
Analysing Concurrency issues and obtaining
Thread-Safety for Design Patterns

Emiliano Tramontana
Dipartimento di Matematica e Informatica

University of Catania, Italy
tramontana@dmi.unict.it

ABSTRACT
GoF’s design patterns describe solutions for single-threaded
applications. This paper analyses some of the most com-
mon design patterns and highlights which features that are
specific of a design pattern should embed synchronisation
constructs in order to have them ready for a concurrent en-
vironment. We suggest for each analysed design pattern
whether any portions of code have to be changed. For the
cases that need improvements, we give the thread-safe ver-
sion. Moreover, we discuss the common use scenarios and
consequences of the proposed solution.

1. INTRODUCTION
For each design pattern, the solution describes the roles,

with names and responsibilities, and their relationships. Roles
are mapped into classes of an application, and class relation-
ships describe the needed dependencies, such as generalisa-
tion/specialisation, method call, instantiation, etc. [5, 17].
Resorting to design patterns enable modularity and some
degree of separation of concerns [3, 13, 14, 16], while making
the design phase easier [4, 12]. However, the most used and
widely known design patterns, i.e. the GoF’s catalogue [5],
provide a correct solution for single-threaded applications
only. Nowadays, multi-threaded applications are the norm
given the widespread use of multiprocessor hardware and
the complex problems we have to solve. Therefore, a fur-
ther support is paramount to let design patterns be useful
in such an environment.

In order to analyse the consequences of using multiple
threads on a design pattern, we reveal the code that is in-
tended to bring the desired characteristic of the design pat-
tern to a class and that is application-independent [6, 7,
8, 9]. The analysed patterns are among the ones that pro-
vide application classes with a portion of code implementing
the desired characteristic that is application-independent.
E.g. for Singleton the field holding the instance itself is
an application-independent portion of code. Whereas other
patterns suggest the roles for application classes and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

relative encapsulation of responsibilities and relationships,
however no portion of code is application-independent. Among
such other patterns there is e.g. Façade, for it a class playing
role Façade embeds calls to methods for classes of a subsys-
tem, however references held and methods called are appli-
cation specific.

The application-independent code, which concerns the de-
sign pattern characteristic, should be made in such a way
that it can not reach an invalid state when several threads
can make simultaneous requests to the design pattern. Typ-
ically, an invalid state is a consequence of the execution of
code embedding a race condition. We analyse the design
pattern code and look for race conditions, then we propose
a viable concurrent solution. We refer to the following char-
acterisation of code in a multi-threaded environment: im-
mutable (data on instances of the class are constant), un-
conditionally thread-safe (synchronisation is used effectively
on mutable data), conditionally thread-safe (synchronisation
is used on mutable data, however some methods require ex-
ternal synchronisation), not thread-safe (no synchronisation
is used on mutable data) [2].

Table 1 shows for each analysed design pattern the role
that embeds code implementing a feature specific to the
design pattern that is application-independent and its cor-
responding concurrency-related characterisation when con-
sidering the unchanged solution. It also shows a summary
of the changes required to make the solution suitable for a
multi-threaded environment.

Of course, while the code that provides the design pattern
characteristic that is application-independent can be im-
proved for a concurrent environment once for all, application-
dependent code that is often embedded into the same class
as the design pattern role would need to be changed accord-
ingly. Moreover, the improved design pattern version would
not automatically make the applications using it thread-safe,
i.e. other issues related with concurrency will have to be
tackled within other application classes, and an appropriate
analysis of data accesses would be needed [10, 11].

The rest of the paper is structured as follows. Next section
analyses some creational patterns. Section 3 analyses some
structural patterns. Section 4 analyses some behavioural
patterns. Finally, our conclusions are drawn in Section 5.

2. CREATIONAL PATTERNS

2.1 Singleton
For Singleton design pattern the aim is to have a unique

instance for a class and a way to access this instance. The

design pattern role characterisation required change
Singleton Singleton immutable
Factory Method ConcreteCreator immutable
Factory Method

with object pool ConcreteCreator not thread-safe synchronise accesses to list of ConcreteProduct instances
Class Adapter Adapter immutable
Object Adapter Adapter immutable
Composite Composite not thread-safe synchronise accesses to list of Leaf instances
Decorator Decorator immutable
Observer Subject not thread-safe synchronise accesses to list of ConcreteObservers instances
State Context not thread-safe synchronise accesses to variable holding a ConcreteState instance

Table 1: The characterisation of the traditional solution of some design patterns when used in a multi-threaded
environment and the proposed improvements

solution indicates that a private static field has to hold the
unique instance of the class and a public static method re-
turns such an instance. The portions of code characterising
the design pattern, which are application-independent, are
such a field and the method returning the value of the field,
while other portions of code are application-dependent.

