
Recipes to Reuse

Thomas Kühne (kuehne@isa.informatik.th-darmstadt.de)
Department of Computer Science, TU Darmstadt

Magdalenenstr. 11c, D-64289 Darmstadt

Abstract

We propose to use objects as closures for behavior
parameterization. In contrast to reuse by inheri-
tance, they realize reuse by composition. Closures
allow black-box behavior parameterization with
encapsulated components, promote function reuse,
allow calculations on demand, represent first-class
behavior, i.e., feature protocol-, undo-, and per-
sistence mechanisms, and can represent “business-
transactions”. In this paper, we present closures as
the object-oriented design pattern Recipe. In con-
trast to the Command pattern, Recipe establishes
a useful collaboration with iterators. We show in
particular how to use generic recipes with iterators
in order to allow multi-dispatching operations on
heterogeneous data structures.

1 Introduction

Smalltalk programmers use closures every day.
They are used to parameterize behavior. For in-
stance, the action to be performed during an it-
eration on a collection’s elements is passed to the
iteration method as a closure.

This paper explains the concept of closures and
makes it accessible to any object-oriented language
by describing it as the design pattern [13] Recipe.

In Smalltalk, closures are called blocks [14].
A block allows to inject behavior into an object.
When a block is received and subsequently exe-
cuted by an object, we can think of it as executing
a new method in the object. There are vital dif-
ferences, though: First, in contrast to a constant
method, we can even inject freshly created blocks.
This allows us to exchange and extend object be-
havior at run time. Second, encapsulation is fully
preserved. So, blocks can use the public object
interface only, but both object and block are pro-
tected against implementation changes.

Recent Smalltalk implementations implement
blocks as lexical closures. What does this mean? A
closure may refer to variables which are neither de-
clared as parameters nor as local variables. These
are called free variables. A lexical closure binds
the values of these variables in its creation envi-
ronment. What does this static binding buy us? It
enables us to not only inject behavior into objects,
but also data! Hence, the closure code can operate
on two data spaces while these remain completely
isolated from each other.

Up to now, we described closures with the
same functionality as available in functional lan-
guages [12]. There is more to object-oriented clo-
sures: Imperative closures can produce side-effects
and carry state. As a result, they can be used for
parameterization of side-effects and to accumulate
results internally.

The pattern description in section 2 will give
applications for the remarkable properties listed
above. While we use behavior refinement with in-
heritance as a negative pattern to motivate Recipes
in section 2.3, parameterization is clearly not the
only problem solved by Recipes. We illustrate fur-
ther applicabilities and consequences with exam-
ples of their own. Section 3 summarizes Recipes as
a powerful abstraction for software reuse.

2 Design Pattern: Recipe

2.1 Intent

Encapsulate a procedure or function with an ob-
ject. This is useful for parameterization of algo-
rithms, partial parameterization of functions, lazy
evaluation, lifting methods to first-class citizens,
and for separating functions from data.

1

Appeared in Proceedings of EuroPLoP, Irsee, July 1996

2.2 Also Known As

Lexical Closure [5], Functor [7], Agent [16],
Agent-Object [23], Functionoid [6], Functoid [25],
Function-Object [37, 24].

2.3 Motivation

Behavior parameterization occurs in almost every
program. Iterators are a good example. Consider
a collection of books. We might be interested in

• whether a given title is in the collection,

• a list of all books written by one author,

• the date of the oldest book, etc.

All these operations need to traverse the collection
structure. In fact, all operations can use the same
traversal algorithm. The operations differ, how-
ever, in the test they apply to books and the sort
of result they produce. Thus we decompose the
operations into a common traversal algorithm and
a set of functions that perform tests and produce
results.

Concerning the traversal algorithm, we may
provide an abstraction called external iterator. It
will yield the elements of the collection one by one
so we have to write a loop in order to access all
elements. Yet, we expect to use the traversal al-
gorithm many times, which will result in many ex-
plicitly written loops. Moreover, writing the loops
is error-prone, since it is easy to use an incorrect
exit condition or to forget to step to the next ele-
ment (see also “Write a Loop Once” [28] and the
discussion in the Iterator pattern [13]).

Consequently, we provide one more level of ab-
straction with an internal iterator. Given a func-
tion, it will apply the function to all elements in
the collection.

Now, how do we compose an internal iterator
and a function to be applied? We also want the
books to be sortable according to various criteria,
like author, title, and date and we want to choose
the criterion at run time. In order to avoid switch
statements we may use dynamic binding of itera-
tors. The actual iteration method of an ITERATOR

class is a Template Method [13], which depends on
an abstract function method. The implementation
for the abstract function method, and thus the spe-
cific function to be applied to the elements, is given

in descendants of ITERATOR [27, 30, 28]. Compos-
ing traversal algorithm and functions then works
through dynamic binding of the abstract function
method. Selecting one of several functions corre-
sponds to selecting one of the existing ITERATOR

subclasses.

In this case, however, the application of an
object-oriented design, using inheritance and dy-
namic binding, has some severe drawbacks:

• Static combination. All possible combinations
of iteration schemes and functions are fixed at
compile time. Neither is it possible to create
a new function at run time.

• Combinatorial explosion. Sometimes it is use-
ful to select not just one, but a combination
of functions or tests and functions. With sub-
classing, it is not feasible to provide any in-
dependent combination, since it leads to an
exponentially growing number of subclasses.

