
Binding Design Patterns for Visualization 
Libraries 

 

Yung-Pin Cheng 

Dept. of Computer Science and Information Engineering  

National Central University 

300 Zhongda RD., ZhongLi City 

TAIWAN 

ypcheng@csie.ncu.edu.tw 

 

Abstract. Building a visualization library or visualization tool may face several 

design choices. These design choices may affect the reusability and flexibility of the 

system. The most essential problem is how to let users bind their data to the 

visualizations. In this paper, four binding design patterns are described, studied, and 

discussed. By defining these design patterns, we can help clarify the directions of 

design and implementation in building future visualization tools. 

 

 

Categories and Subject Descriptors 

•Software and its engineering → Design patterns 

•Human-centered computing → Visualization toolkits 

 

General Terms 

Design, Human Factors 

 

Keywords 

Visualization Library, Data Binding, Visualization Tools, Design Pattern 

 

 

 

 

 

 

 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided 

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. 

Preliminary versions of these papers were presented in a writers' workshop at the 5th Asian Conference on Pattern Languages of 

Programs (AsianPLoP). AsianPLoP'2016, February 24­26, Taipei, Taiwan. Copyright 2016 is held by the author(s). SEAT ISBN 

978-986-82494-3-1 (paper) and 978-986-824-944-8 (electronic). 



1. Introduction 

Visual perception is the most important sense of humans. In the areas of information 

visualization, software visualization, 3D visualizations, etc., visuals are the entities to 

communicate a message which can make sense of the information. Visuals can be images, 

diagrams, or animations that rendered by a piece of code. Let the piece of code be called 

“visualization code.” Visualization code so far is often tied to a specific platform or a render 

library. A common platform is a GUI system, which provides a set of basic drawing APIs to 

allow application to draw graphics on GUI components. Another example is Scalable Vector 

Graphics (SVG). SVG is an XML-based vector image format for drawing two-dimensional 

graphics. It is very popular for drawing 2D graphics in web browsers.  

Although there has been plenty of visualization code implemented in different applications, 

due to the variety of platforms and programming languages, programmers often find that they 

need to implement visualization code from scratch. Some reasons are: the aesthetic needs for 

visualization are often application specific; the visualization code is often tightly coupled with 

application-specific data types, making reuse of visualization code difficult.  

Depending on the aesthetic needs of visualizations, visualization code can be large and 

complicated. A complicated visualization may include complex algorithms to layout the visuals 

or provide friendly interactions between the visuals and users. So, aiming for reducing the cost 

and efforts in developing visualization code, visualization libraries have been proposed 

continuously for different platforms and programming languages. Unfortunately, there are 

some fundamental issues to be studied, determined, and resolved when a visualization library 

is constructed. So far, no optimal solutions can be concluded. One major issue in reusing a 

visualization library is how to bind the data to the visuals by users. Several approaches have 

been developed in the existing visualization libraries. These approaches, unfortunately, can 

deeply affect the system architectures, flexibility, and extensibility of the libraries. In this paper, 

we describes these approaches into four binding design patterns. The pros and cons are studied, 

discussed, and compared.  

2. Background and Related Work 

Some common goals [9] pursued by visualization tools are: to separate data and visual models 

to enable multiple visualizations of a data source, to separate visual models from displays to 

enable multiple views of a visualization, and use modular controllers to handle user input in a 

flexible and reusable fashion. There are several separation of concerns to be taken care by 

visualization tools. Different design choices often can results in serious consequences with 

respect to complexity, extensibility, and reusability of visualization tools. 

In [9], Heer describes a reference model pattern (see Fig. 1) which provides a general template 

for structuring visualization tools that address the separation of concerns. Since understanding 

this reference model is crucial to the understanding of this paper. The details of the reference 

model are explained here.  

A DataSource component loads the data sets to be visualized. One or more data sets can then 

be registered with a visualization using an observer design pattern. In principle, DataSets 

should not be aware of the existences of visualization, so data is separated from visual attributes 

such as location, size, shape, and color. If there are more than one observer (visualization) 

registering to the DataSet, a single abstract data set can be used in multiple visualizations.  

 



The visualization in this reference model is also called visual models. The Visual models, View, 

and Control classes are standard Model-View-Controller (MVC) pattern [11] in user interface 

development. A visual model can be shown in more views; that is, different displays in different 

platforms. Views accepts the user input and then often have user inputs processed by controls. 

