
A Reference Architecture for web browsers:
Part I, A pattern for Web Browser

Communication

Paulina Siva1, Raúl Monge1 and Eduardo B. Fernandez2

1Departamento de Informática, Universidad Técnica Federico

2Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic

University

pasilva@alumnos.inf.utfsm.cl, rmonge@alumnos.inf.utfsm.cl, fernande@fau.edu

Abstract. Currently, most software development is focused in creating systems

connected to the Internet, which allows to add functionality within a system and

facilities to their stakeholders. This leads to depend on a web client, such as web

browser, which allows access to services, data or operations that the system delivers.

However, the Internet influences the attack surface of the system, and unfortunately

many stakeholders and developers are not aware of the risks to which they are

exposed. The lack of awareness in security among software developers and the scarce

and scattered documentation for browsers (and standardization) could become a big

problem in large architectural developments that depend on browsers to perform

their services. A Reference Architecture (RA) of the web browser, using architectural

patterns, could be a starting point for understanding its security mechanisms and

architecture, which interacts with a bigger web system. This would unify ideas and

terminology, giving a holistic view of independent implementation details for both

the browser and the system it communicates with. We developed a Web Browser

Communication pattern that describes the infrastructure to allow the communication

between a Web Client, a web browser, and a Server in the Internet. We will focus, in

this article, on interaction aspects of the web browser infrastructure, showing how

the principal components/subsystems of the browser interact. With this work we

propose an architectural pattern as the first piece of our Reference Architecture (RA)

for web browsers and security concerns.

Categories and Subject Descriptors

•Software Architectures → Patterns

General Terms

Design

Keywords

Browser, Web Client, Browser Architecture, Reference Architecture, Pattern

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Preliminary versions of these papers were presented in a writers' workshop at the 5th Asian Conference on Pattern Languages of

Programs (AsianPLoP). AsianPLoP'2016, February 2426, Taipei, Taiwan. Copyright 2016 is held by the author(s). SEAT ISBN

978-986-82494-3-1 (paper) and 978-986-824-944-8 (electronic).

mailto:pasilva@alumnos.inf.utfsm.cl
mailto:rmonge@alumnos.inf.utfsm.cl

1. Introduction

Patterns are encapsulated solutions to recurrent problems and define a way to express

requirements and solutions concisely, as well as providing a communication vocabulary for

designers [1]. The description of architectures using patterns makes them easier to understand,

provides guidelines for design and analysis, and can define a way of making their structure

more secure.

The aim of a Reference Architecture is to provide a guide for developers, who are not security

experts, to develop architectures for concrete versions of the system or to extend such system.

With the use of architectural patterns, we describe the web browser Architecture as a Reference

Architecture (RA). An RA is created by capturing the essentials of existing architectures and

by taking into account future needs and opportunities, ranging from specific technologies,

patterns and business models. The pattern diagram in Figure 1 shows relationships between

patterns and we can see how different models relate to each other, where round rectangles

represent patterns and the arcs indicate dependencies between patterns.

Figure 1. Pattern Diagram of our work. Patterns finished in green and in development in blue.

We started to build a Reference Architecture in a previous work (Figure 1), and now we are

trying to improve it by creating new architectural patterns for our RA, misuse patterns and

finding security patterns to build a Security Reference Architecture (SRA). We are currently

building a SRA, which is a Reference Architecture where security services have been added in

appropriate places to provide some degree of security for a specific system. The basic approach

we will use to build a Security Reference Architecture is the application of a systematic

methodology from [2, 3, 4], which can be used as a guideline to build secure web browser

systems and/or evaluate their security levels. By checking if a threat, expressed as a misuse

pattern, can be stopped or mitigated in the security reference architecture, we can evaluate its

level of security.

In this work, a first part for achieving a pattern for Web Browser Communication is presented.

Our intent is to create patterns for a Reference Architecture (RA) and Security Reference

Architecture (SRA) for the web browser. We will focus, in this article, on interaction aspects

of the web browser infrastructure, showing how the principal components/subsystems of the

browser interact. In future work we will discuss the subsystem within this pattern related to the

principal functionalities of the web browser like caching, cookies, Browser User's bookmarks,

etc. called Browser Kernel. The audience to which our paper is focused are browser developers,

web application developers, researchers and for teaching purposes. Being the first two the most

important, since they are the responsible for the implementation and correct use of secure

mechanisms while a user is browsing in the Internet. Secure communication is an important

matter, but in this work the focus will be on the Browser and how to control the responses it

receives.

