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Digital twins have shown promising results in many domains, such as healthcare and communication. Such digital twins have been
designed to support various activities, such as anomaly detection and predicting failures during the design and operation of their
corresponding physical twins. We have identified four preliminary patterns for creating digital twins based on developing digital
twins with artificial intelligence (AI) techniques in different industrial and real-world contexts for software systems. Based on our
experience, we report these patterns in this paper.
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1 INTRODUCTION

Digital twins ("virtual replicas") have found applications in diverse domains for various system types [6]. However,
this paper focuses on digital twins (DTs) of software systems such as cyber-physical systems, the Internet of Things,
and other large-scale software. We proposed a high-level pattern for DTs in [11] for such systems (see Figure 1). A
DT is a virtual representation of a system (i.e., Physical Twin (PT)) [6]. A DT receives continuously live data from the
PT and keeps itself synchronized with the most recent PT state. Depending on its maturity level and security/safety
considerations, a DT may control PT and take necessary actions. In our pattern, a DT comprises two components, i.e.,
the model and the capability. The digital twin model represents the virtual representation of the PT, possibly abstracting
and simulating the PT’s behavior. For example, it could be a simulation model created in Matlab/Simulink. The digital
twin capability represents the functionality to be performed by the digital twin with support from the model. An
example of capability is predicting failures before they occur in the PT. Such capability could be implemented with, for
example, a machine learning prediction model. The capability relies on the model to perform its functionality more
precisely.

Fig. 1. Generic Pattern for Digital Twins

We realized the high-level DT pattern from [11] to build DTs with artificial intelligence (AI) techniques for different
system types including water treatment and other plants (e.g., gas pipeline) [7, 8], autonomous driving systems [1],
industrial elevators [9], train control and management system [10], medical devices [5], and cancer registration and
support system [2]. Based on such experience, we identified four patterns for creating AI-based digital twins presented
in this paper from Section 2 to Section 5.
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2 PATTERN 1: CLASSICAL-AI DIGITAL TWIN

Context. Such DTs are built with data collected from the operation of a system’s current or previous version(s). Such
DT is common when: (1) the DT is built for an operational PT; (2) the DT wasn’t considered during the design and
development of the PT; (3) PT (e.g., medical devices in healthcare [5]) are purchased from a third party, and they are
black-boxes with limited or no access to the internal functionality (e.g., source code).
Problem. How do we build a DT for a software system for which only historical and live data are available? In this
case, other detailed knowledge about the system behavior, including design and development artifacts, is unavailable.
Even if such knowledge is available, it is not detailed enough to construct a digital twin.
Forces. 1) Need for Sufficient Amount of Data: Sufficient amount of past data are needed to build a reasonable quality
digital twin model and capability; 2) High-Quality Data: The quality of the past data must be good enough to be used
for building a digital twin model and capability; 3) Synchronization between DT and PT: The data from PT to DT shall be
transferred to DT with an acceptable delay to perform its intended capability; 4) Interoperability between classical and

AI models: Classical and AI model need to work together to support the intended capability, which otherwise, could
affect the capability, e.g., delayed predictions to a point where such predictions are not useful anymore.
Solution. This pattern is shown in Figure 2. First, an initial DT model (referred to as Classical Model in Figure 2) is
built from past data collected from a system’s operation, e.g., as an automaton, which is then continuously improved
with real-time data from the operational system. Second, based on the continuous live data, the initial DT model is
continuously fine-tuned to reflect the most recent PT state. On top of the DT model, the DT capability (referred to as
AI Model in Figure 2) is built by employing AI techniques (e.g., neural networks) on the past data. This AI model and
the DT model can perform various capabilities, e.g., anomaly detection using the most up-to-date state of the system
reflected in the DT model and live data coming from the PT. In addition, the Classical Model and AI Model work together.
The Classical Model supports the AI Model in performing the intended capability, whereas AI Model helps in improving
the Classical Model further.

Fig. 2. Classical-AI Digital Twin Pattern

Implementation. Various AI algorithms are relevant depending on the type of system for which we are building
digital twins and the type of capability needed. Examples include learning methods such as timed automata [7, 8],
deterministic automata (e.g., with the L* algorithm), and stochastic automata as Markov chains [4] to build the DT
model. Depending on the task, the DT capability can be built with various machine learning algorithms. For example,
various variations of convolutional neural networks can be employed to identify objects on the road in the environment
of autonomous driving systems. On the other hand, long short-term memory neural networks can be employed for
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predictions based on time series data, e.g., for predicting possible anomalies during the operation of a system with its
digital twin.
Known Uses. DTs have been built for water treatment and other plants [7, 8], elevator systems [9], and train control
and management systems [10]. For instance, the DT model was built as a timed automated [3], whereas Generative
Adversarial Networks were applied to build DT-based anomaly detection capability in [7, 8].
Consequences. Such digital twins can be built with data, significantly reducing the cost of building digital twins man-
ually. Moreover, building such digital twins requires less domain expertise since existing machine learning algorithms
can be employed. On the negative side, the data may not reflect the detailed knowledge about the internal behavior of
the PT and, therefore, might not help in making more accurate capabilities.