Plenty of software frameworks adopt this template structures, including Advizor [6], Improvise 

[15], Polaris [13], and prefuse [10].  

There are actually two observer design patterns applied in this reference model, one between 

DataSet and Visualizations and one between Visualizations and views. So, Heer in [9] 

describes the reference model as a two-tiered MVC. Here, we focus on the observer pattern 

between data set and visual models -- how data is bound to a visual model. 

 

Figure 1. The visualization reference model  

2.1 What is a visual model? 

In a MVC, a model captures the behaviors of the application in terms of its problem domain, 

independent of user interfaces [12]. The model directly manages the data, logic and rules of 

the application. However, a model in visualization MVC has some significant differences than 

a typical MVC. That is why in Fig. 1, we annotate the visualization class as a visual model. 

Fig. 2 shows some visualization screen-shot from D3 [9,2]. Behind each visualization, a visual 

model must be defined first. For example, visualizations such Population Pyramid or Stacked 

Bars assume data is organized in a form of table (multiple columns or rows). On the other hand, 

Force-Directed graph renders two major visuals - nodes and links, which assume data must be 

structured in a style of binary relation. So, if DataSet is not organized or structured in a way 

that is defined by a visual model, it is impossible to map the DataSet to a visual model. That 

is, a visual model actually poses constraints on data that can be fed from DataSet. On the other 

hand, the structure of a DataSet can actually be used to filter out unsuitable visual models.  

So, when a visualization is implemented as a library, typically its programmer already has a 

visual model in his mind. A visual model typically contains some visual model entities. For 

example, a visual model for a graph visualization mainly deals with two major entities, node 

and link. A node has several properties, such as its shape, position, color, etc. Sometimes, the 

relation between a visual model entity and a data type are not as explicit as in the graph example. 

For example, a bar chart visualization typically assume data to be stored as tables. So, their 

visual model entities are bars but data only control the length attributes of the bars.  



 

Figure 2. Some visual model examples from D3 Data Driven Document  

 

3. Decoupling Data from Visuals  

When it comes to write the visualization code, if the model-view paradigm is unknown to a 

programmer, it is very common to write the code in the following. The code uses a binary tree 

node as an example, in which visualization code is a method of the class.  

class binary_tree_node { 

   void draw() { 

      ...// draw the center node 

      ...// draw the left child pointer  

      ...// draw the right child pointer 

   } 

} 

Although it is object-oriented, it is obvious that the visualization code is coupled with the data 

type and thus not reusable by other types or problems. So, to further decouple the code, it is 

common to introduce the model-view paradigm described in the earlier section. To adopt the 

paradigm, the visualization code is encapsulated as an observer (see Fig. 3 for the observer 

design pattern [7]) to hold the visualization code as follows: 

 

class binary_tree_node_observer { 

   binary_tree_node* bt ; // *** 

void update() {  

       ...// draw the center node based on bt 

       ...// draw the left child pointer to bt.left 

       ...// draw the right child pointer to bt.right 



}  

} 

 

In principle, the observer should register to a binary_tree_node object (aka DataSet). So, when 

DataSet is modified, update() of binary_tree_node_observer is then invoked to redraw the 

visual. When the pointer/reference of an binary_tree_node object is set to variable bt,the 

binding of the data and visualization code happens.  

 

Writing visualization code in this way DOES separate data and visualization code; that is, the 

visualization code is moved to an observer, making a binary_tree_node object a pure data 

object. Unfortunately, the visualization code in binary_tree_node_observer is bound to the type 

of binary_tree_node, making the code in the observer not reusable elsewhere. 

 

Figure 3. The Observer design pattern.   

3.1 When observer design pattern fails? 

Technically, to separate the data and visualization, a visualization should be constructed 

without the knowledge of how it will be used or what kind of data it will visualize, i.e. it should 

be decoupled from data. Any dependency on data makes a visualization component limited to 

render that data, unless the data is of a primitive type.  