2. Web Browser Communication Pattern

2.1 Intent

The web browser communication pattern describes the architecture for the processing of a user

request for web resources in the Internet.

2.2 Example

Within the host is possible that resources needed to fulfill the user needs are limited. The

request of external services or resources is the main reason of the Internet existence. If a user

needs to make a bank transaction, such as deposit money to another party, the browser's user

will supply an URL to the browser for accessing the online banking service of the bank the

user belongs to.

2.3 Context

Users need to access services or information in the Internet, for which they use browsers. A

browser starts by accepting a URL from a user and sending a request to the corresponding IP

address. It also receives responses that a user expects.

2.4 Problem

Internet users need resources from providers/servers, but they may need them in a specific

format, for example to be visualized on the screen of a computer. In this case, if appropriate

tools are not available, the resource could not be helpful and it cannot be used correctly. How

can the host and server provide these functions? The solution to this problem must resolve the

following forces:

 Transparency: the user should not be concerned about how his/her request is performed.

 Stability: The browser must be capable of working, even if a web page cannot be
displayed properly or there is an internal problem in the server.

 Isolation: Each request must not interrupt others.

 Heterogeneity: It does not matter the type of provider with which the browser

communicates, it should be possible to interact with any type, and it should be capable

of showing the content of the obtained resource adequately.

2.5 Solution

Provide a device, the web browser, with the functions needed to understand user requests

(redirection, user interaction, etc.) and send them to the provider. A web browser satisfies a

request of a Browser User of the Host.

Figure 2. High-level Components of the web browser.

2.5.1 Structure

In Figure 2 the Browser Kernel is an entity that represents the main process of a web browser,

which is constantly communicating with many hosts. A user who makes a Request to an

Internet resources using a web browser, will be called Browser User. At the same time, a

Provider is responsible for receiving external requests. According to the request, a Provider

will send a message back of the Service (or resource) to the supplied Browser User needs in

a Response message. Most Browsers use a central component, a Browser Kernel, to do

important operations like saving for the Browser User bookmarks, web resources, cookies,

caching and others. Figure 2 shows the class diagram for the Web Browser Communication

pattern. For each new resource a Browser Kernel requests a Web Content Renderer

instance is created or reused; this will inherit the Controlled Process properties and its

methods. A Plugin and an Extension are elements that extend the functionality of the browser;

the extender being for the exclusive use of the browser while the plugin can be shared with

other systems, such as the Adobe Reader Plugin. A Sandbox is a Controlled Execution Domain

[5] created for a single Controlled Process instance. The Sandbox may allow the process

memory isolation and the access control of each communication between processes, such as an

instance of a Controlled Process with the Browser Kernel; this applies to a Web Content

Renderer, a Plugin and an Extension as well. To communicate with the Browser Kernel, a

Proxy created within a Controlled Process forwards a Local Request to the Reference

Monitor inside the Browser Kernel. This Proxy acts as a security measure, a protection proxy,

so every communication with the Browser Kernel is controlled. For every message sent from

a Controlled Process, the Reference Monitor will check the Domain's Rights to permit the

access. The access control which the Sandbox delivers to each Controlled Process allows the

isolation between different Domains. Depending on the manufacturer, a Plugin could not be

sandboxed.

2.5.2 Dynamics

Some use cases are the following:

 Make Request (actor: Browser User)

 Save Resource (actor: Browser User)

 Ask for Resources (actor: Host)

We show in detail Make Request below. (Figure 3):

Summary

A Browser User needs an URL resource which can be obtained by using the HTTP protocol,

as required by the Provider. The Browser Kernel will be used by a Browser User to get and to

perform the display of the URL resource.

Actor

Browser User

Preconditions

The Host must have one or more Browser Kernel for the Browser User. In addition to being

connected to a network or the Internet. The Provider you want to contact must also be available.

