager(s). Define new
variants only when bona fide requirements cannot be satisfied by existing variants. Introduce only
the minimum amount of new variation needed to support each new requirement.

Example Documentation Solution: Variants were identified where more than one version of a
component was needed across the set of documents, and each required variant was implemented.
For example, since each device required a unique name, a set of strings was defined as variants
of ‘Device Name’. One manager controlled this set of names; when additional names were
needed, the requirements were given to the manager and he created additional names (variants).

Rationale: Variation must be carefully controlled to provide high quality and low cost. The
availability of needed variation makes a system more valuable and obviates redundant
development. But variation beyond what is needed makes a system more difficult to understand and
expensive to use and support. Variation, like redundancy and complexity, is a global characteristic
and can be effectively managed only at the system level. The benefits of reducing variation have
been recognized by the quality community for many decades and is a key objective of quality
improvement programs.

Resulting Context:
• Unnecessary variation is suppressed without preventing needed variation.
• A manager is created for each variation dimension.

Related Patterns:
SINGLE-DIMENSION SUBSTITUTABLE VARIANTS addresses how to minimize the number of variant
components.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 17 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

D.2 SINGLE-DIMENSION SUBSTITUTABLE VARIANTS

Problem: How can you minimize the number of variant components yet still support all required
variation?

Context: You have a Composable System with multiple dimensions of variation.

Forces:
• Variation occurs in multiple dimensions (e.g., font, size, color), many of which are

orthogonal.
• The number of variant combinations is potentially very large (i.e., the product of the number

of variants in each dimension), and rises geometrically wi th new dimensions and variants.
• The number of variant combinations is larger than the number of dimension-variants, and is

much larger with many dimensions and variants; for example, three dimensions each with ten
variants would have 1,000 variant combinations but only thirty individual dimension-variants
(i.e., the difference of the product and the sum). Permanently coupling variants of separate
dimensions within a single component spawns unnecessary additional variant components.

• Permanently coupling variants may also create redundancy by defining the same variation
within more than one component (redundancy is defined as “multiply defined” – see Glossary).

Solution: Identify and separate all orthogonal dimensions of variation. Define a single set of
variants, i.e., a variant set, for each dimension that provides SUFFICIENT VARIATION. Implement
each member of the set by a separate component. Factor out all commonali ty from variant
components to avoid redundancy. Enable variants to be selected independently for each dimension
and combined dynamically. Manage all of the variants of a dimension jointly as a DISJOINT

COMPONENT MANAGEMENT GROUP.

Rationale: Variation is easier to comprehend and manage if orthogonal dimensions are separated
so they can be dealt with independently. The number of components can be drastically reduced by
creating components for each dimension and allowing them to be combined as needed.

Resulti ng Context:
• The number of variant components is minimized and grows only at the rate of new variants

rather than geometrically.
• Redundancy is reduced.
• Once the variant set for each dimension has been created along with the mechanism for

combining them, every possible combination can be produced; i.e., new combinations of
existing variants do not have to be created explicitly.

Related Patterns:
SUFFICIENT VARIATION addresses how to provide all necessary variation but no more. DISJOINT

COMPONENT MANAGEMENT GROUPS describes how to manage sets of related components such as
variant sets. PLUG-POINTS AND PLUG-INS [DSo98] addresses how to provide “modular and
extensible variety in an objects’ behavior” .

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 18 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

Acknowledgments
The following have provided helpful comments on one or more drafts of this document: the
Vanguard Pattern Study Group (especially Ed Forbes, Ed Bacon, Dave Bartlett, Bob Maksimchuk
and Bruce Lierman), the OOPSLA’98 Pattern Writing Tutorial and Workshop (especially Jim
Coplien and Frank Buschmann), Larry Ackley, Lester Shuda, and Rob Weening. Special thanks is
due to Liping Zhao for providing many helpful suggestions as part of the PloP sheperding process.

In writing this pattern language, the following patterns were used from A Pattern Language for
Pattern Writing by Gerard Meszaros and Jim Doble [PloP3].
• PATTERN LANGUAGE

• PATTERN LANGUAGE SUMMARY

• PROBLEM/SOLUTION SUMMARY

• COMMON PROBLEMS HIGHLIGHTED

• RUNNING EXAMPLE

• DISTINCTIVE HEADINGS CONVEY STRUCTURE

• GLOSSARY

 The pattern documentation in this document generally follows the Coplien form.

References
[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented

Software Architecture, A System of Patterns, John Wiley and Sons, 1996.

