An Approach to Algorithm Design by Patterns

Javier Galve-Francés' Julio Garcia-Martin®
Jose M. Burgos-Ortiz Miguel Sutil-Martin
{jgalve, juliog, jmburgos}@fi.upm.es

Universidad Politécnica de Madrid?

Abstract

This paper proposes two behavioral patterns called DIVIDE-&-CONQUER and
BACKTRACKING to facilitate the development of algorithms based upon algorithm design
techniques. The common informal seudocode that specifies the solving strategy for a general
algorithm design technique is enhanced to provide a helpful guide to develop particular algorithms by

following the divide and conquer and the backtracking design techniques.

Keywords
Algorithms, Algorithm Design Techniques, Design Patterns for Algorithm Design

1. Introduction

Algorithm design is a creative activity that is not subject to recipes. The existence of
many important problems for which no efficient algorithms are known is an evidence of this
fact. In practice, the space of choices to develop algorithms is enormous. For this reason, and
in opposition to the development from scratch, the task of solving algorithmic problems can
be broached applying more abstract design techniques. These techniques offer common
solving strategies for different problems [4]. A design technique is often expressed in
pseudocode as a template that can be particularized for concrete problems. Let us name this

template algorithm schemas.

The basic idea for algorithm schemas consist on identifying structural similarities
among algorithms that solve different problems. These similarities can be characterized in

terms of some abstract components and their relationships. In this situation, the algorithm

! This work has been partially supported by the Spanish PRONTIC project TIC95-0967-C02-01.
% This work has been partially supported by the Spanish PRONTIC project TIC96-1012-C02-02.

schema is understood to be a behavioral template that specifies the common procedural
abstraction acting over the abstract components. Moreover, the schema encloses an abstract
algorithm described by abstract operations provided by the components. As the schema is
specified by abstracting the common properties of the problems and ignoring its non-relevant

details, a concrete algorithm can be seen as a concrete instance of the schema.

Traditionally, algorithm schemas have been seen as informal specifications that guide
the designs. As a consequence, this traditional approach leads to obtain implementations
where the “flavor” of the schema is lost or unrecognizable. In opposition to this informal
approach, a more formal approach allows the introduction of a higher-degree of clarity to the
descriptions, making them more precise and reusable [3]. More rigorous specifications are a
very valuable reference for the programmer, as well as provide a support to analyze the
correctness and efficiency of algorithms. This proposal tries to enhance the traditional role
played by the algorithm schemas in order to provide a more systematic approach. Design
patterns are the description language used for this goal. This way, we model algorithm
schemas as well-established patterns, whose components encapsulate the abstract components

underlying the schema.

The current paper presents two patterns to model two well-known examples of
algorithm design schemas; we have called them the DIVIDE-&-CONQUER pattern and the
BACKTRACKING pattern. Both patterns are organized in a two-level structure, which
emphasizes the separation between the abstract schema and concrete algorithms. At the
highest-level, each pattern is defined by the tuple of components:
AbstractProblem/Schema/AbstractSolution. A concrete algorithm based upon one of the

schemas is obtained by deriving subclasses from AbstractProblem and AbstractSolution.

2. The DIVIDE-&-CONQUER Pattern*

2.1. Intent

The intent of the DIVIDE-&-CONQUER pattern is to provide algorithm-based
solutions for a characterized set of problems by following a divide-and-conquer strategy. This

strategy is based on breaking one large problem into several smaller problems easier to be

3LSIIS Department, Facultad de informatica, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain.
* We present the DIVIDE-&-CONQUER and BACKTRACKING patterns separately at different sections.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

solved. Organized as a two-level structure (abstract/concrete), the pattern separates the
problem domain from the solution domain. Moreover, it defines the complete skeleton of the
divide-and-conquer strategy, deferring to subclasses the steps which determine a concrete

algorithm.

2.2. Motivation

One of the most powerful techniques for solving problems is to break them down into smaller,
more easily solved pieces. Smaller problems are less overwhelming, and they permit us to focus on
details that are lost when we are studying the entire problem. For example, whenever we can break the
problem into smaller instances of the same type of problem, a recursive algorithm starts becoming

apparent.