• Subclass proliferation. Each new function de-
mands a new subclass of ITERATOR. The name
space for classes is cluttered by many con-
crete ITERATOR subclasses. We may combine
all functions in one subclass using repeated
inheritance [29], but this only makes things
worse. First, it is non-local design to lump all
functions in one class. Second, we have to ap-
ply heavy renaming for iteration schemes and
functions in the subclass; any combination of
iteration scheme and function must be given a
distinct name. Third, we lose the ability to use
dynamic binding for the selection of a func-
tion. Since all functions belong to one class,
we no longer can uniformly send a message to
a variable of type abstract-ITERATOR and use
concrete ITERATOR instances to select the ac-
tual combination of iteration and function.

• Awkward Reuse. Reusing the functions for
other iteration schemes or different purposes
is practically impossible if they are defined in
ITERATOR subclasses. The solution is to ex-
tract the functions in classes of their own. But
now multiple inheritance is necessary in order
to inherit from ITERATOR and to inherit from
a particular function. At least multiple tests
or functions can be “mixed-in”, but scope res-
olution is needed, and each function combina-
tion results in a combinator subclass.

2

• Poor encapsulation. Composing an iteration
scheme and a function with inheritance joins
the name spaces of both. In fact, the multiple
inheritance solution causes iterator, function,
and combinator class to share the same name-
space. Implementation changes to either of
the classes can easily invalidate the other. An
interface between super- and subclasses, as the
private parts in C++ [11], alleviates the prob-
lem considerably.

• Unrestricted flexibility. Creating a desig-
nated class for the combination of an iteration
scheme and a function opens up the possibility
of overriding the iteration scheme for partic-
ular actions. An iteration used to count the
elements in a collection could be replaced by
just returning the value of an attribute count.

Unfortunately, this advantage for the designer
of a library is a disadvantage for the user of
a library. The user may rely on properties of
the original iteration scheme. If the iteration
function not only counts the elements, but in
addition produces some side-effect, the side-
effects will not be executed in the optimized
version described above. Pre- and postcondi-
tions [31] can help to enforce behavioral iden-
tity between iteration schemes, but problems
like the above are hard to cover and checking
contracts at run time boils down to testing, as
opposed to rigorous proofing.

• Identity changes. In order to change the itera-
tion function a different iterator instance must
be used. While one would seldom need to rely
on an unchanging iterator instance, this prop-
erty is inhibiting in other settings of parame-
terization. For instance, it might be manda-
tory to keep the same instance of a cook, while
being able to process different recipes.

• Obligatory Source-code. Some languages en-
force iteration classes to be available as source
code. Otherwise it is not possible to derive
subclasses. Hence, vendors do not have the
option to sell pre-compiled library code only.

We can get rid of all these disadvantages if we
sacrifice the ability to adapt iteration schemes for
particular functions. We accomplish this by using
higher-order functions, well-known from functional

programming [4] and as blocks from Smalltalk. In-
stead of subclassing the iterator, we pass a function
to be applied to the elements. We pass a Recipe
that describes what to do with the elements. In-
stead of an “is-a”, we establish a “uses-a” rela-
tionship. Actually, we call this special usage of
a parameter for behavior parameterization “takes-
a” [24]. Since we usually can not pass methods
as functions and many object-oriented languages
(e.g., C++, Eiffel) do not feature blocks, we pass
an object representing the function [5, 7, 24]. The
object’s interface makes it possible to receive argu-
ments and to return a result. As the object repre-
sents a way of doing things we call it Recipe. Tech-
nically Recipes are closures, i.e., they can store any
parameters or variables from their creation envi-
ronment in order to use them even beyond the ex-
istence of environments.

Why is it useful to pass closures instead of plain
functions, i.e., what is the use of being able to re-
member the value of free variables? Remember
that we also want to sort books according to ti-
tles. We certainly need a function that compares
the titles of two books. Now we can partially ap-
ply this function to one book we look for. We thus
create a Recipe that only takes one more book and
produces a certain result, depending on whether or
not the titles match. Given this function and an
iterator, we can realize the first library operation
mentioned at the beginning of this section.

This is quite pleasing, since we reused a sorting
predicate for a totally different purpose. The it-
eration does not have to worry about the number
of parameters of recipes. For instance, in order to
collect a list of books whose dates are in a given
interval, we can use a function with three parame-
ters. The first two specify the interval, the third is
a book, and the function checks whether the book’s
date is in the interval. When the interval data is
supplied in advance, we can use the resulting recipe
for a standard library iteration.

2.4 Applicability

Recipes are free functions. They are not mem-
bers of a particular data abstraction. They resem-
ble so-called design-objects [30], like iterator ob-
jects, event handler, and Commands, which sim-
ilarly constitute entities of their own right. The
separation of functions from data can be beneficial
in several ways:

3

• Parameterization. Recipes are a good can-
didate whenever general behavior can be
adapted to special behavior. Use Recipe if one
of the following aspects is desirable:

Dynamics. In addition to run time selection
of existing Recipes, new Recipes can also be
created at run time. A user may dynami-
cally compose a multi-media Recipe from text-
, graphic-, and sound-producing Recipes.

Orthogonality. Having more than one be-
havior parameter creates the problem of han-
dling all possible combinations of the individ-
ual cases. Recipes can freely be mixed without
interfering and without the need for combina-
tor classes.

Reuse. Recipes can be used by any adaptable
algorithm that knows their interface. Even
if the algorithm was not designed to supply
the Recipe with necessary parameters, it is
often possible to supply them to the Recipe
in advance. For instance, consider an er-
ror reporter, parameterized by output for-
mat Recipes, only intended for generating text
messages. We can upgrade the reporter to cre-
ate a graphical alert-box by passing a Recipe
that already received information about box-
size, colors, etc.

