
A Misuse Pattern for Web Browsers:
Interception of traffic

Paulina Siva1, Raúl Monge1 and Eduardo B. Fernandez2

1Departamento de Informática, Universidad Técnica Federico

2Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic

University

pasilva@alumnos.inf.utfsm.cl, rmonge@alumnos.inf.utfsm.cl, fernande@fau.edu

Abstract. Currently, most software development is focused in creating systems

connected to the Internet, which allows to add functionality within a system and

facilities to their stakeholders. This leads to depend on a web client, such as web

browser, which allows access to services, data or operations that the system delivers.

However, the Internet influences the attack surface of the system, and unfortunately

many stakeholders and developers are not aware of the risks to which they are

exposed. The lack of security education among software developers and the scarce

and scattered documentation for browsers (and standardization) could become a big

problem in large architectural developments that depend on browsers to perform

their services. We are studying some security attacks in the web browser by

describing them in the form of misuse patterns. A misuse pattern describes how an

information misuse is performed from the point of view of an attacker. It defines the

environment where the attack is performed, how the attack is performed,

countermeasures to stop it, and how to find forensic information to trace the attack

once it happens. We are building a catalog of misuse patterns and we present here

one we call Interception of Traffic in the web browser. A catalog of misuse patterns

will help designers to evaluate their designs for possible threats.

Categories and Subject Descriptors

•Software Architectures → Patterns

General Terms

Design

Keywords

Browser, Web Client, Misuse Pattern, Security, Man-in-the-Browser

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Preliminary versions of these papers were presented in a writers' workshop at the 5th Asian Conference on Pattern Languages of

Programs (AsianPLoP). AsianPLoP'2016, February 2426, Taipei, Taiwan. Copyright 2016 is held by the author(s). SEAT ISBN

978-986-82494-3-1 (paper) and 978-986-824-944-8 (electronic).

mailto:pasilva@alumnos.inf.utfsm.cl
mailto:rmonge@alumnos.inf.utfsm.cl
mailto:fernande@fau.edu

1. Introduction

The current scenario of attacks in the browser has changed considerably, if compared to those

browsers in the 90s. Every day browsers are more robust and difficult to exploit; therefore, the

same attack types, such as drive-by downloads or code-based execution that could subvert a

system, are less common every time. A new form of attack has emerged and is fairly easy to

achieve, because it is based on deceiving the user to perform what the attacker wants. Once the

user is tricked, the attacker can achieve total control over the browser or the host, without

having to crack the system [1, 2] that hosts the browser. The development of critical systems

that interact daily with different users on the network should focus on these attacks because

they threaten the confidentiality, integrity and availability of the user's data (personal) as well

as the stakeholders involved.

Social engineering is used as an umbrella term for a broad spectrum of computer exploits that

employ a variety of attack vectors and attempts to psychologically manipulate a user. Social

engineering attacks in [3] are defined as: “The act of manipulating someone to perform actions

that are not part of the best interests of the victim (person, organization, stakeholder, etc)”. An

attack of this kind can take many forms, there is the possibility of a physical or digital encounter

with the victim. Based on social engineering, this attack is one that takes advantage of human

behavior and trust of the victim. In the context of web browser, the deceived user is the first

and last line of defense against such attacks; the abuse of trust of the user may open the doors

of the browser's host, causing damage to both the user and the external systems with which it

interacts. This work attempts to define a Misuse Pattern that could appear when a social

engineering attack succeeds; of course, is not the only way to make the misuse, but attackers

can easily make it because the user of the browser is the weakest link.

According to studies [4, 2, 5], the browser is the first line of defense against multiple web

threats. However, this is affected by the lack of education of users who use browsers and the

constant evolution of threats [4]. This is why many browser manufacturers have created

defense mechanisms such as those shown in [6], that act when the user requests a page,

including black or white lists, reputation systems [1] with warning alerts, among others, so the

user can at least avoid the page or choose to enter the malicious site anyway (but no granting

access to the page without knowing of the threat).

