
Handover Anti-patterns
Kei Ito1, Hironori Washizaki2, Yoshiaki Fukazawa3

1 Waseda University

2 Global Software Engineering Laboratory, Waseda University

3 Global Software Engineering Laboratory, Waseda University

k-win@toki.waseda.jp, washizaki@waseda.jp, fukazawa@waseda.jp

Abstract. Every organization undergoes personnel changes that induce handover

activities. Most business people are familiar with the concept of a handover. Issues

with handovers became apparent in Japan in 2007 as many people from the Baby

Boomer Generation retired simultaneously. Although effective handovers are crucial

for seamless business operations during personnel changes, the preferable elements

for an ideal handover are ambiguous and little research has been conducted. Our

research focuses on anti-patterns, which identify the causes of an unsuccessful

handover. Paradoxically, the handover anti-pattern allows preferable elements for

handover to become clear. Herein we introduce three anti-patterns, which were

elucidated from a workshop to collect information about unsuccessful handovers.

Categories and Subject Descriptors

•Social and professional topics → Project and people management

•Software and its engineering → Maintaining software

• Software and its engineering → Software verification and validation

General Terms

Anti-patterns, Design patterns, Project management

Keywords

Handover, Anti-patterns, Pattern Language, People Management, Maintaining software

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Preliminary versions of these papers were presented in a writers' workshop at the 5th Asian Conference on Pattern of Programs

(AsianPLoP). AsianPLoP'2016, February 2426, Taipei, Taiwan. Copyright 2016 is held by the author(s). SEAT ISBN 978-986-

82494-3-1 (paper) and 978-986-824-944-8 (electronic).

mailto:k-win@toki.waseda.jp
mailto:washizaki@waseda.jp
mailto:fukazawa@waseda.jp

1. Introduction

Handover is a process of transferring responsibilities from the predecessor to the successor

[AM10a] [AM10b]. Most business personnel are familiar with this concept. Despite its

importance, little is known about handover problems and few publications deal with this

handover process. One study [AM10b], which investigated core problems of handovers from

a developer to the maintainer, mentions that insufficient knowledge is the main handover

problem. Moreover, information sharing is a complex problem. Some research has investigated

the complexity of information [TE08], but none has focused on handovers problems due to

complexities with information sharing.

Our research focuses on information-sharing problems during a handover. Because handovers

are common, this research may be applicable to numerous fields, and those without a systems

background may also enjoy this paper. This paper aims to identify concrete problems with

handovers. One way to do this is to define anti-patterns. The term anti-pattern is from Design

Patterns. Although design patterns highlight desirable solutions, which are considered highly

reliable and effective, anti-patterns highlight negative solutions. Anti-patterns provide the

necessary knowledge to prevent or recover from undesired situations. Examples of anti-

patterns include death march, god class, and vendor lock-in[H1998]. That is, handover anti-

patterns are maps of dangerous scenarios and can help detect handover problems. Herein we

propose an approach to elucidate the elements necessary for a preferable handover by defining

common handover anti-patterns. Using these maps, project managers can prevent undesirable

situations due to unsuccessful handovers and construct reliable organization policies that are

unaffected by personnel changes. Finally, we strive to develop a pattern language for handovers

solve the problem identified in the anti-patterns. Consequently, the anti-patterns in this paper

are the “pattern seeds” for a pattern language.

The rest of the paper is organized as follows. Section 2 introduces our anti-pattern template.

Each anti-pattern contains five items: name, scenario, main cause, refactored solution, and

refactored scenario. Section 3 discusses handover using activity diagrams, class diagrams, and

object diagrams. Section 4 extracts three common anti-patterns. Finally, Section 5 concludes

this paper and states possible future works.

2. Handover Anti-pattern Template

Our anti-pattern has two solutions. The first solution provides an anti-pattern problem, a

solution commonly used by organizations but which is ineffective. The second one provides a

refactored solution, a strategy to help improving anti-pattern situation[WRHT98]. Here are the

five items each handover anti-pattern contains.

 Name

Concise expression of the anti-pattern situation contained in the class diagram

 Scenario

An anti-pattern scenario based on a case study expressed in the object diagram

 Main causes

Description of the anti-pattern causes

 Strategies to prevent and recover from the anti-pattern

https://en.wikipedia.org/wiki/Design_Patterns_%28book%29
https://en.wikipedia.org/wiki/Design_Patterns_%28book%29
https://en.wikipedia.org/wiki/Death_march_%28software_development%29
https://en.wikipedia.org/wiki/Groupthink
https://en.wikipedia.org/wiki/Vendor_lock-in

 To prevent the anti-pattern from happening, the predecessor should apply Strategy A

before leaving the post. In case he fails to do that, his successor should apply Strategy B

to recover from the anti-pattern. Strategy A is a measure to prevent the anti-pattern

situation while Strategy B aims to correct the problem posed by the anti-pattern.