In Fig. 3, the observer pattern is shown. In this pattern, any ConcreteSubjects that are intended 

to be visualized should inherit the interfaces from a base class Subject. A ConcreteObserver 

which wants to visualize a ConcreteSubject should inherit a base class Observer and register 

at a ConcreteSubject. When a ConcreteSubject changes its state, a ConcreteObserver is notified 

by update(), which invokes subject->GetState() to get the newest state to redraw the 

visualization. Since subject is a reference or pointer to a ConcreteSubject, the source code of a 

ConcreteObserver is coupled and dependent on the TYPE of a ConcreteSubject. This 

dependency limits the ConcreteObserver to only visualizing the type of a ConcreteSubject. In 

other words, implementing visualization code naively with observer design patterns makes 



your visualization code not reusable to other applications, but it could be perfectly fine for your 

own applications. So, if your goal is to build a visualization library to be reused, a naive 

observer design pattern should never be adopted. 

3.2 Maximum reusability with primitive types 

So, to make a visual reusable, its shape should only be controlled/parametrized by “primitive 

types” (integer, float, etc.) in its visualization code. This finding can be simply explained. To 

draw a rectangle, the very basic APIs may be: 

 

drawRectangle(int x,int y,int width,int height) { ... } 

 

Such a fundamental API typically allows maximum reusability.  

On the other hand, it is common to see that some additional APIs are supported to promote OO 

principle such as: 

 

drawRectangle(Rectangle rect) {...} 

drawBinaryTreeNode(BinaryTreeNode node) {...} 

 

If your goal is to allow this visualization code to be reused, such a move actually reduce code 

reusability in an opposite way. By introducing more complicated data types in APIs to draw a 

visual, the reusability of the code is degraded.  

Sometimes, some visualization libraries may still choose such a design. Therefore, to use the 

API, the data types of Rectangle or BinaryTreeNode must be provided by the library and users 

are responsible for using the types to create objects and then fitting their data into these objects 

before invoking the APIs. In this case, bindings occur when data are fitted into these objects. 

Fitting the data (by writing code) into these objects is called the binding method for reusing 

such an API.  

4. Binding Design Patterns 

The design of binding methods from data to visual models is very critical in constructing a 

visualization library/tool. Not only can the design affect the system reusability, but it also 

determines system architecture, extensibility, and flexibility. The problem of how to let users 

bind the data to visual models is a difficult ones. So far, there is no unique answer. In this 

section, four binding design patterns in visualization libraries/tools are described, studied, and 

compared. Understanding these patterns can help the programmers of visualization 

libraries/tools to determine their implementation directions.  

 

 

 

4.1 Library object 

Context: 



Visualization code has been implemented as a set of function calls. In visualization code, some 

key data structures have been defined and implemented by a programming language to realize 

the visual model entities. Algorithms, such as layout algorithms, have been implemented to 

work on these key data structures.  

Problem: 

You want to publish your visualization library as a set of function calls.  

Force: 

The solution provided in this design pattern is most straightforward. So, there is no force to 

make the solution difficult. However, this design pattern is served as a basis for comparison.  

Solution: 

To implement a visualization as a function call, a visual model must be defined first explicitly 

or implicitly. Take a graph visualization again, its visual model contains two major visual 

entities – node and link. These are the key data structures (or entities) of the code. Without 

these key data structure, a graph layout algorithm can never be implemented. 

To wrap the visualization code into a function call, a straightforward solution is to provide 

these key data structure types (e.g., class definition) to users so that they can use these data 

types to create objects which can then be passed to the function call directly. These objects are 

called library objects. Before calling the function calls, library objects must be created by users. 

In this process, users are responsible for filling the objects from data source. This process can 

only be done by programming.  

The solution structure of this binding method is illustrated in Fig. 4. In the figure, the data from 

data source must be transformed and filled into the library objects and then these objects are 

used to invoke the function call. On the right hand side of the solution structure, we show the 

conceptual objects inside the visualization library. A visual model can contains several visual 

entities or composite visual entities (i.e., composite design pattern instance). Take graph 

visualization for example again, a set of nodes and links can form a sub-graph, which is a 

composite visual entity. A sub-graph may place additional constraints on layout algorithms to 

handle the nodes and links inside the sub-graph. Finally, layout algorithms are often included 

in the functional calls to work on these visual entities. Bindings occurs when you transform 

your data to fill the library objects. This binding method is accomplished by programming.  

