
Introducing Agile Practices in Object-Oriented Programming:
Applying How To Solve It Patterns
Yu Chin Cheng, Taipei Tech
Kai H. Chang, Auburn University

We report the experience of our effort to include numerous agile practices alongside the C++ language features and object orientation in
teaching object-oriented programming, the second programming course in the imperative-first paradigm of CC2001 adopted at our institutions.
We use long running examples that solve problems of sufficient complexity in class and build assignments as their extensions. The problem
solving heuristics How To Solve It guide the analysis, design, coding, and review activities both in instructor’s preparation and in class. In
preparing a problem, the instructor records problem decomposition as an AND-OR graph. The instructor then identifies learning opportunities
and explores how best to order the constituent subproblems for instruction. Coding is driven by tests and is performed on the only computer
in the classroom. Pair/mob programming engages all students in problem solving and coding and is supplemented by occasional instructor
demonstrations. Exit surveys taken by students of two recent course offerings show encouraging results.

Categories and Subject Descriptors: D.1.5 [PROGRAMMING TECHNIQUES] Object-oriented Programming; D.2.3 [SOFTWARE ENGINEER-
ING] Coding Tools and Techniques; K.3.2 [COMPUTERS AND EDUCATION] Computer and Information Science Education

Additional Key Words and Phrases: object-oriented programming as a second course, problem solving heuristics, agile practices

ACM Reference Format:

Cheng, Y. C. and Chang, K. H. 2020. Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns. HILLSIDE
Proc. of Asian Conf. on Pattern Lang. of Prog. 9 (March 2020), 10 pages.

1. INTRODUCTION

Programming courses offer the first opportunities for students to acquire programming knowledge and software
development skills that carry them through their computing curricula and into professional careers. In the case of
object-oriented programming in C++ as a second programming course (CS112) in the imperative-first paradigm of
CC2001 [Joint Task Force 2001], the skill set typically includes mastering language features, standard libraries,
and object orientation. Due to the widespread adoption of agile development, we believe that the skill set should
also factor in selected agile practices including iterative and incremental development (IID) [Larman and Basili
2003], test-driven development (TDD) [Beck 2002], refactoring [Fowler 1999], pair programming [Beck 2000],
mob programming [Zuill and Meadows 2016], continuous integration (CI) [Duvall et al. 2007], and so on. These
practices are summarized in Table 1.

To weave the three main threads into a wholesome course, we have experimented with solving sufficiently
complex problems in class. In addition to providing a rich context for learning language features and object-oriented
design, the solution of a problem typically spans multiple class meetings to provide a working context for IID. In

Author’s address: Y. C. Cheng, Department of Computer Science and Information Engineering, Taipei Tech, Taipei 10608, Taiwan; email:
yccheng@csie.ntut.edu.tw; Kai Chang, 3101 Shelby Center, Auburn, AL 36849; email: changka@auburn.edu

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version
of this paper was presented in a writers’ workshop at the 9th Asian Conference on Pattern Languages of Programs (AsianPLoP). Asian-
PLoP’20, March 4th - 6th, 2020, Taipei, Taiwan; (due to COVID-19 pandemic, the conference was held online September 2nd - 4th, 2020;)
Copyright 2020 is held by the author(s). HILLSIDE 978-1-941652-15-2

the past few years, we have applied How To Solve It, the well-known heuristics for mathematical problem solving
[Polya 1957], as the main framework for instructional planning and execution. A description of How To Solve It
and its four steps for teaching and learning object-oriented programming - understanding the problem, devising a
plan, carrying out the plan, and looking back - can be found in [Cheng 2014], which was subsequently expanded
into a pattern language in [Cheng and Chang 2015]. For convenience of reference, the How To Solve It patterns
are summarized in the Appendix. How To Solve It can be easily mapped to an agile method. In the case of
Scrum [Schwaber and Beedle 2001], understanding the problem occurs during product backlog development
and refinement ; devising a plan maps to sprint planning; carrying out the plan maps to the main development
work taking place between sprint planning and sprint review ; and looking back maps to sprint review and sprint
retrospective.