Identity. When the behavior of an ob-
ject should change while keeping its identity,
Recipes can be used as behavior parameters to
the object. In contrast, encoding behavior in
subclasses calls for something like Smalltalk’s
“become:” method in order to achieve the
same effect.

• Uniform invocation. Imposing a Recipe’s in-
terface on related operations makes it pos-
sible to uniformly invoke them. Instead of
switching to different method names (e.g., ed-
itor commands), we invoke evaluate on an
abstract Recipe and rely on dynamic bind-
ing [31, 13]. Consequently, when we add new
operations, we do not need to change the event
handler. If specific evaluation names (e.g., ex-
ecute, evaluate, solve) are considered impor-
tant, then they can be provided as aliases.

• First-Class methods. Recipes make meth-
ods amenable to persistent command logging,
command histories for undoing, network dis-

tribution of commands, etc. Like Commands,
Recipes can provide an undo method, which
will use information in the Recipe’s state to
undo operations [31, 13]. A perfect candi-
date for first-class methods are so-called “busi-
ness transactions” [7]. Often the functions
are the stable concepts of a system and repre-
sent good maintainance spots, in order to cope
with changing functionality. Instead of being
a well-defined operation on one single object,
transactions are “an orchestration of objects
working together toward a common goal” [7].
When transactions do not naturally fit into ex-
isting data abstractions, Recipes can lift them
to first-class status while providing a uniform
interface.

• Monolithic Algorithms. When a data struc-
ture is stable, but the operations on it of-
ten change, it is not a good idea to use the
standard object-oriented method to distribute
the operations over the object types involved.
For instance, each change or addition of an
algorithm on abstract syntax trees (such as
typeCheck, compile) demands a change in all
node-object types. In addition, it is not pos-
sible to exchange the operations at run time.

If we turn the algorithm into a Recipe, we
must use a generic Recipe (see subsection
Multi-dispatch) to dispatch on the node types,
but in analogy to the Strategy pattern [13],

– the algorithm logic is localized,

– Recipe’s state can accumulate results,
and

– we can dynamically choose an algorithm.

• Small interfaces. When an object potentially
supports many extrinsic operations (e.g.,
CAD-objects may support different viewing
methods, cost calculations, etc.), but its inter-
face preferably should contain the basic, in-
trinsic functions only (e.g., geometric data),
then the functionality can be implemented in
Recipes that take the object as an argument.

• Method simplification. If a large method,
containing many lines of code, can not be
split into smaller, more simple methods, be-
cause the code heavily uses temporary vari-
ables for communication, then the method can

4

be transformed into a Recipe. The main trans-
formation is to replace the temporary vari-
ables with Recipe attributes. As a result, the
method can be split up into more manage-
able sub-methods, without passing parameters
between inter-method invocations, since com-
munication still can take place via Recipe at-
tributes. The main computation method (e.g.,
evaluate) simply puts the pieces together, it-
self being as clear as documentation [3].

• Call-by-need Semantics. One aspect of call-
by-need is to calculate a result only once, no
matter how many times the calculation is re-
quested. Recipes can do this, but class meth-
ods can also perform this using a technique
called memoization. Class methods, however,
can not realize the second aspect of call-by-
need which is to postpone a calculation until
the result is actually needed. If the result is
never needed, this pays off in run time effi-
ciency. A Recipe represents a calculation that
is performed only if someone is in need of the
result.

Note that lazy evaluation enables infinite data
structures and supports modularization by de-
coupling data generation from data consump-
tion [17].

• Multi-dispatch. Sometimes an operation de-
pends on more than one argument type. For
instance, adding two numbers works differ-
ently for various pairs of integers, reals, and
complex numbers. Simulating multi-dispatch
with standard single dispatch [18], where only
the type of the receiver objects is taken into
account, results in many additional methods
(like add Integer, add real). The dispatch-
ing code is thus distributed over all involved
classes. If, as in the above example, the opera-
tion must cope with a symmetric type relation
(e.g., real+int & int+real), each class has
to know all other argument types. As a result,
the classes involved are unnecessarily coupled.

A generic1 Recipe removes the dispatching
code from the argument types and concen-
trates it in one place. It uses run time type
identification to select the correct code for
a given combination of argument types. As

1Named after CLOS’ [10] generic functions.

such, it is not simply an overloaded Recipe,
which would statically resolve the types.

Unfortunately, the necessary switch state-
ments on argument types are sensitive to the
introduction of new types2. Yet, in the case
of single-dispatch simulation, new dispatching
methods (e.g., add complex) are necessary as
well.

Generic Recipes may use coercions to re-
duce the possible number of combinations [7],
and employ partial parameterization to avoid
nested type switches: Upon receipt of an ar-
gument, the generic Recipe uses one type
switch statement to create a corresponding
new generic Recipe that will handle the rest
of the arguments.

2.5 Structure

Client Invoker

Application(argument)

ConcreteFunction

Function

Application(argument)
Constructor(initial args)

collected arguments

2.6 Participants

• Recipe

– declares an interface for application.

• ConcreteRecipe (e.g., “printBook”)

– implements a procedure or function.

– carries state for free variables and results.

• Client (e.g., Application)

– creates a ConcreteRecipe.

– possibly applies it to arguments.

– calls an invoker method, passing Con-
creteRecipe.

• Invoker (e.g., Iterator)

– applies a ConcreteRecipe to more argu-
ments or simply evaluates it.

2A more flexible approach is to use dynamically ex-
tendible dictionaries that associate types with code.

5

2.7 Collaborations

• A client creates a Recipe. Free variables are
bound in the client’s environment.