Example: 

One of the popular visualization libraries that adopt this binding method is igraph[5]. Actually, 

igraph is not a pure visualization library. The main purpose of igraph is to provide graph 

algorithms to help programmers solve the computation problems of graphs. To visualize your 

data in igraph, you need to use the data types provided by the library. Fig. 5 is a sample code 

of using igraph. First, you need to create an (empty) graph using data type igraph_t, which is 

provided by the library. Next, you need to fill the data into the object. igraph can handle 

directed and undirected graphs. The igraph graph are multiset of ordered (if directed) or 

unordered (if undirected) labeled pairs. A directed graph can be imaged like: 

 



 
Figure 4. Library Object binding design pattern.  

 (vertices: 6 

directed: yes 

{ 

(0,2), 

(2,2), 

(2,3), 

(3,3), 

(3,4), 

(3,4), 

(4,1) 

} 

) 

To use igraph, you must abstract your data into the form above, where the nodes are always 

numbered from 0 to n-1 and the edges are ordered pairs of vertex ids.  

Consequences:  

The visualization libraries adopting such a solution structure can be reused at the level of 

programming; that is, it requires programming to use the library. Porting to different 

programming languages is straightforward and the overhead is the cost of rewriting code by 

another language or providing a cross language API wrapper.  

Users must handcraft some code to transform data to fill the library objects. In this process, 

relations between original data items and the elements in the library objects can be lost. For 

example, in the case of igraph, a vertex id is limited to 0,..n . It could be non-straightforward 

to link a vertex i back to an original data item.  



 

Figure 5. iGraph sample code. 

4.2 Meta Representation 

Context: 

Although a visualization library can be provided as a function call, it is programming language 

dependent and code reuse must be achieved at the level of programming, making visualization 

reuse limited to programmers of a specific programming language.  

Problem: 

You want your visualization library to be used beyond programming and can be easily 

integrated by other applications.  

Force: 

Independence of programming language: Visualizations can be reused beyond 

programming without linking the visualization code as a function call or library.  

Solution: 

A meta representation is defined by the library. This meta representation can be a file format, 

a string format, or any representations which are independent of programming languages. Fig. 

1 shows the Meta Representation binding design pattern. The right hand side of the pattern is 

pretty much the same. In the left hand side, a meta representation is defined equally for each 

visual model. It is also possible that a meta representation can be shared by multiple visual 

models.  



A meta representation parser should be built to parse the meta representation and then construct 

internal visual entities for visual models. Bindings actually occur when user data is transformed 

into a meta representation. 

Examples: 

One popular visualization tool that adopts this binding design pattern is Graphviz [8]. Graphviz 

defines a file format called DOT (see Fig. 7) to describe a directed or an undirected graph. 

Graphviz must then read a DOT file to produce a graph visualization as in Fig. 7. 

Consequences: 

 Benefit: Independence of programming language: As the visualization code is hidden 

behind the meta representation, the visualization libraries can be reused without 

programming. However, users must handcraft the code to transform data source to the 

meta representation, which requires the understanding of the meta representation. The 

relation between a data set item and a visual can be kept if transformation code is 

implemented properly.  

 Performance and instant update: Independence of programming language: As the 

visualization code is hidden behind the meta representation, the direct memory linkage is 

lost and performance can be compromised by the file accessing and parsing. When data 

set is changed, visualization may not immediately reflect the changes at the speed of 

memory accessing.  

 

Figure 6. Meta representation binding design pattern. 

 

Figure 7. An example of DOT meta format in Graphviz and the visualization of the DOT 

example.  



4.3 Standard Data Format 

Context: 

In principle, data can be stored and represented in arbitrary format, media, or memory. In some 

popular application domain, particularly web programming, data source are often stored as 

standard formats such as XML and JSON. The binding method become a problem on how to 

read data from these standard formats and then feed the data into visualization code. In these 

programming environments, there is no need to worry about how to parse these standard format 

files. Manipulating the objects in these standard formats is a default functionality in the 

programming environment. Standard formats can promote data exchange from applications to 

applications, which becomes a popular trend in information visualization.  

Problem: 

When data are stored in standard format you want your visualization code to read data from 

these standard formats.  

Force: 

Data exchange standardization: Instead of fitting data to visualization, visualization code 

should adapt to data sources represented in standard exchange formats to achieve more flexible 

data exchange between applications.  