Consider the classic sorting algorithm Mergesort. Let us suppose we take a pile P with
n elements to sort and split (operation Divide) them into piles A and B, each with half the

elements. For example:
P=1{121914382 20 10} A={1219 1,4} B ={8 220,10}

P'={1242810 12 19 20} A'={1,412,19} B'={228 10 20}

After sorting both piles, it is easy to combine (operation Combine) the two sorted piles
(at the example, A' and B'). To merge A' and B', note that the smallest item must sit at the
left of one of the two piles. Once identified, the smallest element (operation IsSmall) can be
removed (operation DirectSolution), and the second smallest item will again be a top one of

the two piles. Repeating this operation merges the two sorted piles (the pile solution P').

Mergesort is a classic divide-and-conquer algorithm. Whenever we can break one
large problem into two smaller problems, we are ahead of one of these cases because the
smaller problems are easier. The point is taking advantage of the two partial solutions to put
together a solution for the full problem. Obviously, not every problem can be so neatly

decomposed.

2.3. Applicability

Use the DIVIDE&CONQUER pattern in the following situations:
e To develop algorithm-based solutions for problems that can be decomposed following the

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

divide and conquer strategy. The implementation of the invariant parts of the strategy are

provided for free, leaving up to subclasses the implementation of the parts that can vary.

e To carry out proofs about correctness and efficiency of algorithm based solutions. The
pattern can behave as a framework of algorithmic analysis. The clear separation between
the common abstract-level and concrete problem/solution domains can help to get better-
structured and data-independent algorithms, more suitable to be reused or analyzed. Given
an algorithm as a DIVIDE-&-CONQUER pattern, its implementation is distributed along
the components of the pattern. Then, it is possible to establish local analysis, firstly, and

afterwards to reassemble these local results in a unique general result.

2.4. Structure

The structure of the DIVIDE-&-CONQUER pattern is shown on figure 1.

AbstractProblem AbstractSolution

Schema

IsSmall () _ — | DirectSolution {)

. Solve()

Divide () Combine ()
Problem _ Problem Solution Solucion
MergeSort Binary Search MergeSort Binary Search
IsSmall () IsSmall () DirectSolution () DirectSolution ()
Divide () Divide () Combine () Combine ()

Figure 1. DIVIDE-& CONQUER (structure). Organized as a two-level structure. On the
top, the pattern describes the abstract components for the divide-and-conquer schema
and their relationships. On the bottom, the subclasses determining each concrete
algorithm.

2.5. Participants

e AbstractProblem. It abstracts the problem domain in the divide-and-conquer schema. It

encapsulates two abstract operations:

e IsSmall, which determines whether the problem is small enough or not to be solved
directly (i.e., it is a basic-case), and

e Divide, which splits the problem into smaller subproblems.

e AbstractSolution. It abstracts the solution domain in the divide-and-conquer schema. It

encapsulates two abstract operations:

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

e DirectSolution, which returns an answer for a basic-case problem, and

e Combine, which combines partial solutions to get a solution of the full problem.

DACSchema. It provides the strategy - the abstract algorithm- underlying the divide-and-
conquer schema. The operation Solve is completely defined by combining operations from
ProblemDomain and SolutionDomain. The semantics of Selve (i.e., its implementation)

determines the D&C strategy expressing how the problem is solved.

ConcreteProblem. It provides concrete implementations for the primitive operations
defined in AbstractProblem. These implementations determine the meaning of the

operations for a concrete problem domain.

ConcreteSolution. It provides concrete implementations for the primitive operations
defined in AbstractSolution. These implementations determine the meaning of the

operations for a concrete solution domain.

2.6. Collaborations

ConcreteProblem and ConcreteSolution rely on DACSchema to implement concrete algorithms by

following a divide and conquer schema (see Figure 2).

2.7. Consequences

The DIVIDE-&-CONQUER pattern defines an ABSTRACT FACTORY of algorithms. It
allows the definition of new algorithms based upon the divide-and-conquer design
schema. The pattern's structure strongly establishes which components define the abstract-
level and how are the relationships among them. Besides, the relationships with concrete

components of the pattern (subclasses) are established.

The pattern can be used to build algorithm libraries, in which the common behavior

supplied by the algorithm design schemas can be reused.

The patterns stress the so called "Hollywood principle” [5], due to the fact that the

operation Solve fully provides the engine for the schema.