Table 1 Strategies to prevent and recover from the anti-pattern

 Measure to prevent the anti-

pattern situation

Measure to recover from anti-

pattern situation

Predecessor Strategy A -

Successor - Strategy B

 Refactoring scenario

This item is based on the anti-pattern scenario and the prevention and recovering strategies.

The object diagram describes the effectiveness of a refactored solution

3. Handover Model

Handovers involve an information-sharing process. Here we explain this process with model

and an example to illustrate handover activities and necessary elements. In addition, we

propose a model to define the handover elements.

 Example

Staff A has been working on system X. Staff A, who is leaving this post, is being replaced

by Staff B. The handover elements involve:

 Predecessor: Staff A

 Successor: Staff B

 Handover target: Operation of business management system X

Figures 1-3, show our proposed activity diagram, class diagram and object diagram,

respectively.

3.1 Handover Activity Diagram

The handover activity diagram is used to define the handover activities.

Figure 1 Handover activity Diagram

The handover activities are divided into following tasks:

(1) Staff A (Predecessor) selects the necessary knowledge and unnecessary knowledge.

(2) Staff A communicates necessary knowledge to Staff B (Successor).

(3) Staff B receives the necessary knowledge from Staff A.

(4) Staff A is replaced by Staff B.

This diagram contains six activities and two actors (Predecessor and Successor) and three

activities (Select necessary knowledge, Communicate necessary knowledge and receive

knowledge).

3.2 Handover Class Diagram

Next we propose a handover class diagram to describe these activities and elements in more

detail.

Figure 2 Handover class diagram

There are eight classes in the handover diagram:

(1) System Class:

 Target of the Knowledge Class

(2) Knowledge Class:

 Knowledge of the System Class owned by the Predecessor Class

 Two sub-classes: Unnecessary Knowledge Class and Necessary Knowledge Class

(3) Unnecessary Knowledge Class:

 Unnecessary Knowledge for the system.

 Sub-class of the Knowledge Class

(4) Necessary Knowledge Class:

 Necessary Knowledge for the system.

 Sub-class of the Knowledge Class

(5) Formalized Knowledge Class:

 Formalized shape of necessary knowledge.

 Sub-class of the Necessary Knowledge Class.

(6) Revise Class:

 Recognized by the Predecessor Class and reflected in the Formalized Knowledge

Class.

(7) Predecessor Class:

 Communicates necessary knowledge to the Successor Class

(8) Successor Class:

 Receives necessary knowledge from the Predecessor Class.

3.3 Handover Object Diagram

We propose the object diagram to complement the class diagram.

Figure 3 Handover object diagram

The handover object diagram has the following eight classes:

(1) System X: System Class

(2) How to operate the system: Knowledge Class

(3) Unusual operations: Unnecessary Knowledge Class

(4) Usual operations: Necessary Knowledge Class

(5) Operation manual: Formalized Knowledge Class

(6) Change in operations: Revise Class

(7) Staff A: Predecessor Class

(8) Staff B: Successor Class

4. Handover Anti-pattern

The handover anti-pattern is classified into two classes. Handover activity consists of two

activities, select necessary knowledge, and communicate necessary knowledge. The failures of

these activities bring handover anti-pattern. In this section, we introduce three anti-patterns,

Unsupported to review, Background knowledge is unclear and Necessary knowledge is omitted.

These are caused by failure of select necessary knowledge activity.

Figure 4 Handover activity map

Failure of the select necessary knowledge activity results in defective knowledge being

transmitted. Consequently, predecessor communicates defective knowledge to successor.

Defective knowledge has two elements; incorrectness and insufficiency. We explain

relationship between these elements and each anti-pattern by map of select necessary

knowledge anti-pattern described by class diagram.

Figure 5 Map of select necessary knowledge anti-pattern

Incorrectness has a relationship between Unsupported to review. Insufficiency has a

relationship between Background is omitted and Necessary knowledge is omitted. Next, we

explain each anti-pattern in detail from the next section.

4.1 Unsupported To Review

A review conference, which denotes defects that must be revised, is an opportunity to correct

defects in a document. However, documents are not always revised after a review conference.

Sharing unrevised documents during the handover process tends to cause issues when the

successor assumes responsibility for a task.

Figure 6 “Unsupported to review” class diagram

 Scenario

(1) Staff A is in charge of operations of System X.

(2) During a personnel change, Staff B assumes this task from Staff A.

(3) Staff A makes operation manual of System X.

(4) Staff C reviews the document and find incorrect operation.

(5) Staff C reports the defects to Staff A.