Solution: 

In contrast to Meta Representation, the data in this pattern is already stored as standard format 

or standard data types and these standard formats are independent of visual models. In Fig. 1, 

the left hand side shows a different pattern for data source. You need to write code to extract 

data values from Open standard format or Standard data types and feed these data values to 

visual entities by yourself. Binding occurs when the code feeds the data into visual entities or 

standard data types provided by visualization library.  

 

Figure 8:Standard Data Format binding design pattern.  

Examples: 

The most well-known approach that adopt this binding method is D3 (Data Driven 

Documents)[2,9], which employs a declarative language to deal with mappings between data 

and visualization entities without worrying about much in drawing. D3 is based on Java script 

and SVG.  



In principle, you can use D3 with basic SVG drawing commands to construct the visualization 

you want. However, if you choose a visualization library, in general, less code is written with 

the benefit of a declarative programming language. D3 let users focus on efficient manipulation 

of documents based on data rather than worry about drawing.  

Consequences: 

Adopting this binding method requires users to write additional code to manipulate data. The 

data are assumed to be stored in open standard formats so that accessing the items in these 

format is fully supported by the programming language and environment. That is, data can be 

manipulated in a much easier manner.  

4.4 No visual models 

Context: 

In principle, there are arbitrary number of visualizations to be constructed and there are 

arbitrary data formats to be visualized. Once a visualization imposes the concept of a visual 

model, it also defines the constraints of data that can be applied to the visual model. For 

example, you can define a visual model which can only accept data organized as a matrix. If 

data are not organized as a matrix, a user must handcraft some code to transform data into a 

matrix, provided that meaningful semantics is kept. 

On the other hand, given a set of data, it is unlikely that any fixed-mapping visualization will 

be available a priori to cover everything that might be of interest. A visual model is a fixed 

visualization, which can always be unsuitable for an arbitrary set of data.  

When facing infinite construction choices, humans have learned to find common basic building 

blocks for all choices, set up the interfaces between the basic building blocks, and then establish 

engineering methods or frameworks to assemble these building blocks. This knowledge can be 

explained by a term – composability. Composability[1], in general, refers to a system design 

principle that deals with the inter-relationships of components. A highly composable system 

provides recombinant components that can be selected and assembled in various combinations 

to satisfy specific user requirements. A component may cooperate with other components, but 

dependent components are replaceable. So, to approach such a human knowledge in 

visualization, two key issues must be addressed: Composability and the use of basic build 

blocks.  

Problem: 

When fixed visualizations are not suitable for your data set, it is still possible to construct 

visualizations from existing visualizations.  

Force: 

Composability: Allow new visualizations to be composed from existing ones.  

Solution: 

One way to solve the crux of the problem is to remove the concept of visual models. Fig. 9 

illustrates this design pattern. In this binding design patterns, data are read into objects. Next, 

the visualization library allows binding object to be created. A binding object binds the attribute 

of an object to a property of a visual (aka, an existing visualization) or to a computation unit. 

A mapping is composed by arbitrary number of binding objects and computation units. Since 

no visual models are defined, a user needs to construct a visualization by composing existing 

visuals.  



 

Figure 9. The NO-Visual Models binding design pattern.  

 

Examples: 

One visualization tool that adopt such a binding design pattern is xDIVA [3,4]. The design 

rationale of xDIVA originates from within common human knowledge described above. From 

the best of our knowledge, construction of visualization from basic blocks was first proposed 

by Cheng [3] and later Heer [9] proposed similar idea for the declarative approach.  

To realize the binding objects and computation units in the design pattern, xDIVA proposes a 

visual programming language (VPL) called xDIVA-VML. The screen-shot of xDIVA-VML is 

shown in Fig. 10. It is comparatively much easier to start programming from these VPLs 

because these VPLs typically let users create programs by manipulating program elements 

graphically rather than by specifying them textually. However, VPLs are rarely used as 

general-purpose programming languages due to their limitations, particularly when problem 

complexity and scale are increased.  

 

Figure 10:The screen shot of xDIVA-VML.  



Consequences 

The benefits of adopting this binding design pattern is the absence of visual models. A 

visualization library imposed by a visual model can be viewed as a fixed visualization that 

allows data to mapped to. However, given a set of data, it is unlikely that any fixed visualization 

will be available a priori to cover everything that might be of interest. When no fixed 

visualizations are available, this approach allows fast construction of visualization without 

textual programming.  