3 PATTERN 2: FULLY AI DIGITAL TWIN

Context. Such DTs have the same context as Pattern 1.
Problem. How to build a DT for a software system for which past and live data are available, but the system cannot be
precisely represented as a classical model?
Forces. The first three forces related to data discussed in Pattern 1 are also relevant in this pattern. In addition, a force
related to whether a combined AI model can accurately represent both the model and capability exist.
Solution. A DT and its capability are built as one AI model (see Figure 3), e.g., with various AI models depending on
the context (e.g., see [2, 5]) from the past data. Later on, based on the live data, the AI model is continuously fine-tuned
and improved. The AI model also performs its intended capability based on the live data.

Fig. 3. Fully AI Digital Twin Pattern

Implementation. The implementation details related to the AI model in Pattern 1 also apply to this pattern.
Known Uses. DTs have been built for medical devices [5] and cancer registry system [2]. In both cases, variations of
neural networks were built as the DT cores for predicting medical device responses and cancer medical rules validation,
respectively.
Consequences. These DTs can be built solely on data, requiring less manual effort. However, the AI model of the
DT needs to be kept updated to represent the most up-to-date version of the system due to evolution, which can be
expensive.

4 PATTERN 3: MANUAL MODEL-AI DIGITAL TWINS

Context. These DTs are built with AI-based approaches and manually created models by domain experts. Such DTs are
common in contexts where more detailed knowledge about the systems is available (e.g., design models) in addition to
data. This allows for creating more detailed DTs since, with design models, one can capture a more detailed system
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view that is often missing in data collected, e.g., from sensors and actuators (e.g., relationships among different system
components).
Problem. How to build a DT for a software system for which more detailed knowledge about the software system is
available in addition to data?
Forces. The three forces related to data discussed in Pattern 1 also apply in this context. In addition, there is another
force related to interoperability between the classical model and the AI model, as described in Pattern 1, which also
applies here; however, with a difference that the classical model in Pattern 1 was learned from past data, whereas in this
pattern, such model is manually created by a domain expert. To differentiate these two models, we will call the model
in this pattern as Manual Model. An additional force exists related to the manual model’s quality, which could have
errors due to a misunderstanding of a domain expert about PT’s behavior, leading to inaccurate PT behavior captured
in its DT. In addition, the manual model may not be detailed enough to represent the PT precisely.
Solution. This pattern is shown in Figure 4. First, manual models are created, representing the digital twin model
(referred to asManual Model in Figure 4). Such a model is further improved with live data (see Figure 4). In addition, the
DT capability is built as an AI Model based on past data. The AI Model and Manual Model work together to provide the
intended capability. Similar to Pattern 1, Manual Model assists the AI Model in performing more precise capability. In
contrast, the AI Model further helps to improve the Manual Model as more knowledge about the PT becomes available
based on new data.

Fig. 4. Manual Model-AI Digital Twin Pattern

Implementation. For manual modeling of digital twins, many solutions exist, such as OpenModelica, Matlab/Simulink,
and many tools supported with many formalisms in INTO-CPS association 1. Concerning AI algorithms, the implemen-
tations discussed in Pattern 2 are still applicable in this case.
Known Uses. This pattern was implemented for autonomous driving systems in [1], where initial models were created
in Modelica and later improved with data.
Consequences. Such digital twins are often much more detailed and can offer advanced analyses than the ones fully
built with machine learning algorithms. However, building such digital twins costs extra since manual modeling is
labor-intensive. In addition, manual modeling could have quality issues due to model faults.

1https://into-cps.org/
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5 PATTERN 4: HYBRID-AI DIGITAL TWINS

Context. Such DTs are typically first built manually during the design and development of their underlying physical
twin, and initially, no data is available. Later, additional DT is built when the data becomes available. As a result, two
DTs for the same PT are available, one manually built by domain experts, whereas the second is built automatically with
AI techniques from data. The key difference between this pattern and the previous three patterns is that we build two
separate DTs, which are later integrated to form an integrated DT. In contrast, only one DT was built in the previous
three patterns.
Problem. How to build and integrate two DTs of the same software system built from two perspectives: a manual
modeling-based DT and an AI-based DT?
Forces. This pattern shares the same forces as Pattern 1, related to data, and Pattern 3, related to manual modeling.
An additional force exists due to the differences between the manual modeling-based DT and the AI model-based DT,
which may make their integration difficult and inefficient for the intended capability.
Solution. This pattern in shown in Figure 5. First, a DT is created based on manual modeling. Second, when the data
becomes available, an AI-based DT is created using relevant AI techniques. Later, both DTs are integrated to form a
more comprehensive DT (shown as Integrated Digital Twin in Figure 5).

Fig. 5. Hybrid-AI Digital Twin Pattern

Implementation. In this case, the implementation details discussed for Pattern 3 also apply to manual modeling. In
addition, the implementation details for AI-based DT from Pattern 2 also apply to this pattern.
Known Uses. This pattern was applied to build DTs of medicine dispensing machines [5], where model-based DT was
created as executable UML state machines in parallel to neural network-based DT from data.
Consequences. Creating two DTs incurs additional costs. In addition, their integration might not be possible or
become inefficient for the capability for which they are designed. The evolution of these DTs becomes challenging
since one must maintain the two DTs and later integrate them. Integrating the two DTs could also be challenging and
incur extra costs.

6 CONCLUSIONS AND FUTUREWORKS

Based on building artificial intelligence (AI)-based digital twins for industrial and real-world software systems, we
presented four high-level patterns for creating digital twins. We described their context, presented the patterns,
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and provided their known cases. In the future, we plan to describe detailed patterns from various aspects, such as
communication between digital twins and physical twins, AI models, and digital twin evolution.
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