In applying How To Solve It on solving complex problems in class, the bulk of time is spent on live coding by the
instructor and by students in the third step of carrying out the plan. This means that there are lots of opportunities
for things to go wrong and the instructor needs to be able to pull things back on the right track. Furthermore, the
students will need timely opportunities to practice outside of class, ideally building on what they have already
learned in class. The former is solved by organizing and sequencing the problem components with an AND-OR
graph [Bratko 2012] in the instructor’s pre-class preparation and by applying test-driven development [Beck 2002]
during in-class coding that engages the whole class in mob programming [Zuill and Meadows 2016]. In the latter,
programming assignments that build on the example in class are given, and a continuous integration system
[Duvall et al. 2007] is set up to allow the students to submit their programs and know the grade instantly. As a
result, agile practices including unit testing, test-driven development,

The rest of this paper describes the experience we gained so far. Section 2 details the problem domain selection,
the decomposition into subproblems using the AND-OR graph, and the sequencing of the subproblems for
instruction. Section 3 describes how in-class coding evolved from instructor demonstrating to pair programming
and mob programming. Section 4 describes how continuous integration is included in homework submission loop.
Section 5 gives a summary.

2. PROBLEM DECOMPOSITION AND SEQUENCING

Both in pre-class preparation by instructor and in classroom problem solving and coding with students, a complex
programming problem is decomposed into subproblems, which are then properly sequenced. Decomposition takes
place in the first step of understanding the problem. Decomposition enables the instructor to grasp the whole
picture of the problem and to explore the learning opportunities pertaining to language features, agile practices,
and design concepts embedded in the problem. Sequencing takes place in the second step of devising a plan and
determines the order of the subproblems to tackle.

In this section, we shall illustrate problem decomposition with the AND-OR graph, a well-known construct for
problem solving in artificial intelligence [Bratko 2012]. In brief, a node in the AND-OR graph represents a problem
to solve. An AND-node represents a problem decomposed into a number subproblems, all of which must be solved
in order to solve the problem; an OR-node represents a problem decomposed into a number of subproblems,
among which only one must be solved. A terminal node represents a problem that is trivial enough to be solved
directly without further decomposition.

The problem of computing the perimeter and the area of a convex polygon is used as an example; the solution
is implemented in the C++ language.

Problem P . Compute the perimeter and area of a convex polygon given its vertices.

Problem P is the third in a series of related problems used in our object-oriented programming course [Cheng and
Chang 2015]. It is preceded by the problems of computing the inner product of two vectors and of solving a system

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 2

Table I. Agile practices included in the object-oriented programming course
Practice Purpose

iterative and incremental development solving a problem iteratively and incrementally
test-driven development driving design of classes and functions; defining “done coding a method"; enabling code improvement

refactoring changing implementation for improved design and cleaning code
pair/mob programming engaging students to think and code in solving problems in class
continuous integration making unit tests useful; encouraging multiple rounds of improvements in homework

of linear equations with the Gauss-Jordan method. By the time problem P is attempted, code as well as tests
have been written for the classes Vector and Matrix. We want the two classes and the tests to be reused, and
enhanced where necessary, in the solution of problem P . The domain of the problems is appropriate since the
students have already taken or are simultaneously taking a course in linear algebra. The selection ensures that the
problems to solve are within the students’ grasps while still being complex enough, thus providing a rich enough
context for students to learn the skills but without grappling with extra difficulties brought by an unfamiliar domain.

2.1 Problem decomposition

Problem P can be obviously decomposed into three conjunctive principal parts as shown in Figure 1: representation
of a convex polygon (problem P1), computation of the perimeter (problem P2), and computation of the area (problem
P3). Further analysis leads to the strategies for computing the perimeter and the area1 as illustrated in Figure 2.
In Figure 2(a), the perimeter is calculated by traversing the sides in the counter-clockwise (or clockwise) order,
accumulating the lengths of the sides along the way. The area is calculated by decomposing the convex polygons
into triangles and accumulating their areas. As illustrated by Figure 2(b), both computations depend on keeping
the vertices of the convex polygon correctly ordered.