Description

Note: Messages between Browser Kernel and Controlled Processes can be both synchronous

and asynchronous [6, 7]. We do not explain in this work synchronization details, because it is

out of our scope. We are interested only in specifying who interacts with whom.

1. A Browser User requires a browser to access a URL for some resource in a Provider,

this action can be a click in a web page, a Browser's User's request, a redirection from

another web page, etc. Usually a Browser Kernel is already instanced in the host. A

Browser Kernel also has a Reference Monitor to control the incoming messages from

the Controlled Process instances.

2. The Browser Kernel creates (Figure 3) or reuses (Figure 4) an instance of a Web

Content Renderer (a Controlled Process subclass), and sets for the new instance the

Domain and Rights. A Proxy is created in each Controlled Process instance as a mean

to communicate with the Browser Kernel. If the Controlled Process is reused, a new

Proxy is not necessary.

3. Once the Controlled Process is ready, the Browser Kernel creates a Request which is

sent to the Provider.

4. The Provider will send a Response to the received Request. Depending on how it is

implemented the Browser Kernel, it may or may not have to wait for the response

(synchronous or asynchronous) of the Provider.

5. The Response is sent by a communication channel to the Controlled Process of origin,

realized it as a Web Content Renderer. If a Response was received for a Request, the

Controlled Process is ready to prepare the parsing of the content or use it in a plugin or

extension to support the display of the resources obtained by the URL. Otherwise, the

Web Content Renderer will create an error page.

6. In case the resource is a web page, the Web Content Renderer obtains a bitmap, a

graphic representation of the resource, to be sent to the Browser Kernel, so the Browser

User can see it. Even if the resource is not a web page (binary, script, etc.), the

Controlled Process sends through its Proxy a Local Request to the Reference Monitor

within the Browser Kernel, so the traffic can be controlled before the Browser Kernel

shows it to the Browser User or is used for other purposes.

7. If the permissions are sufficient (Domain and Rights the Controlled Process are correct),

the Reference Monitor allows the message with the bitmap to be forward to the Browser

Kernel.

Figure 3. Sequence Diagram: Make Request with a new Controlled Process.

Figure 4. Sequence Diagram: Make Request, while reusing a Controlled Process.

Alternative Flow

 The Provider is not available.

 The resource pointed by the URL does not exists.

 The request is cancelled.

Post conditions

The Browser receives the resource indicated by the URL and it is displayed by the peripheral

device output for the Browser User.

2.6 Implementation

 While it is true that a Browser Kernel does not need sandboxing and only creates

sandboxed processes or Controlled Process, the concept called Sandbox is defined here

as in [5]; in which the Browser Kernel acts as the User that is related to the isolated

process.

 The Sandbox may be implemented in various ways. Google Chrome [8] is based on not
reinventing the wheel and use the protection mechanisms provided by the OS (i.e.

Windows or Linux) of the host to protect the user. This prevents any process to access

the file system, and having a restrictive API in the Web Content Renderer. Google

Chrome, Firefox and Internet Explorer claim that sandboxes are an important piece to

the Browser because realizes the principle of least privilege [9, 8, 10]. Some operating

systems provide tools for creating sandbox or in other cases a special library is used

(i.g. Google Chromium). To create a sandbox, the minimum configuration includes 2

processes: The privileged process or broker represented by the Browser Kernel and the

processes hosted in sandboxes or Targets.

 The Same Origin Policy (SOP) [19] is defined by the origin, and is used to separate
different resources by its domain, scheme and port. It is the minimum security

mechanism a browser has while requesting cross-origin resources, and divides the

different kind of contents so they cannot interfere with each other. To enforce the Same

Origin Policy, Google Chrome, Firefox and Internet Explorer use different schemes [16,

20, 21]; for example, Google Chrome leaves pages/resources isolated with the help of

the Renderer (Web Content Renderer in this case).

 The SSL/TLS protocol complements our pattern while giving security for
communication channels between the browser and the provider.

2.7 Consequences

The Web Browser Communication pattern provides the following benefits:

 Transparency: The user navigation is done almost automatically, only in rare cases the
user will have to make a decision on the resource asked.