The drawback of adopting this design pattern is that the cost of realization can be considerably 

high, as compared to library objects or meta representation. Second, fixed visualizations can 

be built to be efficiently executed and aesthetics can be fine tuned. That is, most work of a 

fixed visualization is already taken care of by the visualization library. On the other hand, 

building visualization from basic blocks can be more tedious in the beginning because users 

must have a visualization concept to be incubated at first. This problem could be alleviated if 

reusable visualizations are accumulated to some extent that a critical mass is reached. 

Conclusions and Future Works 

The discovery of these four binding design patterns originated from years of work in [3,4]. It 

is possible to have more binding design patterns that may not be categorized into the four 

design patterns. More surveys and studies are still ongoing.  

So far, how to bind data to visuals is still a difficult problem. Comparatively, Library Object, 

Meta Representation, and Open Standard Format push most of the responsibility to users. 

However, bindings may be accomplished in a much more user friendly manner. Resolving the 

problem can therefore increase the reuse of visualization code. In addition, modern object-

oriented programming languages have inheritance mechanism for code reuse but this 

mechanism apparently cannot be applied properly to visualization code reuse. There are more 

researches to be done in this direction.  

References 

[1] Composability. http://en.wikipedia.org/wiki/Composability. Accessed: 2014-09-

18. 

[2] D3 data-driven documents. http://d3js.org. Accessed: 2015-12-9. 

[3] Yung-Pin Cheng, Jih-Feng Chen, Ming-Chieh Chiu, Nien-Wei Lai, and Chien-

Chih Tseng. xdiva: a debugging visualization system with composable 

visualization metaphors. In Gail E. Harris, editor, Companion to the 23rd Annual 

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, 

Languages, and Applications, OOPSLA 2008, October 19-13, 2007, Nashville, 

TN, USA, pages 807–810. ACM, 2008.   

[4] Yung-Pin Cheng, Han-Yi Tsai, Chih-Shun Wang, and Chien-Hsin Hsueh. xdiva: 

automatic animation between debugging break points. In Proceedings of the ACM 

2010 Symposium on Software Visualization, Salt Lake City, UT, USA, October 

25-26, 2010, pages 221–222. ACM, 2010.  

[5] Gabor Csardi and Tamas Nepusz. The igraph software package for complex 

network research. InterJournal, Complex Systems, 1695(5), 2006. 

[6] Jean-Daniel Fekete. The infovis toolkit. In Ward and Munzner [14], pages 167–

174.  

http://en.wikipedia.org/wiki/Composability
http://d3js.org/


[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patters: Elements of 

Reusable Object-Oriented Software. Addison-Wesley Professional 1st Edition, 

1995. 

[8] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong 

Vo. A technique for drawing directed graphs. IEEE Transactions on Software 

Engineering, 19(3):214–230, 1993. 

[9] Jeffrey Heer and Michael Bostock. Declarative language design for interactive 

visualization. IEEE Trans. Vis. Comput. Graph., 16(6):1149–1156, 2010. 

[10] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for 

interactive information visualization. In Gerrit C. van der Veer and Carolyn Gale, 

editors, Proceedings of the 2005 Conference on Human Factors in  Computing 

Systems, CHI 2005, Portland, Oregon, USA, April 2-7, 2005, pages 421–430. 

ACM, 2005. 

[11] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller 

user interface paradigm in smalltalk-80. Journal of Object-Oriented 

Programming,,1(3):26–49, 1988. 

[12] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view 

controller user interface paradigm in smalltalk-80. J. Object Oriented Program., 

1(3):26–49, August 1988. 

[13] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query, analysis, 

and visualization of multidimensional relational databases. IEEE Trans. Vis. 

Comput. Graph., 8(1):52–65, 2002.  

[14] Matthew O. Ward and Tamara Munzner, editors. 10th IEEE Symposium on 

Information Visualization (InfoVis 2004), 10-12 October 2004, Austin, TX, USA. 

IEEE Computer Society, 2004. 

[15] Chris Weaver. Bui lding highly-coordinated visualizations in improvise. In Ward 

and Munzner [14], pages 159–166. 



 