Further decomposition of a subproblem is performed when appropriate. In Figure 1, problem P1 of representing
convex polygon is further decomposed into two subproblems, problem P11 of constructing a convex polygon
assuming that the given vertices are ordered correctly, and problem P12 of ensuring that the vertices are correctly
ordered before the polygon is created. In particular, solving problem P12 involves sorting the vertices in some way;
Figure 2(c) shows one such way. Here, the instructor could choose to implement a sorting function for ordering the
vertices; or, she/he could take this opportunity to introduce the sorting function from the standard template library.
The latter option is attractive since learning to use the application programming interface in the standard template
library is essential for programming in C++. Also, since sorting requires the use of a comparator, problem P12 of
ordering vertices is further decomposed into two conjunctive subproblems, the learning problem P121 of practicing
the use of std::sort and problem P122 for implementing the custom comparator for use by std::sort.

The learning problem P121 involves any of the three alternative ways of supplying a comparator: with a pointer
to a comparator function, with a comparator object that overloads the call operator taking two arguments for
comparison2, or with a lambda function3. Thus, P121 is an OR-node with three children P1211, P1212 and P1213,
but the instructor may want to solve all three learning problems, anyway, to familiarize the students with the three
ways of interoperating with std::sort. Once the students learn how to work with std::sort, problem P122 of
defining a comparator for sorting vertices is tackled. Note that only function object and lambda function work
because sorting the vertices according to Figure 2(c) depends on the centroid and the reference vector being
made available for each invocation of the comparator.

When all terminal nodes in the AND-OR graph are trivial enough, decomposition stops.

1http://htsicpp.blogspot.tw/2014/10/convex-polygon.html
2http://www.cplusplus.com/reference/algorithm/sort/
3http://www.cprogramming.com/c++11/c++11-lambda-closures.html

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 3

http://htsicpp.blogspot.tw/2014/10/convex-polygon.html
http://www.cplusplus.com/reference/algorithm/sort/
http://www.cprogramming.com/c++11/c++11-lambda-closures.html

P perimeter and area of convex polygon

P1 representing convex polygon

P11 constructor given vertices P12 ordering vertices

P121 �learn�

std::sort

P1211 �learn�

function
pointer

P1212 �learn�

function ob-
ject

P1213 �learn�

lambda func-
tion

P122 vertex comparator

P1221 centroid of n vectors P1222 angle of two vectors

P2 computing perimeter

P21 traversing sides

P3 computing area

P31 decomposing to triangles
vertices ordered vertices not ordered

Fig. 1. An AND-OR graph decomposition of the problem of computing the perimeter and the area of a convex polygon. The subtrees in black
and blue are the problems factored in the first and the second increments, respectively.

(a)

(b)

(c)

Fig. 2. (a) Computational strategies for calculating perimeter and area of a convex polygon. (b) For the strategies to work, vertices of the
convex polygon must be ordered correctly. (c) Ordering the vertices counter-clockwise around the centroid of the convex polygon with respect
to the reference vector R from the centroid to a designated vertex A.

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 4

2.2 Sequencing the subproblems

With the AND-OR graph of problem P obtained, the instructor next considers the order to proceed solving the
subproblems. There are abundant traversal strategies to choose from, e.g., solving the subproblems in the order
they are encountered with the depth-first traversal, beginning at the terminal nodes in a bottom-up style, and so on.

To emulate IID, subsets of the subproblems in the solution tree that constitute increments toward the final
solution of problem P are identified, where the outcome of an increment reveals a whole picture of the solution to
the problem as much as possible. In particular, a working program is ready for review at the end of each increment.
In Figure 1, subproblems P11, P2 and P3 are selected as the solution subtree for the first increment, which amounts
to solving the problem P assuming that the given vertices are correctly ordered. Note that P11 subsumes P1 with
the simplifying assumption. In the second increment, subproblem P12 of creating a convex polygon is solved
by first correctly ordering vertices (the subtree in blue). In so doing, the first increment can quickly generate a
working program that can be executed and reviewed, thus giving the students a whole picture in the solution of the
problem. The second increment tackles subproblem P12, which is algorithmic in nature and involves learning the
sorting functions in the standard template library. If problem P12 is tackled right after tackling problem P11 of the
representation of convex polygon, calculations of the perimeter and the area are held back, not allowing a working
program to be created as quickly as possible.