In this work, a Misuse Pattern is presented as a first step in to the process of creating a catalog

of misuses for the web browser. A catalog of misuse patterns will help designers to evaluate

their designs for possible attacks. The audience to which our paper is focused are browser

developers, web application developers, researchers and for teaching purposes. Being the first

two the most important, since they are the responsible for the implementation and correct use

of secure mechanisms while a user is browsing in the Internet. Secure communication is an

important matter, but in this work the focus will be on the browser and how to control the

responses it receives.

2. Terminology

Current popular web browsers use a modular architecture in contrast with monoprocess

architecture used in the nineties. Nevertheless, the core components of the browser are placed

in a different manner, meanwhile others are replaced with new technology or deleted. In this

paper we defined names for core components, but probably some of them may differ depending

on implementation. We named Browser Kernel the component that represents the main process

of a web browser responsible for receiving requests from the user using the web browser. A

Controlled Process, in contrast, is a slave process of the Browser Kernel and is used to render

the content for each request the user of the browser (a Browser User) needs.

3. Misuse Pattern: Interception of Traffic in the Web Browser

3.1 Intent

An attacker could modify or spy the traffic when the Browser User sends a request or receives

the response from the Provider to the Browser Kernel; by doing so, the browser could interpret

the information in a different way than if it had received the original traffic.

3.2 Context

A web browser fetches resources (web pages, services, etc.) from a Provider to satisfy the

request of a Browser User. The Provider is generally a Web App or Web server, that allows

input and output of data to other applications, and usually they are built using HTML,

Javascript and CSS. A Provider, depending on its type, can receive many requests for resources

from various hosts. Depending on the type of request, they may or may not be accepted. For

those accepted, the Provider generates a response to the Host, which may go back (or not) to

the Browser Kernel that generated the request.

3.3 Problem

An attacker tries to take advantage of any input the Browser User requests to affect the system.

Users may be tricked by social engineering attacks, or lead into downloading and executing a

binary in the browser to affect the Renderer that may have unprotected vulnerabilities.

Therefore, it is possible to give the attacker a chance to hide in the middle of the communication

between the browser's processes, resulting in the interception of content that may change the

Renderer or the browser itself. Depending on the type of attacker, it is possible that it may even

affect the host where the browser is located.

The solution is influences by the following objectives:

 Misuse: Perform some destruction and/or other misuses (confidentiality and integrity).

 Stealthy/Untraceability: Try to hide its structure to make harder its detection and
removal. Since it can compromise the host, it would be better if no one knows who is

the responsible one.

 Collateral damage: In addition to specific misuses, the attack may require difficult

operations for stopping or disrupting browsers activities; web browser's basic

knowledge is needed.

 Activation: This can be done by enticing offers which may tempt users to open email
attachments or download procedures (social engineering).

The attack could take advantage of the following vulnerabilities/forces:

 The Same Origin Policy (SOP) [7] is defined by the origin, and is used to separate
different resources by its domain, scheme and port. It is the minimum security

mechanism a browser has while requesting cross-origin resources, and divides the

different kind of contents so they cannot interfere with each other. The SOP which

every browser complies with, differs slightly from a web browser manufacturer to the

other [7, 8, 9, 10, 11]; for this reason, attackers take advantage to make malicious cross-

origin requests.

 Attacker can take advantage of the flexibility the SOP has, because the origin is not

enough as an isolation mechanism between the different resources [12, 13, 14, 15].

Different levels of isolation can give better results, but affecting the performance of the

browser [16, 17].

 Anyone can create a software component like an extension or plugin for some type of
web browser and pass it off as something harmless, consequently a user will not notice

the threat and will install it.

 It is possible to affect the Browser Kernel, and in consequence the host, without having

to find a vulnerability in the system or browser. With social engineering methods it is

possible to trick the user/victim into doing things that are not part of the best interests

of the victim, because the Browser User is the weakest link in the system.