• An invoker takes the Recipe as a parameter.

• The invoker applies the Recipe to arguments.

• The invoker gets a result from the Recipe and
both invoker and client may optionally request
the Recipe for further (accumulated) results.

InvokerMethod(aFunction)

new Function(initial args)

aClient

Application

Parameterization

Creation

anInvokeraFunction

Application(arg)

2.8 Consequences

• Abstraction. Recipes abstract from func-
tion pointers and in particular from pointers
to class methods. Instead of the C++code:
aFilter.*(aFilter.current)(t), we can
write aFilter(t) [7].

• Simplicity. Recipes do not introduce inheri-
tance relationships and do not create spurious
combinator classes.

• Explicitness. The code cook.prepare(fish)

is easy to understand. When Recipes are
wired into COOK subclasses, cook.prepare de-
pends on the actual cook type. Clever vari-
able names (e.g., fish cook.prepare) often
are not an option, e.g., cook.prepare(fish),
followed by cook.prepare(desert).

• Compositionality. As Macro-Commands [13],
Recipes can be dynamically composed to
form a sequence of actions. Unlike Macro-
Commands, Recipes may form a calculation
pipeline by forwarding intermediate results
to the next processing Recipe. A compos-
ite Recipe can also apply several component
Recipes in parallel, producing multiple results
at once.

• Encapsulation. As Recipes establish client
relationships only, they are protected from
implementation changes to algorithms that
use them. Likewise, the implementation of

Recipes can change without invalidating the
algorithms. Hence, Recipes allow so-called
black-box reuse [22] and help to advance reuse
by inheritance to reuse by composition [21].

• Security. A client of an adaptable algorithm
can be sure not to change the algorithm se-
mantics. It is impossible to be given an opti-
mized version which does not fully comply to
the original semantics (see section 2.3).

• Flexibility.

– A statement like iterator.map(c) is
polymorphic in three ways:

1. iterator may internally reference
any data structure that conforms to
a particular interface.

2. The actual instance of iterator de-
termines the iteration strategy (e.g.,
pre- or post-order traversal on trees).

3. The actual instance of Recipe c de-
termines the iteration function.

– It is not possible to automatically op-
timize algorithms for specific functions.
Nevertheless, one more level of indirec-
tion can explicitly construct combina-
tions of functions and optimized algo-
rithms.

– When a function has been extracted from
a data structure, it is no longer possi-
ble to simply redefine it in future deriva-
tions. One way to account for this is
to make the extracted function a generic
Recipe that will discriminate between
data structure variations.

• Separation. Partial parameterization allows to
separate concerns between arguments.

– The ability to carry data (e.g., alert
box size) enables Recipes to operate on
data from outside an (error-reporter) al-
gorithm as well as (error text) data from
inside the algorithm. The data from out-
side the algorithm can be local to the al-
gorithm caller. There is no need to com-
municate via global data. Since Recipes
can combine local data spaces, they allow
decoupling data spaces from each other
while still supporting communication.

6

– Generic Recipes separate type dispatch-
ing code from data. Even different as-
pects of dispatching can be separated.
For instance, a state transition function,
applied to a state, will yield a function
that maps inputs to new states (the prin-
ciple of pattern State [13]). Type and/or
value of a state can be used to decide be-
tween resulting mappings.

• Reuse. Recipe’s impact on reuse is twofold:

First, adaptable algorithms become more
reusable because they do not need to know
about additional parameters for Recipes.

Second, Recipes are multi-purpose:

– Recipes are not bound to a particu-
lar adaptable algorithm, e.g., comparing
book-titles is useful for sorting and for
membership testing in collections.

– Since Recipes are so easy to compose,
it is feasible to form useful composite
Recipes. For instance, we may combine
a test- with an action-Recipe, in order to
perform conditional actions on elements
of a collection. Then, we do not neces-
sarily need to provide special iterations
as “do if”. [30].

– One Recipe with n parameters actually
represents n Recipes and one value. The
first Recipe has n parameters. The sec-
ond, created by applying the first to an
argument, has n − 1 parameters, and so
on, until the last Recipe is applied to an
argument and produces the result.

An example from physics shows the use-
ful functions which can be created from
the gravitational force function [26]:

Grav law m1 r m2 = G m1 m2

r2

forceearth = Grav law massearth
forcesurface = forceearth radiusearth
forcemy = forcesurface massmy

• Iteration. Recipes suggest the use of internal,
rather than external, iterators. Internal itera-
tors avoid explicit state and avoid reoccurring
explicit control loops. Often external iterators
are promoted to be more flexible. It is said to
be practically impossible to compare two data

structures with an internal iterator [13]. How-
ever, we simply propose to extend an iterator
to accept not just one, but n data structures.
A transfold 3-method may access the first, sec-
ond, etc., elements of all data structures si-
multaneously. When used to compare data
structures, it can stop the iteration as soon as
a mismatch has been found.

Since Recipes do not rely on inheritance, it is
possible to make iteration a method of data
structures. This facilitates the use of iterators
and allows to redefine iteration algorithms for
special data structures. Moreover, the data
structure (e.g., DICTIONARY) then does not
need to export methods (e.g., first, next) in
order to allow iterators to access its elements.

• Efficiency.

– A Recipe may calculate partial results
from arguments and pass these to a result
Recipe. Hence, the partial result is com-
puted only once, no matter how many
times the resulting Recipe will be ap-
plied to different arguments in the future,
e.g., forcesurface = forceearth costly calc,
and then forcemy = forcesurface massmy ;
forceyour = forcesurface massyour .