The sequencing in Figure 1 also makes a homework assignment as an extension of the code in class possible.
For example, in a fast-paced rendition of problem P, the first increment is done in class while the second increment
is assigned as homework.

3. IN-CLASS CODING WITH TEST-DRIVEN DEVELOPMENT AND MOB PROGRAMMING

In-class coding constitutes the largest portion of the classroom activities, taking place during the step carrying
out the plan. In a nutshell, the next task from the sequenced AND-OR graph is tackled. A task can be solving a
leaf-level subproblem, integrating solved subproblems of an internal node, or refactoring. Adopting TDD, for the
task on hand, a test case is created or an existing test case is used. Inside the test case, one test is implemented
at a time, and then the corresponding code to make all unit test cases pass is written. The process is repeated
until the the task is completed.

The instructor then moves on to the next task, and so on. At the end of every class meeting, the code is checked
in to a public repository (in the most recent case, github4). The students download the code for review and further
exploration.

Since in-class coding could potentially involve any of the students, a disciplined style of work is needed to
bring consistency. Over the last few years, our in-class coding has evolved from instructor demonstrating to pair
programming [Beck 2000] and then to mob programming [Zuill and Meadows 2016]. Before 2013, the instructor
wrote all the code in class. While the style is popular for online courses on programming, there is the question of
how much the students learned from watching demonstration. To borrow the Scrum phraseology, the students
played chickens instead of pigs during class coding: they are involved (they needed to do assignments which
use and extend the code written in class) but not committed (they did not code in class). Two shortcomings were
observed. First, since the students did not code in class, the instructor was missing out on learning in real-time the
impediments they had - whether it was a new language feature that is difficult to grasp or an old one that they
have learned but forgot about. Second, lacking action, some students easily zoned out or wandered off to other
distractions.

Beginning in 2014, in addition to instructor demonstrating coding, we invited the students - one at a time - to code
in class. Knowing that some students would have difficulties, not to overburden them to face the difficulties alone,
we used pair programming [Beck 2000]. The student volunteer played the role of driver to control the keyboard
and the mouse; the instructor played the navigator, giving instructions to the student driver. The instructor avoided

4https://github.com/yccheng66/oop2017s

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 5

https://github.com/yccheng66/oop2017s

micro-instructing the student driver. For example, an instruction such as “go through all elements of the container”
is preferred over spelling out code of a for-loop. All the other students observed while the coding was going on.
Pair programming allowed the instructor to learn, first hand, if the student driver had difficulties understanding
the instructions or turning the instructions into code. By asking the other students, the instructor could quickly
determine if the student driver’s capability was representative of the students in class. If so, the instructor should
quickly whip up additional simple but related exercises to bridge the gap. The student driver changed hands at the
completion of every task.

Beginning in 2016, student participation further evolved into a style close to mob programming [Zuill and
Meadows 2016]. In a way, this was anticipated. In pair programming, the instructor would ask the students for
their suggestions when the driver got stuck. So naturally, the interaction evolved into mob programming: while one
student played the driver role to control keyboard and mouse, all the other students played the role of navigators
who shouted out instructions to the driver for the coding task on hand. Free from navigating most of the time, the
instructor focused on facilitating the process. Often, there were competing alternatives from the student navigators.
The instructor could take the opportunity to help the students to explore the competing alternatives - implementing
some of them along the way - and help them pick the best one, or challenge the students to come up with a better
alternative when all of the alternatives were not good enough.