 The architecture to extend the browser functionality through extensions, plugins and
other, depends on the manufacturer, and probably it has a large attack surface.

 No use or improper use of the sandbox (No right access control).

 Many browser manufacturers do not have robust defense mechanisms that allow an
effective identification of malicious resources.

3.4 Solution

An attacker can take advantage of the Browser User by letting a social engineering attack do

its job, by surfing every website without distrust. If the Browser User is not careful, while

surfing in the Internet, it could lead into downloading and installing malicious binaries or

scripts in the system without notice. Also, a single phishing e-mail wishing for the user to click

in a URL address could lead into installing some binaries, extensions or scripts in the Host. If

a social engineering attack is successful, the attacker can take its time because whatever is

installed in the Host, the attacker has installed it with the user's permission. Therefore, every

action done in the Host or Browser Kernel, will be identified by the Host as an action done by

the Browser User, a user of the Host. If the attacker can obtain physical access to the Host

running the Browser Kernel, he or she can install without the real user's consent an extension,

script or binary in the Host, that could lead to a misuse. Also, is not a necessity for the attacker

to install malicious payload/binaries in the Browser, she or he could use benign-but-buggy

extensions or scripts to surpass the Sandbox's secure mechanism and misuse the Host or

Browser Kernel. The attack can be facilitated by:

 There are many tools for social engineering attacks, that tricks the Browser User into
accepting the installation of extensions or malicious plugins more easily.

 Specially crafted scripts can be used to exploit the interpreter within the Renderer of
the web browser (represented here as the Web Content Renderer). Often it is also

possible to use the same scripting language elements to pass through certain security

barriers provided by the SOP, because the dynamic language (based on ECMAscript)

has a lot of reflection capabilities that can be used by a malicious program to achieve

its purpose. A prototype language is a style of object-oriented programming in which

behavior reuse or inheritance is performed via a process of cloning existing objects that

serve as prototypes. Since the prototype is cloned for creating other objects, this could

be uses to find new vulnerabilities within the Renderer of browsers.

 Encryption methods can do nothing against an attack that intercepts traffic before

sending or after receiving a requested service/resource.

 There are browsers that still use a monolithic architecture (monoprocess). Meaning that
the browser is using the user’s permission to access directly the host resources.

Figure 1. Class Diagram for the Misuse Pattern.

3.4.1 Structure

In Figure 1 the Browser Kernel is an entity that represents the main process of a web browser,

which is constantly communicating with the host of the browser. A user who makes a Request

to an Internet resources using a web browser, will be called Browser User. At the same time,

a Provider is responsible for receiving external requests. According to the request, a Provider

will send the Service (or resource) the Browser User needs in a Response message. Most

Browsers use a central component to do operations that need to affect the Host of the Browser,

a Browser Kernel. Figure 1 shows the Class diagram for the misuse pattern. For each new

resource a Browser Kernel requests a Web Content Renderer instance (created or reused);

this will inherit the Controlled Process properties and its methods. A Plugin and an Extension

are elements that extend the functionality of the browser; the extender being for the exclusive

use of the browser while the plugin can be used in other systems, such as the Adobe Reader

Plugin. A Sandbox is a Controlled Execution Domain [19] created for a single Controlled

Process instance. The Sandbox allows the process memory isolation and the access control of

each communication between processes, such as an instance of a Controlled Process with the

Browser Kernel; this applies to a Web Content Renderer, a Plugin and an Extension as well.

To communicate with the Browser Kernel, a Proxy created within a Controlled Process

forwards a Local Request to the Reference Monitor inside the Browser Kernel. For every

message sent from a Controlled Process, the Reference Monitor will check the Domain's

Rights to permit the access. The access control which the Sandbox delivers to each Controlled

Process allows the isolation between different Domains. Depending on the manufacturer, a

Plugin could not be sandboxed. The Attacker class is a person using some unit that could

undertake a risky action against the integrity and confidentiality of the browser, the user of it

and the Provider (Figure 1). The attacker is able to intercept the messages between the

Browser Kernel and Controlled Process using a malicious Controlled Process, which could

be instanced as a Plugin, Extension or a Web Content Renderer.