The initialisation of the private static field can be per-
formed once for all when the class is loaded, as in the fol-
lowing snippet of code, which is actual code from JHotDraw
6.0 implementation [1].

1 // a class playing role Singleton
2 public class Clipboard {
3 // fgClipboard holds the unique instance
4 static Clipboard fgClipboard = new Clipboard();

6 static public Clipboard getClipboard() {
7 return fgClipboard;
8 }
9 ...
10 }

Having the initialisation of field fgClipboard at class load-
time makes the instance of Singleton class Clipboard im-
mutable, hence ready for a concurrent environment.

The solution of design pattern Singleton has another vari-
ant, and accordingly the unique instance is created at the
moment of the first request from a client class (this is dubbed
lazy initialisation), and setting the field holding such a value,
for subsequent accesses. In this case, additional synchroni-
sation code is needed, the solution and its consequences are
discussed in [15].

2.2 Factory Method
For Factory Method design pattern the aim is to encapsu-

late the decision on which class to instantiate among a hi-
erarchy of classes with a common interface. The suggested
solution has role ConcreteCreator and a method named fac-
tory that creates an instance of a ConcreteProduct, which is
one of the classes implementing the common interface Prod-
uct, and provides it to the caller.

The above relationships among roles (hence the respective
classes), and the method returning a newly created instance
are the pattern-specific portions of code. The following is
an example of Factory Method from JHotDraw.

1 // a class playing role ConcreteCreator
2 public class StandardDrawingView
3 implements DrawingView ... {

5 // a factory method
6 public FigureSelection getFigureSelection() {
7 return new StandardFigureSelection(...);
8 }
9 ...
10 }

A widespread variant of this pattern is the one where the
factory method, which is within role ConcreteCreator, makes
no changes on the state of its instance and neither other in-
stances, because typically the method encapsulates the logic
that selects one among the classes playing as ConcreteProd-
uct, however it has no need to hold created instances. Then,
it follows that role ConcreteCreator is immutable, hence ready
for a concurrent environment. For the sake of simplicity,
two method calls have been removed from the actual code
in JHotDraw; such methods build two parameters that are
then passed to the constructor of StandardFigureSelection.
By inspecting the methods, we can see that no modification
of a shared state is performed on neither of them.

1 // a class playing role ConcreteCreator
2 public class Drawing {
3 // shared data accessed by several methods
4 private List<Figure> lf = new LinkedList<Figure>();

6 // a factory method
7 public Figure getFigure() {
8 if (lf . size () > 0) return lf.remove();
9 return new FigureA();
10 }

12 // a method modifying the state of the object
13 public void releaseFigure(Figure f) {
14 lf . add(f);
15 }
16 ...
17 }

In another variant of this pattern, created instances are
inserted into (and extracted from) a list, hence implement-
ing the object pool model, useful when destroying unused in-
stances and creating new ones is computationally costly. A
practical implementation has two methods, one to let client
classes ask instances, as in getFigure(), and another one for
releasing instances, as in releaseFigure() (see the above code).

In this variant, within role ConcreteCreator the factory
method and all the other methods accessing the shared list
of instances playing as ConcreteProducts would need to be
synchronized to let the calling threads exclusive access to

the list. If the reference to the list is not passed around to
other classes, then the obtained solution is unconditionally
thread-safe. If the list can be accessed from other methods,
e.g. because its reference has been passed, then additional
synchronisation is needed for the other accessing methods.

3. STRUCTURAL PATTERNS

3.1 Adapter
For design pattern Adapter, the aim is to have some client

classes access a library class that has an incompatible in-
terface. As a solution, interface Target defines operations
that a client class invokes, then this interface is implemented
into class Adapter that maps provided operations into oper-
ations available by means of class Adaptee. In a variant of
the solution, dubbed Class Adapter, Adapter is a subclass of
Adaptee. In another solution, Object Adapter, Adapter holds
a field that is set with a reference to Adaptee.

The design pattern code that is application-independent
consists of the said relationships and the method invocation
from class Adapter to Adaptee (however, which method is
invoked depends on the application).

For the Class Adapter version, the Adaptee is a superclass
of Adapter, then this relationship can not be changed at
runtime, hence it is also immutable, from the point of view
of concurrent execution.

For the Object Adapter version, the field held by Adapter
can be set once for all at the moment of the instantiation
of Adapter and need not be changed. If implemented in
this way the instance of Adapter is immutable. However,
it is also possible to set such a field just before calling for
the first time an operation on Adaptee, then the methods
accessing the field will have to be synchronised to become
unconditionally thread-safe.