– Passing client parameters to Recipes can
be more inefficient than to, e.g., directly
access internal attributes of an iterator
superclass. In principle this could be
tackled by compiler optimizations [35].

– An overhead exists in creating and call-
ing a Recipe, instead of just invoking
a method. This suggests only to use
Recipes when truly needed.

– Care should be taken not to unnecessar-
ily keep references to unevaluated calcu-
lations, i.e., Recipes. Otherwise, the oc-
cupied space can not be reclaimed.

– Finally, Recipes access the public inter-
face of their servers only. This represents
positive decoupling, but can be more in-
efficient than unrestricted access. How-
ever, selective export (Eiffel) or friends
(C++), allow to trade in efficiency for
safety.

3Its functional definition shall be: transfold f a g ≡

(foldr f a) ◦ (map g) ◦ trans

7

2.9 Implementation

• C++allows to overload the "()" operator,
which gives a nice syntax for Recipe applica-
tion [7]. Eiffel offers the infix operator "@".

• In order to provide true static binding,
Recipes must copy their arguments. Other-
wise, their behavior will depend on side-effects
on their arguments. In some cases, however,
this may be desirable. The Recipe then plays
the role of a future variable, which is passed
to a client before all data needed to compute
the result is available. Long after the Recipe
has been passed to the client, it can be sup-
plied with the necessary arguments by produc-
ing side-effects on bound values.

• How shall the initially free variables of a
Recipe be bound? When closures are emu-
lated with objects, the free variables can not
be bound implicitly at the place of creation as
usual. One way out is to forbid free variables
and demand that they be parameters. This
results in a uniform treatment of parameters
and free variables. Alternatively, one can tie
the binding of the free variables to the creation
of the Recipe (e.g., C++constructor or Eiffel
creation method). This saves implement-
ing the intermediate classes, which may result
from partial application of free variables. Of
course, both variants can coexist.

Note that explicit binding is equivalent to im-
plicit binding. In fact, explicit binding does
not force the Recipe to use the same names for
free variables, as the environment prescribes.
Ergo, a Recipe can be used in various envi-
ronments without the need to make the free
variables names match the environment.

• In addition to standard application, Recipes
may provide keyword parameters. Accord-
ingly, parameters can be passed in any or-
der. This makes sense, in order to cre-
ate useful abstractions. If the definition of
the gravitational force in the example of sec-
tion 2.8 had been Grav law m1 m2 r =
G m1 m2

r2 , (note the different order of pa-
rameters) we can not define: forcesurface =
Grav law massearth radiusearth .
With keyword parameters we can write:
f:=Grav law.m1(e-mass).r(e-radius);

• Commonly a function is evaluated after it has
received its last argument. Yet, Recipe appli-
cation and evaluation can be separated by cor-
responding methods apply and evaluate. As
a result, the client, invoking evaluate, does
not have to know about the last argument.
In addition, the supplier of the last argument
does not need to enforce the calculation of the
result, which is crucial for lazy evaluation.

In order to enable automatic evaluation on
full argument supply while still supporting the
above separation, it is possible to evaluate on
the last parameter and allow a kind of dummy
parameter (called unit in ML [38]).

• Recipes do not break the encapsulation of the
objects they are passed to. If a particular
Recipe is closely coupled to a specific object
type, then declaring the Recipe as the object’s
friend, i.e., using selective export, allows effi-
cient access to internal data nevertheless. As
a result the object can keep its public interface
to other clients to a minimum.

• Two extremes to implement partial parame-
terization exist. The less verbose is to always
keep the same instance of Recipe and assign
incoming arguments to corresponding internal
attributes. This will cause trouble when the
same Recipe is used by several clients. As the
application of a Recipe does not create a new
instance, the clients will get confused at the
shared state. Furthermore, static typing be-
comes impossible.

If each application of a Recipe produces a new
instance of a different type, then static typing
is enabled again and no unwanted sharing of
Recipe state can occur. Unfortunately, this
forces us to write at least n − 1 classes for a
Recipe with n parameters.

• Generic Recipes must use run time type iden-
tification to deduce the type of actual ar-
guments. There are many ways to account
for this: type-case statement (Sather [33]),
typeid (C++, 3.0 specification), reverse as-
signment attempt (Eiffel [31]).

• How shall we accumulate the results of an it-
eration? A functional programmer would im-
plement all of the three library operations (see
section 2.3) as a fold over a list of books.

8

The result type of fold is determined by the
function supplied. It will return whatever the
function returns (e.g., Boolean, list of Books,
Date of book).

Imperative Recipes, can alternatively accumu-
late the result in their local state. Thus, we
can replace functional folds with imperative
maps (i.e., standard iterators) and the results
will be available by request to the Recipe.
Composite Recipes especially are suited to cal-
culate more than one result during a traversal.

If possible, however, the functional version is
preferred since it works without side-effects.
Furthermore, non-strict operators such as
“or” allow to exit a fold if the result can be de-
termined without looking at the whole struc-
ture.

• An abstract Recipe class must support the
type interfaces of all descendants. Eiffel may
covariantly redefine argument application, but
C++demands the abstract class to be a tem-
plate. Otherwise, all parameters of a Recipe
must have the same type. Läufer proposes a
solution using the Bridge pattern [13], which
also covers memory management in C++ [25].

• Languages without garbage collection are less
suited to support upward-funargs4 [1] and de-
layed calculations. Constructors and Destruc-
tors only work for Recipes with lifetimes de-
termined by environment lifetimes.