3.4.2 Dynamics

In Figure 3 a series of required steps is shown, for one of the many misuses that can be made

for the use case Make Request (Figure 2). The attacker is located between the Browser Kernel

and the Controlled Processes, intercepting the original request or response and modifying the

traffic to its taste; usually an attack based on this misuse is called Man-in-the-Browser (MITB)

[15, 20, 21, 22]. This could also happen when the Browser User has allowed the installation of

plugins, extensions or external programs in the Host and Browser Kernel.

Summary

The attacker intercepts the traffic between the Browser Kernel and the Controlled Processes.

This action could lead to different kinds of misuses or new attacks depending on the attacker's

intentions.

Actor

Attacker

Preconditions

The Browser Kernel runs with the Browser User's permissions (a user in the host), while

interacts with limited privilege processes.

Figure 2. Sequence Diagram “Make Request" [18], with an already instanced Controlled

Process. The first 9 steps are used by the misuse and then it starts the Partial Sequence

Diagram for the misuse (Figure 3).

Figure 3. Partial Sequence Diagram for the misuse: Interception of traffic in the web browser

(The first 9 step remain the same as the Make Request from [18], Figure 2).

Description

1. An attacker uses a social engineering technique or vulnerability in the system, and

creates an entity between the Browser Kernel and Controlled Process and their

communication channel, normally a plugin, binary or extension (but a malicious one).

Also, an attacker could be using a benign-but-buggy extension or script to the same

purpose. The social engineering attack starts as a normal “Make Request” use case

(Figure 2), while the Browser User surfs the web and gets hocked by the attacker or

clicks an URL inside a phishing e-mail.

2. A Browser User requires a browser to access a URL for some resource in a Provider,

this is done by using a Browser Kernel already instanced in the Host. A Controlled

Process and its Proxy are created or reused for rendering the resource needed. If the

Controlled Process is new, the Domain and Rights of the Controlled Process are set.

The first 9 step of the Make Request Sequence Diagram from [18] (Figure 2) are the

same.

3. A Request is made from the Browser Kernel which creates a communication channel

with the Provider, returning a Response after processing the request connection (steps

1 to 3 in Figure 3).

4. The Browser Kernel receives the Response, and forwards it to the Controlled Process

which the original Request came from (step 4 in Figure 3).

5. From here the misuse starts, the original or “may be" tapped Response could follow

different ways. While rendering the resource, somewhere in the Response obtained the

need of calling a plugin, an extension or a program for the rendering process will appear,

and an action from the attacker to intercept the messages will occur. Also, a Browser

Kernel could have been tapped to perform that action and forward all the traffic to other

Controlled Process; a malicious or to a benign-but-buggy. While sending the traffic, the

Controlled Process needs to rely on its Proxy to send the data to the malicious plugin,

extension or binary created through the Controlled Process. The traffic sent from the

Controlled Process to the malicious one, has to make it through the Reference Monitor

first, if the attacker wishes to be successful. The latter is done by sending a Local

Request through the Proxy of the Controlled Process of origin, to the Reference Monitor

in the Browser Kernel (steps 5 to 9 in Figure 3).

6. Then, the Browser Kernel sends the traffic to the malicious or to a benign-but-buggy

Controlled Process and intercepts the traffic that is going to be used for rendering.

Depending on the attacker's goals, the data can be spied or modified. Since the

rendering process needs to finish, the intercepted traffic is returned through the Proxy

in the malicious Controlled Process, to the Reference Monitor in the Browser Kernel,

and then to the Controlled Process of origin to finish the rendering (steps 10 to 16 in

Figure 3).

