
1 | P a g e V e r s i o n 1 . 3 5 Feb 2014

Inoculation Pattern in Change Management

Gautam Hegde/Koushik H

gautam@backend.co.in/koushik@backend.co.in

Backend Bangalore Pvt. Ltd. #587, KPC Layout, Bangalore - 560035

Abstract
The management of change becomes very challenging for the implementers and users in the live

environment of a software implementation. The change necessitated due to increased visibility into the

user requirements or due to underlying technology changes have to be brought about in real time

without bringing down the system. The inoculation pattern suggests bringing about the essential change

in a gradual and staged manner keeping the quantum of change well below the user’s rejection

threshold. The process comprises of –

1. Identifying, Ordering and Selecting functional modules in terms of importance and usage from a

user perspective

2. Injecting the change in selected modules;

3. Allowing sufficient familiarity in these modules before the changes are introduced to the rest,

until all of the modules are covered and the whole change is implemented.

Thumbnail
If

 Changes are required due to additions/alteration in user requirements;

 Due to change in underlying technology

Then

 Identify modules in terms of importance to user and usage

 Injecting change in selected modules

 Allow for incubation of familiarity with the introduced change, before inoculating rest of the

modules

Problem
Changes are inevitable in software process and happen due to alteration and additions to user

requirement. Changes can also happen due to change in underlying technology. Incorporating these

changes in live environment can be extremely challenging. Implementers do not have luxury of

downtime or long drawn user training schedule. The implementation of changes and user training has to

Inoculation Pattern in Change Management

2 | Page Version 1.3 5 Feb 2014

be done on the fly. User resistances to changes have to be overcome smoothly so that their rejection

threshold is not breached. Business continuity is of paramount importance since discontinued services

mean risking loss of business. So the change management program has to evolve a method for

introducing the changes without risking business continuity.

Forces
 Scope creep: documented scope in software development process is usually like a tip of ice-berg

with a large portion of work hidden at the requirement capture stage.

 Increase in visibility of additional requirements during the course of implementation.

Solutions
Software Architecture has to cater to inevitable future changes. While the visibilities to the changes are

limited, an n-tier approach may help by separating the functionalities in different layers.

Software architecture could be visualized at the logical level as abstract layers comprising of specific set

of functional components interacting with each other to deliver specific business functions.

Inoculation Pattern in Change Management

3 | Page Version 1.3 5 Feb 2014

Functional modules may be grouped logically into following layers or logical block:

 Database/Storage (DB):

This is the layer the persistent data is stored as tables or files.

 Data Access Layer (DAL):

In this layer the methods for accessing Database is defined. As methods of accessing different DBs are

different, this layer hides/abstracts the details from top layers.

 Business Logic Layer (BLL):

In this layer addresses the functions of business where business logic decides the data to be collected and

directed into DB through DAL. This layer also provides interfaces to top layers as well as feature interaction

among layers.

 Transport Service Layer (TSL):

This layer comprises of communication and security protocols defining means of transportation of

information functioning as an interface between Business Logic Layer and User Interface Layer.

 User Interface (UI):

This is the layer visible to user through which they make use of the business logic to achieve the objective of

software application. The users interact with application server side software through this layer using client

side software like web browser or forms.

Each layer interacts with its adjacent layer [LayerX] [upper (LayerX+1) or lower (LayerX-1)]

Inoculation Pattern in Change Management

4 | Page Version 1.3 5 Feb 2014

To implement a change in a software system, multiple layers may be affected, which may break existing

functionalities. Change may be in

A. UI layer or

B. Underlying layers in that module with corresponding UI change or

C. Only in specific layer(s) but impacting user experience without affecting UI

Changes in the UI and/or changes in the user experiences increase the chance of user discomfort.

One approach is to surgically replace the whole functional module with a new enhanced module. In such

cases probability of user discomfort could be high resulting in larger outlays of time and resources for

re-training. To avoid this, an approach can be taken which gradually changes the system instead of doing

a drastic change. This could be particularly effective where there are eye-visible changes.

The gradual change approach helps to maintain the continuity of the services. Same approach may be

applied to each functional module and its dependant module.

Example: Injecting a change in Business Logic Layer

Stage 1: Create change as new entity

Stage 2: New block (Changed) and existing block co-exist so that if there is a problem there can be easy

roll back.

Business Logic Layer

Module 1

Deprecated Module X Module 2

Module n

New Module X.1

Services (Reference) Test Services (Reference)

Business Logic Layer

Module 1 Deprecated Module X Module 2 Module n

Changes as new Module X.1 Services (Reference)

Inoculation Pattern in Change Management

5 | Page Version 1.3 5 Feb 2014

Stage 3: Deprecated block removed after successful testing of new block. All references to the

deprecated block from rest of the software also removed.

In case of any necessity of Rollback the Deprecated Block and it references can be brought to its original

positions.

Stage 4: Change completed. Deprecated block is archived.

Business Logic Layer

Module 1

Module 2

Module n

New Module X.1

s

Services (Reference) Deprecated Module X

Business Logic Layer

Module 1

Module 2

Module n

New Module X.1

s

Services (Reference)

Deprecated Module X

Business Logic Layer

Module 1

Deprecated Module X

Module 2

Module n

New Module X.1

s

Services (Reference)

Inoculation Pattern in Change Management

6 | Page Version 1.3 5 Feb 2014

Example: If change affects a single functional block

In this case all the dependant layers are duplicated and merged at each stage with consequent changes

in dependant interfaces. Co-existing old block and new block helps to keep backward compatibility and

rollback if there is any necessity. After each dependant block is merged, old block’s content can be

removed/archived.

Resulting Context
Enhanced functionalities achieved without disruption of any business services and user re-trained with

minimal time and effort.

Conclusion
Inoculation pattern is most effective in cases of eye-visible change management. There could be some

limitations to this pattern in cases where changes impact user experience without consequent changes

to the UI.

Acknowledgement
We would like to acknowledge Prof. K V Dinesha of International Institute of Information Technology –

Bangalore for enlightening us on PLoP and shepherding us in the preparation of this paper by holding

the preparatory workshop. We also like to thank Mr. Éric Platon for shepherding this paper.

Archive

 State 1 Stage 4 State 3 State 2 Original

DB

DAL

BLL

Services

UI

DB

DAL

BLL

Services

UI

BLL

Services

UI

DB

DAL

BLL

Services

UI

Services

UI

DB

DAL

BLL

Services

UI UI

DB

DAL

BLL

Services

UI

Existing Block

Block to be updated

Updated Block Merged Block

BLL

Services

BLL

Archived Block

UI

Services

BLL