(6) Staff A recognizes the defects, but does not revise the document.

(7) Staff B operates System X using a defective manual and fails to operate System X

appropriately.

Figure 7 “Unsupported to review” object diagram

 Main cause

This anti-pattern occurs because the predecessor does not revise the documents. Often the

predecessor misunderstands the document status and cannot determine whether a document

is updated because a method to verify the document status does not exist. Thus, defective

document is shared during a handover, preventing the successor from appropriately

executing the post.

 Strategies to prevent and recover from the anti-pattern

Because the main cause is the lack of a method to check the documents, introducing an

update history of the documents is an effective solution.

Table 2 Strategies to prevent and recover from the anti-pattern of “unsupported to review”

 Measure to prevent the anti-

pattern situation

Measure to recover from anti-

pattern situation

Predecessor
 Record the update history in

the document.

 Check the status frequently,

and update the documents as

necessary.

-

Successor
 Check the document status

before the predecessor leaves,

and ask the predecessor if the

documents are updated

-

Figure 8 Refactored “unsupported to review” class diagram

 Refactored scenario

(1) Staff A is in charge of operations of System X.

(2) During a personnel change, Staff B assumes this task from Staff A.

(3) Staff A makes operation manual of System X.

(4) Staff C reviews the document and find incorrect operation.

(5) Staff C reports the defects to Staff A.

(6) Staff A recognizes the defects, but does not revise the document.

(7) Staff B receives the manual and notes that the document is not updated.

(8) Staff A update the documents to remove defects and updates the history.

Figure 9 Refactored “unsupported to review” object diagram

4.2 Background Knowledge Is Unclear

All systems have background knowledge such as design concepts, requests from customers,

and restrictions regarding budgets or technical levels. Although background knowledge

indirectly affects the system, background knowledge tends to be lost because it is not recorded

in the handover document.

Figure 10 “Background knowledge is unclear” class diagram

 Scenario

(1) System X is developed and operated for long periods by Staff A.

(2) During a personnel change, Staff B assumes this task from Staff A.

(3) After completing the handover, Staff B assumes the post from Staff A,

(4) A short time later, Staff B finds an ambiguous output value.

(5) The reason for the ambiguity is not present in any of the documents and Staff A is no

longer at the company.

(6) The background knowledge and know-how to deal with the ambiguous output value

are lost.

Figure 11 “Background knowledge is unclear” object diagram

 Main causes

Background knowledge affects the system, but it tends to be excluded during a handover,

and over time, fewer people understand the background knowledge. Moreover,

background knowledge is not recorded in the specification documents.

 Strategies to prevent and recover from the anti-pattern

Background knowledge is not recorded in the specifications. However, the background

knowledge is often recorded in other data, such as review of development or the permission

of the system because these types of data pertaining to the purpose and suitability of the

system.

Table 3 Strategies to prevent and recover from the anti-pattern of “background is

unclear”

 Measure to prevent the anti-

pattern situation

Measure to recover from anti-

pattern situation

Predecessor
 Preserve the data of the

review and the permission.
-

Successor
 Verify that the data of review

and the permission exists

before the predecessor

leaves.

 Trace the data of the review

and the permission data, etc.

Figure 12 Refactored “background knowledge is unclear” class diagram

 Refactored scenario

(1) System X is developed and operated for long periods by Staff A.

(2) During a personnel change, Staff B assumes this task from Staff A.

(3) After completing the handover, Staff B assumes the post from Staff A,

(4) A short time later, Staff B finds an ambiguous output value.

(5) The reason for the ambiguity is not present in any of the documents and Staff A is no

longer at the company.

(6) Staff B traces the review data or other data to find the background knowledge of the

ambiguous output value.

(7) Staff B is able to deal with the output value appropriately.

Figure 13 Refactored “background knowledge is unclear” object diagram

4.3 Necessary Knowledge Is Omitted

The predecessor chooses the necessary knowledge to be shared, and records this information

in documents. However, necessary knowledge may be omitted from the handover documents.

In this case, omitted necessary knowledge is not passed to the successor, and prevents the

successor from appropriately executing the post.

Figure 14 “Necessary knowledge is omitted” class diagram

 Scenario

(1) Staff A maintains System X.

(2) During a personnel change, Staff B assumes this task from Staff A.

(3) Staff A handovers to Staff B for his work, but part of the necessary procedure to back

up the system data (operation Y) is omitted from the handover.

(4) After completing the handover, Staff B assumes the post from Staff A,

(5) A short time later, the backup function of system X gets weaker suddenly and the

necessary information is unknown.