7. It can happen the traffic goes between the malicious Controlled Process and the

Browser Kernel several times before it can reach to the Controlled Process, in charge

of the rendering process.

8. Once the rendering process has finished, the bitmap is sent to the Browser Kernel

(through the Proxy) and displayed in the Host. Also, the representation of the resource

in the Web Content Renderer (DOM and data) could deviate from the original, thanks

to the interception done by the attacker (steps 17 to 22 in Figure 3).

Post conditions

The victim will be fully compromised and it probably will not be possible to detect the

modification of a message, it is also possible that the log of the Host will be affected.

3.5 Known Uses

The browser is a software that has different implementations, so the number of attack vectors

are significant. Some of these are:

 Zeus [23] is a Trojan horse malware that runs on Microsoft Windows and can be used

to carry out many malicious and criminal tasks, it is often used to steal banking

information by man-in-the-browser. First identified in July 2007 when it was used to

steal information from the United States Department of Transportation.

 SpyEye [24] is known as Zeus's successor, it is sophisticated botnet creation kit that
has been implicated in a number of costly online banking thefts against businesses and

consumers. One-way people get infected is by visiting a website that has been tampered

with by hackers. The site will contain a 1x1 pixel that pulls JavaScript from a different

server and begins testing to see if the victim's computer has unpatched software.

 An extension based on the Google Chrome architecture or the Firefox Web Extension
API could intercept the data before it reaches the Browser Kernel or Host [11]. It could

also be possible that a vulnerability in the extension or plugin is used by an attacker and

takes advantage of its functionality to attack [15, 20]. Since the plugin, extension or

process are elements the Host trust, it is possible that the attack is undetectable and the

encryption methods do not serve as a mitigation measure.

3.6 Consequences

The misuse has the following consequences for the attacker:

 Misuses: they may be different, we highlight vandalism, impersonate another person or
monetary gain. While the attacker may be between the host and the traffic that is sent

to the Provider, confidentiality and integrity of the data is completely lost even if the

browser is communicating with a Provider through a secure channel. User privacy can

no longer be assured.

 Stealthy/Untraceability: Since the attacker has managed to come between the system
calls, that are made to the host, to send data to the Provider, the Host will not recognize

or log the anomaly. Calls made to Host are perfectly legal and nothing out of the

ordinary, so it will not be seen as something suspicious.

 Collateral damage: The attacker could perform actions that affect the integrity of the

Host. The cost of fixing whatever the attack made on the host could have financial and

organizational consequences.

 Activation: This can be done by enticing offers which may tempt users to open email
attachments or download procedures (social engineering).

Possible sources of failure:

 If the Browser User is able to avoid or ignore the social engineering attack carried out
at the beginning, this misuse can be avoided.

 Also, this should consider that the user does not encounter pages with malicious content,

which may affect other parts of a browser, but that would cause the same effect as the

misuse presented here.

 If the browser manufacturers implement correctly the secure mechanism, the HTTP
Only and Secure Cookie flags on the HTTP header could avoid the theft of session

tokens, the use of cookies in scripts or the interception of data by a bystander.

3.7 Countermeasures

To prevent this kind of misuse we recommend taking the following preventive measures:

 Reputation services such as SmartScreen [26] from Internet Explorer and Download
Application [1] from Google Chrome, can help identify pages, web content or resources

that could contain malware when is installed as plugins, extensions or process in the

Host of the User Browser.

 Providing education about the dangers while surfing the Internet and clarifying the
users that they are the last line of defense against such attacks.

 Whitelist and Blacklist are installed in the browser as a preventive measure. They help

avoid malicious pages or known malware while the user is browsing, they also are

updated in an hourly-basis.

 Browsers like Google Chrome and Internet Explorer offer Sandboxing [27, 14]. This
defense mechanism limits the actions of the attacker which may affect the integrity of

the system.