2.10 Known Uses

Apart from the uncountable uses of Recipes in
functional programming and e.g., Scheme [1], there
are many truly object-oriented uses: Smalltalk [14]
features blocks as Recipes with implicit binding of
free variables. Sather provides Recipes as bound
routines [33]. The Eiffel Booch Components use
Recipes for searching, sorting, transforming and fil-
tering of containers [16]. The Standard Template
Library, which was adopted as part of the stan-
dard C++library, uses Recipes to inline operations
for arithmetic, logic, and comparison [37].

4Functions returned as results. These do not have a de-
termined lifetime and must remember their environment.

2.11 Related Patterns

2.11.1 Categorization

• Objectifier: A Recipe, like Objectifier, does
not represent a concrete object from the real
world [39], though one can reasonably take
business-transactions for real. Recipe is very
similar to Objectifier, in that it objectifies be-
havior and takes parameters during initializa-
tion and call. Per contra, clients “have-an”
Objectifier, while clients “take-a” Recipe. The
latter is a uses, not a has-a relationship.

• Command: A Recipe which does not take
any arguments after creation and produces
side-effects only boils down to the Command
pattern [13]. One key aspect of Command
is to decouple an invoker from a target ob-
ject. Recipes typically do not delegate func-
tionality. Rather then delegating behavior
to server objects they implement it them-
selves. So, Recipes normally do not work with
side-effects, but return their computation as
an argument-application result. Nevertheless,
Recipes also can be used for client/server sepa-
ration, i.e., as Call-back functions. In addition
to Command, invokers are then able to pass
additional information to Recipes by supply-
ing arguments.

• Visitor: Data structures need to know about
Visitors because they have to provide an
Accept method [13]. Sometimes this is un-
desirable because of the so-introduced mutual
dependency between data structures and Vis-
itors. When the data structure is not avail-
able as source code, it is even impossible to
add the Accept method. A combination of It-
erator and generic Recipe avoids these draw-
backs, while providing the same functionality
as Visitor:

– It frees the data structures from needing
to provide the operations themselves.

– It differentiates between types in the data
structure. The generic Recipe chooses
the appropriate code for each combina-
tion of operation and element type.

– It allows heterogeneous interfaces on the
data elements. Once the generic Recipe
has done the dispatch, the exact element

9

type is known and access to the full in-
terface is possible.

– It concentrates operations at one place
and provides a local state for them. Be-
tween invocations, Recipes can hold in-
termediate results, e.g., variable environ-
ments for a type-checking algorithm on
abstract syntax nodes.

A generic Recipe can be realized as a type dis-
patcher, parameterized with a set of Recipes
that actually perform an operation. This al-
lows reuse of the dispatching part for various
operations. Of course, the type switches are
sensitive to the addition of new structure ob-
jects. However, if the structure is unstable,
Visitor is not recommended either [13].

• State/Strategy: Recipe, State [13], and Strat-
egy [13] are concerned with encapsulating be-
havior. A decision between them can be based
on concerns such as:

– Who is responsible for changing the vari-
able part of an algorithm?

The State pattern manages the change
of variability autonomously. Recipes are
explicitly chosen by the client. Strate-
gies are chosen by the client, but inde-
pendently of operation requests.

– Is it feasible to impose the same interface
on all variations?

If the available Strategies range from sim-
ple to complex, the abstract Strategy
must support the maximum parameter
interface [13]. Recipes avoid this by par-
tial parameterization.

– Does the combination of common and
variable part constitute a useful concept?

The State pattern conceptually repre-
sents a monolithic finite state machine, so
the combination of standard- and state-
dependent behavior makes sense indeed.
Strategies are a permanent part of gen-
eral behavior and thus provide default
behavior. Here, the combination acts as
a built-in bookkeeping for the selection
of the variable part. Recipes take part in
the “takes-a” relation. A Recipe and its
receiver are only temporarily combined in
order to accomplish a task.

2.11.2 Collaboration

• Iterator: Recipes work well in collaboration
with Iterator [13], since they allow the use
of data from inside (elements) and outside
the collection (previous Recipe arguments).
Gamma et al. do not identify a collaboration
between Command and Iterator, which is due
to the fact that Command does not take ar-
guments.

• Chain of Responsibility: Pairs of test- (check
responsibility) and action recipes can be put
into a Chain of Responsibility in order to
separate the determination of responsibilities
from the execution of tasks. Recipe allows
to replace the inheritance relationship be-
tween Links and Handlers [13] with object-
composition.

2.11.3 Implementation

• Composite: One way to uniformly access stan-
dard and composed Recipes is to use the
Composite pattern [13]. Composite Recipes
forward argument-application to its compo-
nent Recipes. A tuple-Composite applies all
Recipes in parallel to the same argument
and thus represents a multi-result tuple. A
pipeline-Composite applies each Recipe to the
result of its predecessor and thus forms a cal-
culation pipeline.

• Prototype: Often it is useful to distribute
the accumulated state of a Recipe to different
clients. For instance, a Recipe used as a com-
mand for deleting text can capture the infor-
mation whether to ask for confirmation or not.
However, when placed on a history list for un-
doing, different Recipes must maintain differ-
ent pointers to the deleted text. Consequently,
Prototype can be used to clone pre-configured
Recipes which should not share their state any
further.

• Chain of Responsibility: Instead of using a
fixed switch statement for argument types, a
generic Recipe can employ a Chain of Respon-
sibility. Each member of the chain checks
whether it can handle the actual argument
type. This enables a highly dynamic and flex-
ible exchange of the dispatch strategy.