 Stability: Because the Browser Kernel and Controlled Process are independent
processes, the failure of one is isolated from the other processes (i.e. crash, memory

corruption, etc.).

 Isolation: Depending on the type of isolation you can separate the different request, so

they do not interfere with each other, unless it is desired.

 Heterogeneity: Because each web browser tries to follow the standards of the W3C
[11], every page that follows these guidelines can be viewed, as well as other resources.

At the same time, this pattern has the following liabilities:

 Since independent processes are used to browse a resource (depending on the scheme
using the browser), it is possible that a lot of the host's resources are wasted to keep

everything open.

 Resources from Providers which do not comply the specifications of the W3C, will be

displayed incorrectly by the web browser.

2.8 Example Solved

With the given pattern it is now possible to navigate smoothly to all resources on the Internet

we want. It is possible to provide through the isolation of the components: speed, security and

stability. The Browser User will only concern about the navigation, unless it is required for its

explicit permission to enter certain host resources that are privileged (i.e. the file system). Each

Browser User can select the wanted Browser Kernel, because each one is isolated by using

separated processes.

2.9 Known Uses

 Currently, the separation of the components of the browser in various processes, with

different levels of access, is called as Modular Architecture [12]. This enables the

separation of concerns in the browser, which gives greater stability, isolation, safety

and speed.

 Google Chrome is based on the modular architecture, where each Renderer Process
communicates with the Browser Kernel [13]. This proposal is used as a reference in the

Mozilla project Electrolysis, as you can see in [14, 15], especially in the development

of the sandbox and architecture.

 Internet Explorer, a proprietary browser, does not give much information about its
structure or details of its implementation; [16] addresses a Loosely-Coupled

architecture [17] and its components, but without giving further details.

 Firefox meanwhile has two implementations: monoprocess and multiprocess/modular.

Electrolysis is the name of the modular architecture being implemented, but it has not

yet been fully completed.

2.10 Related Patterns

 The Web Content Renderer pattern, which is under development, represents the

subsystem that allows the parsing of a resource obtained through a request. If the

obtained resource is a web page, this subsystem will be in charge of obtaining a

graphical representation for the user, a bitmap that with host's resources will be

displayed in the screen.

 The Browser Kernel pattern, a pattern we are developing, represents the subsystem that
represents the Web browser central component. Operations like caching, saving

resources to the host, using a host's Networking API and other functions are done in

this subsystem.

 The Reified Reference Monitor [5], which describes how to enforce authorization rights
when a subject requests access to a protected object or service and returns a decision

(response).

 The Sandbox is another name for the pattern Controlled Execution Domain [5].

 For adding security to communications between Client and Server, the TLS pattern in
[5] complements our pattern.

3. Conclusions and Future Work

A Web browser appears to be a medium complexity software for users and developers without

security experience, but unfortunately this piece of software allows a variety of attack vectors,

to the user using it as well as the system with which interacts. Therefore, it is important to

understand its structure and how it interacts with internal and/or external stakeholders.

A part of our Reference Architecture has been built through the abstraction of documentation

through the Web Browser Communication pattern. We created our first architectural pattern

for the infrastructure of web browser to help others understand, holistically, the components,

interactions and relationships of this system. Furthermore, it has been possible to characterize

the stakeholders and one of the most important use case. From what we have known, this is the

second Reference Architecture for the Browser built. The reference model obtained in [18]

express the type of architecture used in the nineties until 2009 (approximately). However, our

proposal represents the current implementation used in browsers, usually called a Modular

Architecture. The proposed work allows a better understanding of this system called web

browser by using our partial Reference Architecture, this is also helpful to understand existing

threats. Also, as it is not subject to specific implementations, it is possible to generalize certain

results in other browsers.

Future work to do is finishing the Reference Architecture for web browsers. Other patterns

related to Web Browser Communication pattern will be obtained in order to complete the

Reference Architecture, such as the Web Content Renderer and Browser Kernel pattern.

We plan to build Misuse Patterns for the Web Browser Communication pattern, to continue

the study of the possible threats in the Browser, as a way to educate developers and stakeholders.