3.8 Forensic Evidence

Where is it possible to find evidence? Depending on what is desired by the attacker, actions

may differ. However, the internal log of the browser could help in the audit of the system. This

works until an attacker finds a vulnerability in the Sandbox or other component of the browser,

in which case he can completely erase its tracks. Also, malware detection such as antivirus

systems could help identifying tracks of misuses.

3.9 Related Patterns

 The Web Browser Communication pattern [18].

 The Reified Reference Monitor [19], which describes how to enforce authorization
rights when a subject requests access to a protected object or service and returns a

decision (response).

 The Sandbox is another name for the pattern Controlled Execution Domain [19].

 Blacklist and Whitelist patterns [19]. The TLS pattern in [19] complements our pattern,
for adding security to communications between Client and Server.

4. Conclusions and Future Work

We have presented a web browser attack as a misuse pattern that systematically describes how

a misuse is performed. The aim is to understand and visualize the misuses of the browser that

communicates with other systems, mainly to teach developers who have little (or none) security

expertise. Through the list of threats shown in our previous work, it is possible to detect or

infer misuse activities that may appear in one or more misuse cases.

With this misuse pattern we intent to initiate a catalog. This would help to condense the

knowledge obtained using patterns so they can be used as guidelines to communicate relevant

concepts, as well as evaluate the existent relationship between the browser and a developed

system, to see what kind of interactions they have.

Future work to do is finishing the Reference Architecture for web browsers. The Web Browser

Communication pattern is the main core of the Reference Architecture (RA) we are building.

It represents the main component for a modular architecture of popular browsers like: Google

Chrome/Chromium, Internet Explorer and Firefox. Other patterns related to Web Browser

Communication pattern will be obtained in order to complete the Reference Architecture, such

as the Web Content Renderer and Browser Kernel pattern. A work in parallel is the abstraction

of defense mechanism as security patterns to build a Security Reference Architecture for web

browsers.

We plan to build more Misuse Patterns for the Web Browser Communication Pattern, to

continue the study of the possible threats in the Browser, as a way to educate Developers and

stakeholders. At the same time, these patterns will allow the construction of the Security

Reference Architecture for the browser. In the same line, in addition to finding potential threats

existing in the system, we need to find countermeasures or security defenses to prevent or

foresee such threats through security patterns on the reference architecture built. An example

of the type of work to be carried out can be seen in [28].

Acknowledgements

We thank our shepherd, Yu Chin Cheng, for his useful comments that significantly improved

the quality of the paper. We also thank Woei-Kae Chen for supervising our paper shepherding.

This work was partially supported by CONICYT (grant Fondecyt 1140408).

References

[1] M. Rajab, L. Ballard, and N. Lutz, “CAMP: Content-agnostic malware

protection," Proceedings of Annual . 2013. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.6192n&rep=rep1

n&type=pdf

[2] NSS Labs, “Evolutions In Browser Security," October, pp. 1-20, 2013.

[3] J. Talamantes, “The social engineer's playbook." [Online]. Available:

http://www.thesocialengineersplaybook.com/

[4] R. Abrams, J. Pathak, and O. Barrera, “Browser security comparative analysis:

Phishing protection," 2013.

[5] R. Abrams, J. Pathak, and O. Barrera, “Browser Security Comparative Analysis:

Socially Engineered Malware Blocking," 2014.

[6] J. Drake, P. Mehta, C. Miller, S. Moyer, R. Smith, C. Valasek, and A. Q.

Approach, “Browser Security Comparison," Accuvant Labs, 2011.

[7] W3C, “Same Origin Policy," W3C, Web page, 2010. [Online]. Available:

https://www.w3.org/Security/wiki/Same_Origin_Policy

[8] C. Reis and S. D. Gribble, “Isolating web programs in modern browser

architectures," Proceedings of the fourth ACM european conference on Computer

systems EuroSys 09, vol. 25, no. 1, p. 219, 2009. [Online]. Available: http:

//portal.acm.org/citation.cfm?doid=1519065.1519090

[9] C. Jackson and A. Barth, “Beware of finer-grained origins," Web 2.0 Security and

Privacy, 2008. [Online]. Available:

http://seclab.stanford.edu/websec/origins/fgo.pdf

[10] M. Crowley, Pro Internet Explorer 8 & 9 Development: Developing Powerful

Applications for The Next Generation of IE, 1st ed. Berkely, CA, USA: Apress,

2010.