10

3 Conclusion

The closure concept is a basic design technique
that solves many problems. This makes its de-
scription as a single pattern difficult. Neverthe-
less, we choose to present all applicabilities and
problems that can be solved, rather than restrict-
ing ourselves to a traditional problem, context, and
solution triple. We used just one aspect of Recipes
for their motivation and supplied illustrating ex-
amples for other aspects individually.

The power of closures makes it an ideal candi-
date for a language construct. Actually, it is one of
only four abstractions supported by Smalltalk [2].
Likewise, Beta’s [27] patterns are often used as
genuine closures. Functional closures, i.e., higher-
order functions, even allow to base an entire
paradigm on them. Functional programming heav-
ily relies on general list processing functions, which
can be specialized for various purposes. Here,
behavior parameterization (“takes-a”) is a funda-
mental technique for software reuse. Functional
programming can even outperform object-oriented
programming in terms of reuse [15]. This particu-
lar result can partly be attributed to the heavy use
of library functions for intermediate list data struc-
tures. This suggests that object-oriented programs
can also increase metric reuse factors by using in-
ternal iterators. Our proposed transfold operator
combined with respective Recipes yields many use-
ful operations like map, filter, sum, length.

As presented here, Recipes support both down-
ward-funargs and upward-funargs [1]. While the
former constitutes behavior parameterization, the
latter occurs at partial applications and delayed
calculations. With respect to behavior parameter-
ization, Recipes and inheritance are not redundant
concepts [24]. We clearly documented the added
run time flexibility and decoupling properties of
Recipes.

While true closures bind their free variables im-
plicitly, our object-oriented version requires ex-
plicit binding. Breuel shows how to still achieve
implicit binding by nested class definitions [5]. We
have seen, however, that explicit binding does not
lose anything essential, but on the contrary decou-
ples the Recipe from its creating environment.

Naturally, Recipe shares many properties with
Command and Strategy. They abstract from func-
tion pointers, support composition, allow to undo
operations, and achieve client/server decoupling.

In addition, Recipes:

• accept arguments, which, e.g., enables them to
be used for iteration. However, the complete
number of arguments is effectively hidden to
adaptable algorithms, which allows for trans-
parent behavior extensions.

• allow partial parameterization. One Recipe
definition actually introduces as many Recipes
as the number of its arguments. Run time par-
tially parameterized Recipes can be regarded
as dynamically created functions [9].

• capture data from their creation environ-
ment and previous arguments. Hence, data
providers can be separated from each other.
A Recipe allows to combine local data from
environments, even beyond their lifetime.

• may dispatch on argument values and/or
types. Similar to the State pattern, input-
discriminating switches can be distributed to
individual generic Recipes, rather then being
nested at one place.

• can be composed sequentially as well as in par-
allel. Sequential composition establishes a cal-
culation pipeline. Parallel composition calcu-
lates tuples of results, e.g., during a traversal.

• provide local state. Imperative Recipes may
hold state for algorithms or may accumulate
results during iterations. Hence, Recipes can
compute, e.g., traversal results without the
need to modify the result type of the traversal
algorithm.

In summary, Recipes hide the number of both ar-
guments and results to clients. This can be viewed
as an aid to modularization, just like classes in
object-oriented design [34] or higher-order func-
tions and lazy evaluation in functional program-
ming [17]. Accordingly, aggregation (“has-a”), in-
heritance (“is-a”), and behavior parameterization
(“takes-a”) should be equally well-known to de-
signers. “Takes-a” realizes object composition,
as opposed to breaking encapsulation with inheri-
tance [36]. It is therefore a means to reach the goal
of component oriented software [20, 32]. In com-
bination, inheritance and Recipe allow for flexible
prototyping as well as safe black-box composition.

As well as other patterns, Recipe can raise
the level of design discussions. The term Recipe

11

should immediately communicate the concepts of
environment capturing, partial parameterization,
first-class methods, black-box composition, and so
on. Also, the term generic Recipe is worth be-
ing adopted in a designer’s vocabulary. We clearly
pointed out the ability of a generic Recipe to lift
Iterator to the functionality of Visitor.

Another advantage of pattern-aided design is to
work above the level of particular programming
languages. Some patterns, including Recipe, even
abstract from the implementation paradigm. In-
deed, Recipes re-introduce some flavor of struc-
tured analysis and design to object-orientation.
This is definitely useful. While adding new ob-
jects to a system is caught by an object-oriented
decomposition, adding functionality often is bet-
ter handled by extending functional abstractions.
The control-objects in Jacobson’s “use-case driven
approach” represent such points of functional ex-
tendibility [19]. Concerning the optimal balance
between free functions and object-oriented decom-
position, further research is necessary [8]. In
any case, withstanding the temptation to imple-
ment parameterization with inheritance, but using
higher-order functions means introducing part of
the functional paradigm into the object-oriented
paradigm. No longer can we choose one technique
from one paradigm only in order to solve a prob-
lem. We must carefully choose between paradigms
first. While this may appear an extra complica-
tion to a novice, it is an essential enrichment to
the expert.

References

[1] H. Abelson and G. J. Sussman. Structure and
Interpretation of Computer Programs. The MIT
Press, Cambridge, MA, London, 6. edition, 1987.

[2] Micheal Beaudouin-Lafon. Object-oriented Lan-
guages. Chapman and Hall, 1994.

[3] Kent Beck. Method object. Patterns mailing list
Digest, 96(26), April 1996.

[4] Richard Bird and Philip Wadler. Introduction to
Functional Programming. C.A.R. Hoare Series.
Prentice Hall International, 1988.

[5] Thomas M. Breuel. Lexical closures for C++. In
C++ Conf. Proc., pages 293–304, October 1988.