The pattern infers an error-free strategy to develop algorithms. The operation Solve in the

Schema calls only those operations provided by AbstractProblem and AbstractSolution.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

However, to implement these operations, other operations defined by ConcreteProblem and

ConcreteSolution -or by other components- can be used.

o The patterns provide a systematic approach that simplifies the development of algorithms.
In both patterns, the abstract operations defined in the AbstractProblem and AbstractSolution
must be overridden by the concrete operations in the ConcreteProblem and ConcreteSolution
components. To reuse the schemas effectively, subclass developers must understand

which operations are defined for overriding.

Concrete

. DAC _Schema DAC_AbstractProblem DAC_AbstractSolution
Algorithm — — = ra

Construct a DAC_Schema for DAC_Schema (DAC_ConcreteProblgm)
a given DAC_ConcreteProblem

Solve the schema by following

Solve (DAC_ConcreteSolution)
a DAC_ConcreteSolution ———p»

IsSmall

Basic case in DAC_ConcreteProblem —

Direct solution for DAC_ConcreteSolution DirectSolution >

General case for the DAC_ConcreteProblem. Divide
Construct one DAC_Schema each
new DAC_SubProblem

Combine

v

Combine DAC_ConcreteSolutions

Return the DAC_ConcreteSolution

Figure 2. DIVIDE-&-CONQUER (collaborations). One ConcreteProblem and one
ConcreteSolution construct a concrete algorithm as one instance of the pattern. Then,
the operation Solve solves the algorithm by following the divide-and-conquer strategy.

2.8. Implementation

Let us note the following implementation issues:

1. Implementation-driven guidelines. All operations involve in the DIVIDE-&-

CONQUER pattern are defined by AbstractProblem and AbstractSolution.

2. Primitive operations. Operations defined in AbstractProblem and AbstractSolution are
primitive. Then, they must be overridden. For example, they could be declared as pure
virtual (in C++ conventions) or as part of an interface (Java conventions). The

operation Solve must be never overridden.

3. Naming conventions. It is possible to identify by its name what is the intended meaning

of each operation defined in AbstractProblem and AbstractSolution classes.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

2.9. Sample Code

The DIVIDE-&-CONQUER pattern can be used to model the classical MergeSort
algorithm [6]. The classes MergeSort Problem and MergeSort Solution are derived from the
interfaces AbstractProblem and AbstractSolution, respectively. Both MergeSort_Problem and
MergeSort_Solution are implemented as collections of numbers (not necessarily arrays). Their

operations are described below:

1. AbstractProblem and AbstractSolution are implemented as interfaces of abstract operations:

interface AbstractProblem {
public boolean SmallEnough () ;
public List Divide () ;
¥
interface AbstractSolution {
public AbstractSolution Combine (List solutions) ;
public AbstractSolution DirectSolution (AbstractProblem P) ;

}

2. The operation Solve provides the abstract algorithm to the pattern. It can be specified
abstractly, not giving concrete details about how it is implemented. Moreover, different

implementations of Solve are possible. Below, it is described a Java implementation.

class DACSchema {
private AbstractProblem theProblem;
private AbstractSolution theSolution;
DACSchema (AbstractProblem prob, AbstractSolution sol) {
theProblem = prob;
theSolution = sol;

public AbstractSolution Solve () {
if (theProblem.SmallEnough ())
return theSolution.DirectSolution (theProblem);
else {
List subProblems = theProblem.Divide ();
List subSolutions = new List();
while (! subProblems.IsEmpty()) {
DACSchema newDAC = new DACSchema (subProblems.Head(), theSolution);
subSolutions.Add (newDAC.Solve());
subProblems = subProblems.Rest();
¥
return theSolution.Combine (subSolutions);
}/EAf*/
} /* Solve */
} /* DACSchema */

3. In the class MergeSort_Problem, the operation IsSmall determines if a collection of numbers
is small enough. To do this, it is determined if its size is one. On the contrary, the

operation Divide splits the collection into two sub-collections of lower size.

class MergeSort_Problem implements AbstractProblem {
MergeSort_Problem (...) { ... }
public boolean SmallEnough () {
return data.length == 1;
}
public List Divide () { ...}
}
}