3.2 Composite
For design pattern Composite, the aim is letting client

classes handle individual objects or composition of objects
uniformly. The solution indicates an interface Component
that defines an operation, then a version of it is implemented
into class Leaf. A class Composite implements interface Com-
ponent and holds a list of instances of type Component. In-
stances of Leaf and Composite can be inserted into a Com-
posite by means of a method add() being implemented in
Composite. The pattern-specific code consists of handling
the list of Component subclasses instances, within role Com-
posite, and the described relationships among classes.

The following code provides a typical implementation, where
interface File plays role Component, class Folder plays role
Composite, and the common operation is show().

1 // a class playing role Composite
2 public class Folder extends File {
3 private List<File> rl = new LinkedList<File>();

5 public void show() {
6 for (int i = 0; i<rl.size (); i ++) rl . get(i). show();
7 }

9 public void add(File c){
10 rl . add(c);
11 }
12 ...
13 }

As shown by the above code, for handling the list we need
a mechanism similar to the one shown in Section 2.2 for the
variant with the object pool of the Factory Method design
pattern. I.e. a list of instances is the shared state that has
to be modified consistently, hence all the methods accessing
it need to be synchronized in order to have an unconditionally
thread-safe implementation.

3.3 Decorator
Design pattern Decorator provides a means to add respon-

sibilities to an object. For this, an interface Component de-
fines an operation, then a base version of it is implemented
into class ConcreteComponent. A class Decorator implements
interface Component and holds a field with an instance of
type Component. Several classes play role ConcreteDecorator
by extending class Decorator and implementing additional
functionalities for the defined operation. The application-
independent code consists of the said relationships among
classes, and the use of the field inside Decorator.

Typically the reference held by the field within Decora-
tor is set only once at the moment of the instantiation of
the class playing as ConcreteDecorator and never changes
later on, therefore the instance of class playing as Concret-
eDecorator can be considered immutable for the concurrent
environment.

4. BEHAVIOURAL PATTERNS

4.1 Observer
Design pattern Observer provides a way to handle a one

to many dependency among objects. The solution consists
of an interface Observer that interested classes named Con-
creteObservers implement to be notified by a change of state
within an observed class ConcreteSubject. Moreover, a Sub-
ject holds a list of type Observer, as field listObservers, which
can be dynamically updated to add and remove instances
of ConcreteObservers by means of methods attach() and de-
tach(), respectively. Subject alerts instances of ConcreteOb-
servers when the state of the ConcreteSubject changes. Con-
creteSubject is a subclass of Subject and triggers updates by
calling method notify(). The pattern-specific code consists
of class Subject and interface Observer.

In a multi-threaded context, interface Observer is immutable,
whereas class Subject includes race conditions, i.e. the up-
dates to the list of instances of ConcreteObservers, within
both methods attach() and detach(), because both meth-
ods change values on the list. For communicating a state
change to the instances of ConcreteObservers, the values on
the list are only read. However, read accesses could bring un-
expected outcomes in multi-threaded applications, because
the execution order of calling threads could differ from that
of the notify() calls.

For the Observer design pattern to become uncondition-
ally thread-safe all the operations involving shared data, i.e.
listObservers, have to be guarded by a lock acquisition, hence
in Java we have to make synchronized methods attach(), de-
tach() and notify() for role Subject. In this way, we prevent a
race condition when multiple threads try to update or read
the list holding instances of ConcreteObservers.

Role Subject could be played by a class that is part of
a library of classes that can not be modified, as it is class
Observable in Java library java.util, therefore to have the
necessary protection we can build a wrapper class having

the synchronised versions of the methods in Observable. Of
course, all the classes using it, i.e. ConcreteSubjects, should
be redirected to use the wrapper class.

Note that method notify() calls method update() imple-
mented within application class ConcreteObserver, the said
synchronisation on notify() suffices to make method update()
thread-safe.

4.2 State
Design pattern State let an object change its behaviour

appearing as its class changes. The solution consists of a
class Context that provides client classes with means to ac-
cess some service and selects which implementation of the
service execute according to the current state held in a field,
current. Such a field refers to an instance of a class Con-
creteState, which implements a behaviour and conforms to
an interface State. State transitions are reflected into field
current and can be performed by a logic within Context or
decided by a logic in classes ConcreteState. In the latter
case an appropriate method, setState(), has to be provided.
The pattern-specific code consists of the role Context and
the relationship among the said classes.

The code below shows a snippet of code implementing role
Context as class Watch, the current state held by field current
and the operation provided is show(). The role ConcreteState
is implemented as classes SimpleWatch, AnalogWatch and
DigitalWatch.