At the same time, these patterns will allow the construction of the Security Reference

Architecture for the browser. In the same line, in addition to finding potential threats existing

in the system, we need to find countermeasures or security defenses to prevent or foresee such

threats through security patterns on the reference architecture built. An example of the type of

work to be carried out can be seen in [4].

Acknowledgements

We thank our shepherd, Norihiro Yoshida, for his useful comments that significantly improved

the quality of the paper. We also thank Woei-Kae Chen for supervising our paper shepherding.

This work was partially supported by CONICYT (grant Fondecyt 1140408).

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: elements of

reusable object-oriented software”. Pearson Education, 1994.

[2] E. B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M. VanHilst, "A

methodology to develop secure systems using patterns", Chapter 5 in "Integrating

security and software engineering: Advances and future vision", H. Mouratidis

and P. Giorgini (Eds.), IDEA Press, 2006, 107-126.

[3] E. B. Fernandez, N. Yoshioka, H. Washizaki, J. Jurjens, M. VanHilst, and G.

Pernul, “Using Security Patterns to Develop Secure Systems”, H. Mouratidis, Ed.

IGI Global, 2011. [Online]. Available: http://www.igi-global.com/chapter/using-

security-patterns-develop-secure/48405

[4] E. B. Fernandez, R. Monge, and K. Hashizume, “Building a security reference

architecture for cloud systems", Requirements Engineering, Jan 2015. [Online].

Available: http://link.springer.com/10.1007/s00766-014-0218-7

[5] E. B. Fernandez, “Security patterns in practice: designing secure architectures

using software patterns”. John Wiley & Sons, 2013.

[6] B. McCloskey, “Multiprocess Firefox". [Online]. Available:

https://billmccloskey.wordpress.com/2013/12/05/multiprocess-refox/n#ipc

[7] Google Chromium, “Inter-process Communication (IPC)" [Online]. Available:

https://www.chromium.org/developers/design-documents/inter-process-

communication

[8] “Sandbox - The Chromium Projects" [Online]. Available:

http://www.chromium.org/developers/design-documents/sandbox

[9] M. V. Yason, “Diving into IE 10's Enhanced Protected Mode Sandbox"

[10] “Security/Sandbox - MozillaWiki" [Online]. Available:

https://wiki.mozilla.org/Security/Sandbox

[11] World Wide Web Consortium - W3C, “About" [Online]. Available:

http://www.w3.org/Consortium/

[12] T. Vrbanec, N. Kirić, M. Varga,: “The evolution of web browser architecture”.

SCIECONF 2013, 472–480 (2013).

[13] “Multi-process Architecture - The Chromium Projects" [Online]. Available:

https://www.chromium.org/developers/design-documents/multi-process-

architecture

[14] “Security/ProcessIsolation/ThreatModel" [Online].Available:

https://wiki.mozilla.org/Security/ProcessIsolation/ThreatModel

[15] “Features/Security/Low rights Firefox - MozillaWiki" [Online]. Available:

https://wiki.mozilla.org/Features/Security/Low_rights_Firefox

[16] M. Crowley, “Pro Internet Explorer 8 & 9 Development: Developing Powerful

Applications for The Next Generation of IE”, 1st ed. Berkely, CA, USA: Apress,

2010.

[17] “IE8 and Loosely-Coupled IE (LCIE) - IEBlog – Site Home" [Online]. Available:

http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-

lcie.aspx

[18] A. Grosskurth, M.W. Godfrey: “A reference architecture for Web browsers” . In:

21st IEEE International Conference on Software Maintenance (ICSM’05). pp.

661–664. IEEE (2005).

[19] W3C, “Same Origin Policy," W3C, Web page, 2010. [Online]. Available:

https://www.w3.org/Security/wiki/Same_Origin_Policy.

[20] C. Reis and S. D. Gribble, “Isolating web programs in modern browser

architectures," Proceedings of the fourth ACM European conference on Computer

systems EuroSys 09, vol. 25, no. 1, p. 219, 2009. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=1519065.1519090

[21] C. Jackson and A. Barth, “Beware of finer-grained origins," Web 2.0 Security and

Privacy, 2008. [Online]. Available:

http://seclab.stanford.edu/websec/origins/fgo.pdf