Here’s an example of mob programming taking place in class in the test-driven style. When an individual test of
a test case is implemented for the first time, it usually involves the following actions: preparing test data, creating
an object, setting the object into a correct state, calling a method of the object, and checking the result. In this
sequence, not only the constructor and the method to achieve the task is written, but also the supporting member
functions such as getters and setters are implemented only as needed. Figure 3 shows the one unit test written for
the task P11. The instructor could set the context by asking “what is an example of a minimal, non-degenerate
convex polygon?” The navigator would very likely answer "a triangle", and draw up a triangle with three vertices
(0, 0), (3, 0), and (3, 4) on the whiteboard. The navigator then guides the driver to write down the constructor and
well as the assertion for checking that the triangle is created with the desired data members. On the receiving
end, the driver prepares arrays and turns them into instances of Vector, a previously written class. Up to this
point, the driver compiles and runs the test under construction to make sure that all are correct. The driver then
pass the array of Vector with number of vertices to the constructor of Polygon. Compiling and failing because
the constructor has yet to be implemented, the driver is then guided to code up the class Polygon in the file
polygon.h with just the required constructor. After succeeding, the driver writes the assertion, compiling and
failing again because the getter method is not yet implemented. The driver is then guided to code up the getter,
compiles and runs the test until it passes.

Our experience shows that the TDD style process seldom became stuck when the navigator or the driver did
not know how to proceed; someone in the class would always come to the rescue. In any case, there’s always the
instructor, but the instructor should give hint to nudge the process into the right direction rather than give out an
answer straight away.

The process can change hand every time a test is completed, ensuring a broad participation. Usually, a test is
completed within a few minutes.

Interestingly, our surveys showed that the students would prefer more time allocated to student coding in class
even though they stated demonstration by instructor was helpful. Figure 4 shows the response of a recent survey
regarding in-class coding.

In doing pair programming or mob programming, it is important to source as many different student drivers as
possible. To this end, we began with volunteering and then gradually widened into targeted invitations. We have
observed that students who are better at coding tend to volunteer more frequently. Having drivers with good coding
skill could set the proceeding at a faster pace, but at the risk of frustrating other students.

We have tried mob programming on a medium size class (20+ students) and large size class (60+ students) in
two different physical instructional environments. While mob programming by novice programmers of this scale was

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 6

inc lude " . . / s rc / vec to r . h "
inc lude " . . / s rc / polygon . h "

TEST(PolygonTest , ConstructPolygon) {
double v1 [] = { 0 , 0 } ; / / des ign ing t e s t data
double v2 [] = { 3 , 0 } ;
double v3 [] = { 3 , 4 } ;
Vector a (v1 , 2) ;
Vector b (v2 , 2) ;
Vector c (v3 , 2) ;
Vector v e r t i c e s [] = { a , b , c } ;
Polygon p (ve r t i ces , 3) ; / / determin ing cons t ruc to r s igna tu re
ASSERT_EQ(3 , p . s ides ()) / / g e t t e r Polygon : : s ides () fo l l owed by asse r t i on
ASSERT_EQ(3 , p . ve r tex (2) . a t (1)) ; / / Vector (3 , 0) i s the second ver tex
ASSERT_EQ(0 , p . ve r tex (2) . a t (2)) ;

}

Fig. 3. Unit test code listing

unusual, it seemed to work reasonably well in both cases. The medium size class seemed to go more smoothly
than the large size class, though it is not yet clear to us whether class size played a role in affecting the result.

4. SUPPORTING AFTER-CLASS CODING WITH CONTINUOUS INTEGRATION

Students gained depth on language features, design, and agile practices by doing non-trivial homework assign-
ments. Based on the code and tests available from in-class coding, the instructor and the teaching assistants
worked together to prepare additional requirements to be met. In a nutshell, a program submitted was expected to
pass a given set of unit tests. We distinguished two types of tests: those that were disclosed to the students and
those that were not. The former guided the students to meet the minimum requirements; a submitted program that
passed the disclosed tests received a passing grade. However, to get a better grade, a program needed to pass as
many undisclosed tests as possible.

We designed a setup to handle homework submissions using the free repository gitlab5. Students were asked
to register for an account and create their individual private projects on gitlab. They then shared the private
git-generated SSH keys with the teaching assistants and set up web hooks from their gitlab accounts to the
Jenkins6 continuous integration server managed by the teaching assistants. The students submitted homework
by committing to their individual projects, which triggered the Jenkins server to retrieve the most recent commit,
compile and run all tests - including those undisclosed. The students checked the result of the build immediately
after to decide whether to continue improving for better grades. Thus, effectively, the Jenkins server executed a
remote build and provided instant feedback to the committer.