1 // a class playing role Context
2 public class Watch {
3 // the current state
4 private WristWatch current = SimpleWatch();

6 public void show() {
7 current. showWatch()
8 }

10 // change the current state
11 public void setState(int x) {
12 if (x == 1) current = new AnalogWatch();
13 if (x == 2) current = new DigitalWatch();
14 }
15 ...
16 }

In a multi-threaded context, the race conditions are the
updates to field current of class Watch playing as role Con-
text. The above update can be encapsulated within a method
setState() either when called by the same class, i.e. from
method request(), or by a different one, i.e. a ConcreteState.
Then, class Context can be modified to make it uncondition-
ally thread-safe by having modifier synchronized for method
setState().

5. CONCLUDING REMARKS
This paper has performed an analysis of concurrency is-

sues for a few GoF’s design patterns on several categories.
Some design pattern solutions need not be changed to

make them apt to a multi-threaded environment. Accord-
ing to the above characterisation, design patterns Single-
ton, Factory Method, Adapter, Decorator have immutable in-
stances for the code that is application-independent. For the
other patterns, the provided synchronisation code in some
of the roles played make sure that concurrent operations at-

tempted on the code specific to design pattern features do
not produce any harm.

Acknowledgment
This work has been partially supported by projects JACOS
and PRIME funded within POR FESR Sicilia 2007-2013
framework. The author thanks Shinpei Hayashi for his con-
tribution.

6. REFERENCES
[1] JHotDraw Home page. http://jhotdraw.org.

[2] J. Bloch. Effective Java. Addison-Wesley, 2008.
[3] A. Calvagna and E. Tramontana. Delivering dependable

reusable components by expressing and enforcing design
decisions. In Proceedings of Computer Software and
Applications Conference (COMPSAC) Workshop QUORS,
pages 493–498. IEEE, July 2013.

[4] A. Di Stefano, M. Fargetta, G. Pappalardo, and
E. Tramontana. Metrics for Evaluating Concern Separation
and Composition. In Proceedings of Symposium on Applied
Computing (SAC). ACM, 2005.

[5] E. Gamma, R. Helm, R. Johnson, and R. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[6] R. Giunta, G. Pappalardo, and E. Tramontana. Using
Aspects and Annotations to Separate Application Code
from Design Patterns. In Proceedings of Symposium on
Applied Computing (SAC). ACM, 2010.

[7] R. Giunta, G. Pappalardo, and E. Tramontana. Aspects
and annotations for controlling the roles application classes
play for design patterns. In Proceedings of Asia Pacific
Software Engineering Conference (APSEC). IEEE, 2011.

[8] R. Giunta, G. Pappalardo, and E. Tramontana. AODP:
refactoring code to provide advanced aspect-oriented
modularization of design patterns. In Proceedings of
Symposium on Applied Computing (SAC). ACM, 2012.

[9] R. Giunta, G. Pappalardo, and E. Tramontana.
Superimposing roles for design patterns into application
classes by means of aspects. In Proceedings of Symposium
on Applied Computing (SAC). ACM, 2012.

[10] M. Mongiovi, G. Giannone, A. Fornaia, G. Pappalardo, and
E. Tramontana. Combining static and dynamic data flow
analysis: a hybrid approach for detecting data leaks in Java
applications. In Proceedings of Symposium on Applied
Computing (SAC). ACM, 2015.

[11] C. Napoli, G. Pappalardo, and E. Tramontana. A hybrid
neuro-wavelet predictor for qos control and stability. In
Proceedings of AIxIA, volume 8249 of LNCS, pages
527–538. Springer, 2013.

[12] C. Napoli, G. Pappalardo, and E. Tramontana. Using
modularity metrics to assist move method refactoring of
large systems. In Proceedings of Complex, Intelligent and
Software Intensive Systems (CISIS). IEEE, 2013.

[13] G. Pappalardo and E. Tramontana. Automatically
discovering design patterns and assessing concern
separations for applications. In Proceedings of Symposium
on Applied Computing (SAC). ACM, 2006.

[14] G. Pappalardo and E. Tramontana. Suggesting extract
class refactoring opportunities by measuring strength of
method interactions. In Proceedings of Asia Pacific
Software Engineering Conference (APSEC). IEEE, 2013.

[15] D. C. Schmidt and T. Harrison. Double-checked locking.
Pattern languages of program design, 3:363–375, 1997.

[16] E. Tramontana. Automatically characterising components
with concerns and reducing tangling. In Proceedings of
Computer Software and Applications Conference
(COMPSAC) workshop QUORS. IEEE, 2013.

[17] E. Tramontana. Detecting extra relationships for design
patterns roles. In Proceedings of AsianPlop. March 2014.