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

1. In the class MergeSort_Solution, the operation DirectSolution returns a collection as the
result for the basic-case (i.e., if the operation IsSmall succeeded). In this case, the direct
solution is the collection itself. On the other hand, given two sub-collections (sub-
solutions), the operation Combine returns the sorted sum collection (Merge operation [6]).

class MergeSort_Solution implements AbstractSolution {

MergeSort_Solution (...) { ... }

public MergeSort_Solution

DirectSolution (MergeSort Problem p) {...}

public MergeSort_Solution Combine (List solutions) {...}

}

5. In the class MergeSort_Solution, the operation DirectSolution returns a collection as the
result for the basic-case (i.e., if the operation IsSmall succeeded). In this case, the direct
solution is the collection itself. On the other hand, given two sub-collections (sub-

solutions), the operation Combine returns the sorted sum collection (Merge operation [6]).

2.10. Known Uses

We have used this pattern for sorting problems (mergesort, quicksort), searching
(binary search) and matrix multiplication (Strassen algorithm). In sorting and searching,
array structures have been used, but the pattern does not constrain solutions to a particular

kind of data structures.

3. The BACKTRACKING Pattern

3.1. Intent

The intent of the BACKTRACKING pattern is to provide algorithm-based solutions
for a characterized set of problems by following a backtracking strategy. This strategy is
based on looking for a systematic way to go through all the possible configurations of a space.
These configurations may be all possible arrangements of objects (permutations) or all
possible ways of building a collection of them (subsets). Organized as a two-level structure
(abstract/concrete), the pattern separates the problem domain from the solution domain.
Moreover, it defines the complete skeleton of the backtracking strategy, deferring to

subclasses the steps which determine a concrete algorithm.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

3.2. Motivation

Backtracking is a systematic way to go through all the possible configurations of a
space. These configurations may be all possible arrangements of objects (permutations) or all
possible ways of building a collection of them (subsets). Other applications may demand
enumerating all spanning trees of a graph, all paths between two vertices, or all possible ways
to partition the vertices into color classes. What these problems have in common is that we
must generate each one of the possible configurations exactly once. Avoiding both repetitions
and missing configurations means that we must define a systematic generation order among

the possible configurations.

Consider the problem of calculate the set of permutations for a given set A = {1, ..., n}.
To design a suitable state space for representing permutations, we start by counting them.
There are n distinct choices (partial solution sets) for the value of the first element of a
permutation of the set A, (i.e., S;={1} S;={2}.. Sp={n}). Once we have fixed this
value of Aj, there are n-1 candidates remaining for the second position, since we can have

any value except Ay (repetitions are forbidden).

CANDIDATES ={2, 3,..,n} Sp={1,2} S3={1,3} .. Sm={1,n}

Repeating this argument yields a total of n! distinct permutations.

The search procedure works by growing solutions one element at a time. At each step
in the search, we will have constructed a partial solution with elements fixed for the first k
elements of the set A. From this partial solution, we will construct the set of possible
candidates for the (k+1)th position. We will then try to extend the partial solution by adding
the next element from CANDIDATES. So long as the extension yields a longer partial
solution, we continue to try to extend it. However, at some point, the candidates set might be

empty, meaning that there is no legal way to extend the current partial solution. If so, we must

AbstractProblem

IsSolution ()
IsvValid () Solve()

Schema AbstractSolution

>———| Convert ()

Extend ()

Combine ()

Problem Problem i i

. Solution lut
EightQueens Permutations EightQueens Pefx?nlllt:t)il:ms
IsSolution () IsSolution ()
IsValid () IsValid () Conve.rl () Conve.rt 0
Extend () Extend () Combine () Combine ()

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

Figure 3. BACKTRACKING pattern (structure). Organized as a two-level structure. On
the top, the pattern describes the abstract components for the backtracking schema and
their relationships. On the bottom, the subclasses determining each concrete algorithm.

backtrack, and replace the last item in the solution value, with the next candidate. It is this

backtracking step that gives the strategy its name.

3.3. Applicability

Use the BACKTRACKING pattern in the following situations:

e To develop algorithm-based solutions for problems can be decomposed following the
backtracking strategy. The implementation of the invariant parts of the strategy are

provided for free, leaving up to subclasses the implementation of the parts that can vary.

e To carry out proofs about correctness and efficiency of algorithm based solutions. The
pattern can behave as a framework of algorithmic analysis. The clear separation between
the common abstract-level and concrete problem/solution domains can help to get better-
structured and data-independent algorithms, more suitable to be reused or analyzed. Given
an algorithm as a BACKTRACKING pattern, its implementation is distributed along the
components of the pattern. Then, it is possible to establish local analysis, firstly, and

afterwards to reassemble these local results in a unique general result.