[6] Derek Coleman and et al. Object-oriented develop-
ment: The Fusion Method. Prentice Hall, 1994.

[7] James O. Coplien. Advanced C++: Programming
Styles and Idioms. Addison-Wesley, 1992.

[8] James O. Coplien. Multi-paradigm design and im-
plementation. Summer School on Object Orienta-
tion in Tampere, Finland, AT&T Bell Laborato-
ries, Naperville, Illinois, USA, August 1995.

[9] Laurent Dami. Software Composition: Towards an
Integration of Functional and Object-Oriented Ap-
proaches. PhD thesis, Uni. of Geneva, April 1994.

[10] Linda G. DeMichiel and Richard P. Gabriel. The
common lisp object system: An overview. In
J. Bezivin, J-M. Hullot, P. Cointe, and H. Lieber-
mann, editors, Proceedings ECOOP ’87, LNCS
276, pages 151–170. Springer Verlag, June 1987.

[11] M. Ellis and B. Stroustrup. The Annotated C++

Reference Manual. Addison-Wesley, 1990.

[12] Anthony J. Field and Peter G. Harrison. Func-
tional Programming. Addison-Wesley, 1988.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Object-Orient-
ed Software Architecture. Addison-Wesley, 1994.

[14] Adele Goldberg and David Robson. Smalltalk-80:
The Language and its Implementation. Addison-
Wesley, Reading, MA, 1983.

[15] R. Harrison, L. G. Samaraweera, M. R. Dobie, and
P. H. Lewis. Comparing programming paradigms:
An evaluation of functional and object-oriented
progams. Technical Report SO171BJ, University
of Southhampton, Dept. of Electronincs and Com-
puter Science, UK, August 1994.

[16] Aaron Hillegass. The design of the eiffel booch
components. Eiffel Outlook, 3(3):20–21, December
1993.

[17] John Hughes. Why functional programming mat-
ters. In David A. Turner, editor, Research Topics
in Functional Programming, pages 17–42. Addison-
Wesley, August 1987.

[18] Daniel H. H. Ingalls. A simple technique for
handling multiple polymorphism. In Proceedings
OOPSLA ’86, pages 347–349, November 1986.

[19] Ivar Jacobson and et al. Object-Oriented Software
Engineering: A use case driven approach. Addison-
Wesley, 4. edition, 1994.

[20] Mehdi Jazayeri. Component programming – a
fresh look at software components. In Proceedings
of the 5th European Software Engineering Confer-
ence, Sitges, Spain, September 1995.

[21] Ralph E. Johnson. How to develop frameworks. In
ECOOP ’94 Tutorial Documentation, July 1994.

12

[22] Ralph E. Johnson and Brian Foote. Designing
reusable classes. Journal of Object-Oriented Pro-
gramming, 1(2):22–35, June 1988.

[23] Thomas Kühne. Higher order objects in pure
object-oriented languages. ACM SIGPLAN No-
tices, 29(7):15–20, July 1994.

[24] Thomas Kühne. Parameterization versus inheri-
tance. In C. Mingins and B. Meyer, editors, Tech-
nology of Object-Oriented Languages and Systems:
TOOLS 15, pages 235–245, Prentice Hall, 1995.

[25] Konstantin Läufer. A framework for higher-order
functions in C++. In Proc. Conf. Object-Oriented
Technologies (COOTS), Monterey, CA, June 1995.

[26] Gary T. Leavens. Fields in physics are like cur-
ried functions or Physics for functional program-
mers. Technical Report TR #94-06b, Department
of Computer Science, Iowa State University, 229
Atanasoff Hall, May 1994.

[27] Ole L. Madsen, Kristen Nygaard, and Birger
Möller-Pedersen. Object-Oriented Programming
in the BETA Programming Language. Addison-
Wesley and ACM Press, 1993.

[28] Robert Martin. Discovering patterns in existing
applications. In James O. Coplien and Douglas C.
Schmidt, editors, Pattern Languages of Program
Design, pages 365–393. Addison-Wesley, 1994.

[29] B. Meyer. Eiffel the language. Prentice Hall, 1992.

[30] B. Meyer. Reusable Software. Prentice Hall, 1994.

[31] Bertrand Meyer. Object-Oriented Software Con-
struction. Prentice Hall, NJ, 1988.

[32] Oscar Nierstrasz and Theo Dirk Meijler. Research
directions in software composition. ACM Comput-
ing Surveys, 27(2):262–264, June 1995.

[33] Stephen M. Omohundro. The Sather 1.0 specifi-
cation. Technical report, International Computer
Science Institute, Berkeley, December 1994.

[34] D. Parnas. On the criteria to be used in decom-
posing systems into modules. Communications of
the ACM, 15:1053–1058, 1972.

[35] Peter Sestoft. Replacing function parameters by
global variables. Diku, University of Copenhagen,
October 1988.

[36] Alan Snyder. Encapsulation and inheritance in
object-oriented programming languages. Proceed-
ings OOPSLA ’86, 21(11):38–45, November 1986.

[37] A. Stepanov and M. Lee. The standard tem-
plate library. ISO Programming Language C++
Project. Doc. No. X3J16/94-0095, WG21/NO482,
May 1994.

[38] Ake Wikström. Functional Programming Using
Standard ML. International Series in Computer
Science. Prentice Hall, 1987.

[39] Walter Zimmer. Relationships between design
patterns. In James O. Coplien and Douglas C.
Schmidt, editors, Pattern Languages of Program
Design, pages 345–364. Addison-Wesley, 1994.

13