[11] S. D. Paola and G. Fedon, “Subverting Ajax," 23rd Chaos Communication

Congress, no. December, 2006. [Online]. Available:

http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subvertingn

Ajax.pdf

[12] M. Silic, J. Krolo, and G. Delac, “Security vulnerabilities in modern web browser

architecture," MIPRO, 2010 Proceedings of the 33rd International Convention,

2010.

[13] A. Barth, J. Weinberger, and D. Song, “Cross-Origin JavaScript Capability Leaks:

Detection , Exploitation, and Defense," Opera, vol. 147, pp. 187-198, 2009.

[14] M. V. Yason, “Diving into IE 10's Enhanced Protected Mode Sandbox."

[15] L. Liu, X. Zhang, G. Yan, and S. Chen, “Chrome extensions: Threat analysis and

countermeasures," of the Network and Distributed Systems, 2012. [Online].

Available: https://www.cs.gmu.edu/ ~sqchen/publications/NDSS-2012.pdf

[16] A. Barth, C. Jackson, C. Reis, T. Team et al., “The security architecture of the

chromium browser," 2008.

[17] “Site Isolation - The Chromium Projects." [Online]. Available:

https://www.chromium.org/developers/design-documents/site-isolation

[18] P. Silva, R. Monge, and E. Fernandez B., “A Reference Architecture for web

browsers: Part I, A pattern for Web Browser Communication," Proceedings of the

5th Asian Conference on Pattern Languages of Programs (AsianPLoP) 2016,

Taipei, Taiwan, February 2016.

[19] E. B. Fernandez, “Security patterns in practice: designing secure architectures

using software patterns”, John Wiley & Sons, 2013.

[20] A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting Browsers from

Extension Vulnerabilities," Ndss, vol. 147, pp. 1315-1329, 2010. [Online].

Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.5579n&rep=

rep1n&type=pdf

[21] N. Utakrit, “Review of Browser Extensions, a Man-in-the-Browser Phishing

Techniques Targeting Bank Customers," Proceedings of the 7th Australian

Information Security Management Conference, pp.110-119, 2009. [Online].

Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84864552184n&partnerID=40n&md5=3d08a9c7c4ba9dbe5e04fb831ad5257b$n

backslash$nhttp://ro.ecu.edu.au/ism/19/

[22] T. Dougan and K. Curran, “Man in the Browser Attacks," International Journal of

Ambient Computing and Intelligence, vol. 4, no. 1, pp. 29{39, 2012.

[23] “Hackers steal 150,000 us from mich. insurance firm." [Online]. Available:

http://www.krebsonsecurity.com/2010/02/hackers-steal-150000-from-mich-

insurance-firm/

[24] “Feds to charge alleged spyeye trojan author." [Online]. Available:

http://krebsonsecurity.com/tag/spyeye/

[25] “Update [win] google chrome: Cross-site scripting - remote with user interaction."

[Online]. Available: https://www.auscert.org.au/render.html?it=11648

[26] R. Colvin, “SmartScreen," 2010. [Online]. Available:

http://blogs.msdn.com/b/ie/archive/2010/10/13/stranger-danger-introducing-

smartscreen-application-reputation.aspx

[27] “Sandbox - The Chromium Projects." [Online]. Available:

http://www.chromium.org/developers/design-documents/sandbox

[28] E. B. Fernandez, R. Monge, and K. Hashizume, “Building a security reference

architecture for cloud systems," Requirements Engineering, Jan 2015. [Online].

Available: http://link.springer.com/10.1007/s00766-014-0218-