5. CONCLUSION

We have reported our experience in using problems of a sufficient complexity to carry out teaching language
features, design, and some agile practices including iterative and incremental development, unit testing, test-driven
development, pair/mob programming, and continuous integration in an object-oriented programming course. While
this requires more preparation by the teaching staff, we have seen encouraging feedbacks from the students. The
survey result of the fall 2014 OOP course offering of Computer Science and Software Engineering at Auburn

5https://about.gitlab.com/gitlab-com/
6https://jenkins.io/

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 7

https://about.gitlab.com/gitlab-com/
https://jenkins.io/

Fig. 4. Measurement of how helpful the students think of in-class coding in EECS OOP offering at Taipei Tech, spring 2016

University can be found in the appendix of reference [Cheng and Chang 2015]. Here, we have summarized below
some of the interesting results of the spring 2016 survey taken by students in EECS program at Taipei Tech7.

Regarding how confident the respondent was in handling the development of a program up to a thousand
lines of code, the percentage grew from 35% before taking OOP to 80% after. The result was in agreement with

7https://myweb.ntut.edu.tw/~yccheng/oopsurvey/2016s.pdf

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 8

https://myweb.ntut.edu.tw/~yccheng/oopsurvey/2016s.pdf

our expectation since the homework assignments were built on the examples in class, which easily exceeded a
thousand lines of code.

Regarding how helpful in-class coding was by instructor and by peers, the results showed that while the students
strongly agreed that instructor demonstration was helpful (50%), they would prefer to see more coding done by
the peers (65%); see Figure 4. We attributed the result to the students’ willingness to participate in pair/mob
programming.

Finally, regarding how challenging the OOP course was and how hard the respondent worked, 50% of the
respondents thought the course was challenging and 90% said that they worked hard for it.

Acknowledgments

We thank our shepherd Shang-Pin Ma for working closely with us to improve our initial submission. Also, we
thank the writing group participants Chun-An Lin, Chun-Feng Liao, Nien-Lin Hsueh, and Yung-Pin Cheng for
the numerous suggestions that further improved the paper. This research is supported in part by the grant
MOST-105-2221-E-027-076 of the Ministry of Science and Technology of Taiwan (Y. C. Cheng) and by Auburn
University (Kai Chang).

APPENDIX: Patterns in How To Solve It

For convenience of reference, patterns in the How To Solve It pattern language published in [Cheng 2014] and
[Cheng and Chang 2015] are reproduced as the problem-solution pairs.

A.1 How To Solve It

Problem: How do you teach object-oriented programming and engineering practices using reasonably complex
examples?

Solution: Prepare long running examples for use in class and guide the students to solving the programming
problem incrementally and iteratively in four steps: (1) understanding the problem, (2) devising a plan, (3) carrying
out the plan, and (4) looking back.

A.2 Understanding the Problem

Problem: Although the problem’s inputs, outputs and constraints are given, you don’t know how they are related to
each other. You know it would be difficult to solve the problem in its entirety by considering all inputs, outputs and
constraints simultaneously, thus you have decided to proceed with How To Solve It. What should you do to benefit
from this decision?

Solution: Break the original problem down into a number of smaller (sub-)problems if necessary. Identify the
interactions between individual problems. Put all problems in the problem backlog.

A.3 Devising a Plan

Problem: Having understood how inputs, outputs, and constraints are related in the selected problem, you are in a
good position to start the implementation work for solving the problem. However, you still need to consider other
aspects in addition to the implementation work, for example, what engineering practices to use and when to use
them?

Solution: Break the problem down into a number of tasks. Each task should be a unit of work you are comfortable
of handling and can be completed in a time frame ranging from a few minutes to a couple of hours. The tasks
should be as independent as can be. Distinguish tasks of four different categories: implementation, integration,
learning, and rework.

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 9

A.4 Carrying Out the Plan

Problem: Except for sequencing of tasks identified in Devising a Plan, the tasks are as independent as can be.
Therefore, you have a lot of freedom. How should you go about performing the tasks?