[Bus98] F. Buschmann, J. Coplien, R. Gabriel, and C. Schwaninger, OOPSLA’98 Tutorial Notes:
Pattern Writing

[Bro98] Brown, Malveau, McCormick, and Mowbray. AntiPatterns: Refactoring Software,
Architectures, and Projects in Crises, Wiley, New York, 1998.

[DSo98] D. F. D’Souza and A. Wills. Object, Components, and Frameworks with UML, The
Catalysis Approach, Addison Wesley Longman, Inc., Reading MA, 1998.

[Gam94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading MA, 1995.

[Fos99] T. Foster and L. Zhao, Cascade, Journal of Object-Oriented Programming, February
1999.

[PloP3] Pattern Language of Program Design 3, edited by Martin/Riehle/Buschmann, Addison
Wesley Longman, Inc., Reading MA, 1998.

[Sim69] H. A. Simon, The Sciences of the Artificial, The M.I.T. Press, Cambridge,
Massachusetts, 1969.

[Was95] M. Wasmund, The Spin-off Illusion: Reuse Is Not A By-Product, Software Engineering
Notes, August, 1995 (proceedings of the Symposium on Software Reusability SSO’95),
p 219.

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 19 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

Appendix A: Candidate Patterns
The items in Table 2 describe ideas for potential additions, extensions, or refinements to this
pattern language, but they have not been extensively analyzed.

Table 2. Summary of Candidate System Composition Patterns
Problem Solution Pattern Name

How can you exploit the value of
the components in a composable
system?

Expand the domain to include more
overlapping products, i.e., to more
organizations within an enterprise, to
the entire enterprise, to the industry, or
beyond.

BROAD DOMAIN

Remove all barriers to finding,
understanding, and assembling
components.

FACILITATE

COMPONENT

ASSEMBLY

Identify new products that can take
advantage of existing components.

NEW PRODUCTS

FROM EXISTING

COMPONENTS

How can you maximize
investment in new components?

Select components to build or enhance
that will provide value to multiple
existing or future products.

NEW COMPONENTS

TO SUPPORT

MULTIPLE PRODUCTS

Build new components that have
synergy with existing components.

SYNERGISTIC

COMPONENTS

How do you decide the proper
time for components to be
assembled?

Assembly requires processing time
depending on requirements and context.
Later assembly time provides more
flexibility. When assembly occurs is
orthogonal to many other
considerations.

COMPONENT

ASSEMBLY TIME

How can you create the most
stable system structure?

Define interfaces around domain
abstractions. Provide abstract interfaces
that will support multiple variants.

STABLE DOMAIN

ABSTRACTIONS

How can you make a
Composable System most
understandable in terms of its
problem domain?

Define components that relate closely to
problem domain objects. Use problem
domain component names.

PROBLEM DOMAIN

COMPONENTS AND

NAMES

How can you ensure that a
change to a common component
will not have unintended effects
without full regression testing of
all clients?

Rigorously specify the services
(contract) that each component provides
and do not allow unspecified side
effects. Base the use of a component
only on the services specified.
Following a change to a component,
test to ensure that the component still
fully supports its specification.

DESIGN BY CONTRACT

How can you ensure that all
related requirements are
considered when designing a
component, and redundancy is

Make a change only to the component
with the relevant responsibility.
Capture requirements as soon as stated.
Direct each requirement downward

REQUIREMENTS PULL

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 20 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

not created when product
enhancements and modifications
are made?

from the originating product to the
group responsible for components most
closely related to the requirement.
When appropriate, decompose the
requirement and direct subordinate
requirements separately.

How can you ensure that product
managers are aware of all of the
capabilities available from the
components?

Maintain a directory of capabilities.
Advertise each new capability as soon
as it is planned and when it becomes
available.

CAPABILITIES PUSH

How can you incorporate into
your Composable System a
component that doesn’t follow
the COMMON ARCHITECTURE?

Encapsulate the foreign component with
interfaces that do follow the COMMON

ARCHITECTURE; eliminate any side
effects.

WRAPPED

COMPONENT

How can you coordinate the
management of software
components and the management
of the problem domain
components they represent?

Align component management groups
and the management organization of the
problem domain with respect to the
components under management.

PROBLEM DOMAIN

ALIGNED GROUPS

How can you make a
Composable System most
flexible and least redundant?

Partition to the finest granularity, and
define a component for every
intermediate component level.

FULL PARTITIONING

How can you ensure that
common functionality will be
packaged in comparable forms.