Figure 15 “Necessary knowledge is omitted” object diagram

 Main cause

The absence of a method to verify omitted knowledge objectively is the main cause of this

anti-pattern. Although the predecessor verifies whether the handover documents contain

all necessary knowledge, a self-check tends to be subjective and ad-hoc review, making it

difficult for the predecessor to determine if knowledge is omitted.

 Strategies to prevent and recover from the anti-pattern

To improve the review, there are various software reading techniques developed such as

Checklist-Based Reading [HTY15]. The table below shows effective measures to verify

that a handover includes all necessary information.

Table 4 Strategies to prevent and recover from the anti-pattern of “necessary knowledge is

omitted”

 Measure to prevent the anti-pattern

situation

Measure to recover from anti-

pattern situation

Predecessor
 Create a checklist for

handover items.

 Check the list by

predecessor himself and a

third party. If knowledge

is omitted, revise the

documents.

-

Successor
 Check the list and if

knowledge is omitted,

confirm with the

predecessor.

-

Figure 16 Refactored “necessary knowledge is omitted” class diagram

 Refactored scenario

(1) Staff A maintains System X.

(2) During a personnel change, Staff B assumes this task from Staff A.

(3) Staff A creates a checklist for the handover and then verifies the documents

(4) Staff A finds that the necessary procedure for the backup is omitted and revises the

documents.

(5) Staff A handovers to Staff B for his work.

(6) After completing the handover, Staff B assumes the post from Staff A,

(7) Staff B maintains System X appropriately.

Figure 17 Refactored “necessary knowledge is omitted” object diagram

Conclusion And Future Work

Herein we propose three handover anti-patterns to describe concrete problems in handovers as

well as three models to explain handover anti-pattern situations. These models help define

handover problems. Each anti-pattern contains refactored solutions to prevent or recover from

the anti-pattern situation. The proposed refactored solutions seem effective. The main purpose

of the pattern is to construct the relations between each pattern [JN05] [ASMMIS77]. As a next

step, we investigate each anti-pattern in more detail and determine their relations and develop

a handover pattern language to solve the problems described in this paper.

However, three problems remain. First, we use UML to explain the handover anti-pattern.

UML is useful for people with a systems background, but it is difficult for others to understand.

Thus, we need to derive more concrete scenarios to describe the pattern language for handovers.

Second, this paper uses simple linear models, but activities are more complex and repetitive.

The models in this paper do not sufficiently express the concrete activities and repetition in

handovers. Consequently, the models need to be improved. Finally, the effectiveness of the

proposed solutions has not been verified. We plan to evaluate the effectiveness via

questionnaires and use the results to propose an improved language for handovers.

Acknowledgement

We first thank all the participants of the workshop to collect information about unsuccessful

handover. We would like to thank Joseph W. Yoder for helping us to improve our paper and

future work. Also, we appreciate towards our Foutse Khom, who gave us helpful comments

through shepherding process. And lastly, we thank Asian PLoPers who gave us the wonderful

comments during the workshop.

References

[AM10a] Ahmad Salman Khan., Mira Kajki-Mattsson. 2010. “Taxonomy of Handover

Activities,” 11th International Conference on Product Focused Software 2010

(PROFES’10), Limerick, Ireland, 2010., 131-134

[AM10b] Ahmad Salman Khan., Mira Kajki-Mattsson. 2010. “Core handover Problems,”

11th International Conference on Product Focused Software 2010

(PROFES’10), Limerick, Ireland, 2010., 135-139

[TE08] T. Grandon Gill., Eli Cohen. 2008. “Research themes in complex Informing”,

Informing Science: the International Journal of an Emerging Transdiscipline.

11, 2008, 147-164

[H1998] Hays W. McCormick., 1998. AntiPatterns, a Brief Tutorial,

http://www.antipatterns.com/briefing/index.htm

[WRHT98] William J. Brown., Raphael C. Malveau., Hays W. “Skip” McCormick Ⅲ.,

Thomas J. Mowbray. 1998. Anti-Patterns. John Wiley & Sons

http://www.antipatterns.com/briefing/index.htm

[HTY15] Hironori Washizaki., Tian Xia., Yoshiaki Fukazawa. 2015. “Introducing

Software Reading Techniques into Pattern Writer’s Workshop: Checklists and

Perspectives,” 4th Asian Conference on Pattern Languages of Programs2015

(Asian PLoP2015), Tokyo, Japan, 2015

[JN05] James O. Coplien., Neil B. Harrison. 2005. Organizational Patterns of Agile

Software Development. Pearson Prentice Hall

[ASMMIS77] Alexander, Christopher., Sara Ishikawa., Murray Silverstein., with Max

Jacobson., Ingrid Fiksdahl-King., Shlomo Angel. 1977. A Pattern Language:

Towns, Buildings, Construction. New York: Oxford University Press