Solution: Perform one task at a time. Since the tasks are as independent as can be, you are free to perform them
in an order that works best for you. Even so, there may be some good ordering rules you should follow Selecting
and Sequencing.

A.5 Looking Back

Problem: Having solved the problem of the current round, you have made progress in solving the original problem.
What are the new possibilities that open up given this progress? Further, has the problem of the current round
been solved without hidden issues?

Solution: Inspect the working program as a programmer/reviewer. Ask the following questions: Is the code easy to
read? Is there code duplication? Are the tests easy to find and read? Is the code easy to modify? And so on. Run
the program as a user. Re-examine the problem as a whole, taking into consideration the problems that have been
solved so far.

A.6 Selecting and Sequencing

Problem: While working on the problem, there are often multiple items that attract your attention. You could have
more than one problem in the problem backlog and more than one task in the plan. How do you decide which
items to focus on next?

Solution: Prioritize among the items. The dependencies among the items have been identified in Understanding
the Problem (if the item is a problem) and Devising a Plan (if the item is a task).

REFERENCES

Joint Task Force IEEE-CS ACM. 2001. Computing Curricula 2001 Computer Science. Technical Report. New York, NY, USA. https:
//www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf Accessed: 2020-10-30.

Kent Beck. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Kent Beck. 2002. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Ivan Bratko. 2012. Prolog Programming for Artificial Intelligence, Fourth ed. Pearson education, Harlow, Essex, England.
Y. C. Cheng. 2014. Applying How To Solve It in Teaching Object-Oriented Programming and Engineering Practices. In AsianPLoP 2014: Proceed-

ings of the 2015 Asian Pattern Language of Programs Conference. Tokyo, Japan. https://hillside.net/asianplop/proceedings/
AsianPLoP2014/papers/18.pdf Accessed: 2020-10-30.

Y. C. Cheng and K. H. Chang. 2015. How To Solve It: Patterns for Learning and Teaching Object-Oriented Programming and Engineering
Practices. In AsianPLoP 2015: Proceedings of the 2015 Asian Pattern Language of Programs Conference. Tokyo, Japan. https:
//hillside.net/asianplop/proceedings/AsianPLoP2015/papers/6.pdf Accessed: 2020-10-30.

Paul Duvall, Stephen M. Matyas, and Andrew Glover. 2007. Continuous Integration: Improving Software Quality and Reducing Risk (The
Addison-Wesley Signature Series). Addison-Wesley Professional, Boston, MA, USA.

Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Craig Larman and Victor R. Basili. 2003. Iterative and Incremental Development: A Brief History. Computer 36, 6 (June 2003), 47–56.
DOI:http://dx.doi.org/10.1109/MC.2003.1204375

George Polya. 1957. How to solve it: A new aspect of mathematical method. Princeton University Press, Princeton, NJ, USA.
Ken Schwaber and Mike Beedle. 2001. Agile Software Development with Scrum (1st ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
Woody Zuill and Kevin Meadows. 2016. Mob Programming A Whole Team Approach. leanpub.com.

Received December 2019; revised February 2020; accepted October 2020

Copyright 2020 is held by the author(s). HILLSIDE 978-1-941652-15-2

Introducing Agile Practices in Object-Oriented Programming: Applying How To Solve It Patterns — Page 10

https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://hillside.net/asianplop/proceedings/AsianPLoP2014/papers/18.pdf
https://hillside.net/asianplop/proceedings/AsianPLoP2014/papers/18.pdf
https://hillside.net/asianplop/proceedings/AsianPLoP2015/papers/6.pdf
https://hillside.net/asianplop/proceedings/AsianPLoP2015/papers/6.pdf
http://dx.doi.org/10.1109/MC.2003.1204375

	Introduction
	Problem decomposition and sequencing
	Problem decomposition
	Sequencing the subproblems

	In-class coding with test-driven development and mob programming
	Supporting after-class coding with continuous integration
	Conclusion
	How To Solve It
	Understanding the Problem
	Devising a Plan
	Carrying Out the Plan
	Looking Back
	Selecting and Sequencing