Define a standard form(s) into which all
components of a specific type must be
mapped.

CANONICAL

COMPONENT FORMS

How can you make component
assembly most flexible and
adaptable?

Separate the directions of how to
assemble the components from the
components themselves. Automate the
assembly process if possible.

SEPARATE ASSEMBLY

DIRECTIONS

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 21 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

Appendix B: Glossary
 The following are definitions of the most important Composable System terms.

 Component - a cohesive unit with a well-defined interface by which it can be combined,
unchanged, with other components to form a larger system; i.e., a building block, a unit of
composability3.

The notion of a component is fractal, i.e., scale-invariant. A component may be of any size or
complexity. Components may be combined in one of many ways with other components to form
any number of larger and more complex components, which may in turn be combined in the same
or different ways to form other components, ad infinitum.

From a component perspective, each component is viewed as a disjoint unit of functionality
packaged in a sufficiently generic way to support requirements for that functionality across the
system.

 Component Independence Principle – a component should be independent of its users and
managed in the best interests of all of its clients, not a single particular one.

Product - a component which is delivered, and presumably provides value, to an end user, i.e.
someone outside the system.

From a product perspective each product is viewed as a composite of components packaged for
delivery outside the system; each product is unique, yet related to and consistent in many ways with
other members of the system.

Note that a product is defined relative to a system. A product of one system thus may be a
component of a product of another system elsewhere in the food chain. (If so, this would imply a
larger system to which the COMPOSABLE SYSTEM PATTERN potentially may also be applied.)

Redundancy - one of the key concepts that motivates this pattern and is used here to mean
“defined more than once”. The acid test for redundancy: when a system change is needed, must
you make the change once, or more than once. A copy may or may not be redundancy by this
definition. If the a copy is made through a well controlled mechanism from a single definition, as
by a macro expansion or a data base replication, it is not considered to be redundancy because a
change need only be made one time for all copies. Similarly, two composites that incorporate a
common component are not redundant if the common component can be changed and propagated to
all of the composites that use it. Clones, i.e., modified copies, on the other hand, because they
require a change to each clone, are considered to be redundancy. (Most redundancy is created not
by cloning per se, but by overlapping and uncoordinated development.)

The System - the totality of all of the products and components under consideration, along with the
rules and mechanisms for creating the products from the components.

From a system perspective, all products and components are viewed as a single system to be

A System Composition Pattern Language - Ver 4.1. 7/16/99
07/16/99 6:48 PM

tmarzolf@ACM.org - 22 –
Copyright © 1999, Thomas R. Marzolf. Permission is granted to

copy for the PLoP 1999 conference. All other rights reserved.

optimized as a whole.

Variant Set - a set of components with a common function and interface, but differing in some
way. A Variant Set is a general mechanism for dealing with variation by segregating it into a set
of components in such a way that each distinct variant resides in a single discrete component. This
reduces the selection of a variant to the selection of one of a set of components.

 1 Simon discusses how the existence of “intermediate stable forms” facilitates evolution: "The time
required for the evolution of a complex form from simple elements depends critically on the numbers and
distribution of potential stable intermediate forms." Applications (complex forms) can evolve more
quickly from good components (stable intermediate forms). Software systems, like living organisms, must
evolve and adapt to survive; most systems don’t survive because they can’t easily be adapted. [Sim69]
2 Wasmund calls the idea that reusable components can be produced as a by-product of a
traditional application development the spin-off illusion. He states “There is no ‘soft’ way of
building up reusable assets, because the short-term goals of product development groups
fundamentally conflicts with the goal of building up an asset library”. [Was95]
 3 This definition owes much to the following definition of component by D’Souza and Wills: “A
coherent package of software artifacts that can be independently developed and delivered as a
unit, and that can be composed, unchanged, with other components to build something larger.”
[DSo98].

	A System Composition Pattern Language
	Introduction
	Table 1. System Composition Pattern Language Summary
	Figure 1. Composable System pattern relationships

	Composable System Patterns
	A.1. Composable System Pattern
	A.2. COMMON ARCHITECTURE
	B.1. NONREDUNDANT PRIMITIVES
	B.2. MANAGED REDUNDANCY
	B.3. Intermediate Components
	C.1. Independently Managed Components
	C.2. Disjoint Component Management Groups Pattern
	D.1. SUFFICIENT VARIATION
	D.2. SINGLE-DIMENSION SUBSTITUTABLE VARIANTS

	Acknowledgments
	References
	Appendix A: Candidate Patterns
	Appendix B: Glossary