3.4. Structure

The structure of BACKTRACKING pattern is shown on figure 3.

3.5. Participants

e AbstractProblem. It abstracts the problem domain in the backtracking schema. It

encapsulates two abstract operations:

e IsSolution, which determines whether the problem is just a solution or not,
e IsValid, which determines if the problem should be still considered, and

e Extend, which constructs the next subset of problems to be considered.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

e AbstractSolution. It abstracts the solution domain in the backtracking schema. It

encapsulates two abstract operations:

Concrete

. B_Schema B_AbstractProblem B_AbstractSolution
Algorithm — — —
Construct a B_Schema for B_Schema (B_ConcreieProblem)
a given B_ConcreteProblem
Solve the schema by following Solve (8_ConcreteSolution)
a B_ConcreteSolution —_—
IsSolution
Basic case in B_ConcreteProblem %
Direct solution for DAC_ConcreteSolution Convert >
General case for the B_ConcreteProblem. Extend
Construct new B_SubProblem-candidates o
e . IsValid
Check if this is a valid B_ConcreteProblem e 1

Combine [
Combine B_ConcreteSolutions »
Return the B_ConcreteSolution . B ConereteSolutions

Figure 4. BACKTRACKING pattern (collaborations). One ConcreteProblem and one
ConcreteSolution construct a concrete algorithm as one instance of the pattern. Then,
the operation Solve solves the algorithm by following the backtracking strategy.

e Convert, which converts a basic-case problem in a solution, and

e Combine, which combines partial solutions to get a solution of the full problem.

e BSchema. It provides the strategy - the abstract algorithm- underlying the backtracking
schema. The operation Solve is completely defined by combining operations from
ProblemDomain and SolutionDomain. The semantics of Solve (i.e., its implementation)

determines the backtracking strategy expressing how the problem is concretely solved.

e ConcreteProblem. It provides concrete implementations for the primitive operations
defined in AbstractProblem. These implementations determine the meaning of the

operations for a concrete problem domain.

e ConcreteSolution. It provides concrete implementations for the primitive operations
defined in AbstractSolution. These implementations determine the meaning of the

operations for a concrete solution domain.

3.6. Collaborations

e ConcreteProblem and ConcreteSolution rely on BSchema to implement concrete algorithms by

following the backtracking schema (see Figure 4).

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

3.7. Consequences

e The BACKTRACKING pattern defines an ABSTRACT FACTORY of algorithms. It allows
the definition of new algorithms based upon the backtracking design strategy. The
pattern's structure strongly establishes which components define the abstract-level and
how are the relationships among them. Besides, the relationships with concrete

components of the pattern (subclasses) are established.

e The pattern can be used to build algorithm libraries, in which the common behavior

supplied by the algorithm design schemas can be reused.

o The patterns stress the so called "Hollywood principle” [8], due to the fact that the

operation Solve fully provides the engine for the schema.

o The pattern infers an error-free strategy to develop algorithms. The operation Selve in the
BSchema calls only those operations provided by the AbstractProblem and AbstractSolution.
However, to implement these operations, other operations defined by ConcreteProblem and

ConcreteSolution -or by other components- can be used.

o The patterns provide a systematic approach that simplifies the development of algorithms.
In both patterns, the abstract operations defined in the AbstractProblem and AbstractSolution
must be overridden by the concrete operations in the ConcreteProblem and ConcreteSolution
components. To reuse the schemas effectively, subclass developers must understand

which operations are defined for overriding.

3.8. Implementation

Let us note the following implementation issues:

1. Hard implementation guidelines. All operations need by the BACKTRACKING pattern

are provided by AbstractProblem and AbstractSolution.

2. Primitive operations. Operations defined in AbstractProblem and AbstractSolution are
primitive. Then, they must be overridden. For example, they could be declared as pure
virtual (in C++ conventions) or as part of an interface (Java conventions). The operation

Solve must never be overridden.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

3. Naming conventions. It is possible to identify by its name what is the intended meaning of

each operation defined in AbstractProblem and AbstractSolution classes.

3.9. Sample Code

The BACKTRACKING pattern can be used to model the classical 8-Queens problem
[6]. The classes Queens_Problem and Queens_Solution are derived from the interfaces

AbstractProblem and AbstractSolution, respectively. Their operations are described below:

1. Abstract Problem and Abstract Solution are implemented as interfaces of abstract operations:

interface AbstractProblem { interface AbstractSolution {
public boolean IsSolution (); public List Concat (List solutions);
public List Extend (); public AbstractSolution Convert ();
public boolean IsValid (); }

2. The operation Solve provides the abstract algorithm to the pattern. It can be specified
abstractly, not giving concrete details about how it is implemented. Moreover, different

implementations of Selve are possible. Below, it is described a Java implementation.

class BSchema {
private AbstractProblem theProblem;
private AbstractSolution theSolution;
BSchema (AbstractProblem problem, AbstractSolution solution) {
theProblem = problem;
theSolution = solution;

}
public List Solve () {
if (the_problem.IsSolution()){
return theSolution.Convert(theProblem);
}
else {
List extendedProblems = theProblem.Extend ();
while (lextendedProblems.IsEmpty()) {
Problem problem = extendedProblems.head();
if (problem.IsValid()) {
BSchema newBack = new BSchema (problem, theSolution);
theSolution = theSolution.concat (newBack.Solve());
F A
extendedProblems = extendedProblems.tail();
} /* while */
return the _solution;
} /* else */
} /* Solve method */
} /* BSchema */

3.10. Known Uses

We have used the backtracking pattern for the subsets problem, the permutations

problem and for the spanning trees of a graph.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

4. Related Patterns

Although the Archetype pattern [1, 2] keeps quite similarities with the present
proposal, it is highly focused on parallel processing and does not provide a general schema

for designing algorithms.

The central axis for our two abstract schemas is a variant of the Template Method
pattern [5], where the operation Solve plays the role of abstract operation (in both patterns). As
said before, the pattern can be seen as an Abstract Factory of algorithms [5], where its
abstract components are prefixed in advance, until they are refined later with concrete
Problem/Solution components. On the other hand, the operation Solve can be defined in such
a manner that the AbstractSolution component could act as an Adapter, in order to obtain a

different presentation for the solutions provided by an algorithm.

5. Conclusions & Future Work

The main advantage provided by DIVIDE-&-CONQUER and BACKTRACKING patterns is
the ability of developing new algorithms using well-founded design algorithm strategies
already known and tested. As a fact, the literature on algorithms is plenty of well-known

algorithms that are specified like these.

Recently, we have been worked on new patterns for other strategies (such as linear
recursion, dynamic programming, probabilistic algorithms, etc.). Moreover, we have applied
the two presented patterns to model a very representative set of examples. These examples
cover a wide range of families of algorithms (such as sorting, searching, traversals, etc ..)

acting over different data structures (arrays, matrixes, graphs, etc.).

Acknowledgements

Thanks to EuroPloP anonymous reviewers for their valuable comments and

suggestions.

Bibliography

[1] Ainsworth, P. Multimedia Interactive Environment Using Program Archetypes: Divide-and-

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

Congquer, Technical Report CS-TR-93-13, Caltech University, 1993.
[2] Dyson, P. Patterns for Abstract Design, Technical Report, Univ.of Essex, England, 1997.

[3] Chandy K.M. Concurrent Program Archetypes, International Parallel Processing (IPPS'94)
Symposium, 1994.

[4] Galve J., Gonzalez J.C, Sanchez A., Velazquez, JJA ALGORITMICA: Diseiio y Andlisis de
Algoritmos Funcionales e Imperativos, RA-MA Ed., 1993.

[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Elements of
reusable object-oriented software. Addison-Wesley, Reading, MA, 1995.

[6] R E.Horowitz, S. Sahni: Fundamentals of Computer Algorithms, Computer Science Press, 1978.

[7] Steven S. Skiena: The Algorithm Design Manual, Springer-Verlag, New York, 1997.

Copyright © 1998 by Javier Galve-Francés, Julio Garcia-Martin, Jose Manuel Burgos-Ortiz and Miguel Sutil-Martin.

