
Support Reengineering by Type Inference
– A Reengineering Pattern∗

Markus Bauer

bauer@fzi.de

September 19, 2002

Abstract

Reengineering patterns describe and discuss techniques that support reengineering tasks. They help a soft-
ware engineer to understand the structure and the inner workings of a software system, to identify design prob-
lems and to improve the system in order to make it more flexible and extensible.

In this paper we present a reengineering pattern that shows how you can usetype inference to facilitate the
reengineering of systems that are written inSmalltalk or a similar dynamically typed object oriented language.

Keywords: object orientation, reengineering, pattern, type inference, Smalltalk

Introduction

The ability to reengineer object oriented legacy systems and transform them into more flexible and extensible
systems has become a matter of vital interest in today’s software industry. To help software engineers to do
this, the FAMOOS project (seehttp://dis.sema.es/projects/FAMOOS) develops a handbook of good
reengineering practices and techniques. To present these techniques in a uniform and easily accessible way a
reengineering pattern format was developed.

On the following pages, we introduce a reengineering pattern conforming to an improved version of that pattern
format1. The pattern describes how you can support the reengineering of a system written in a dynamically typed
object oriented language by enriching its source code with type annotations.

∗Copyright c© 1999 by Markus Bauer, Forschungszentrum Informatik, Haid–und–Neu–Str. 10–14, 76131 Karlsruhe, Germany. Permission
is hereby granted to copy and distribute this paper for the purpose of the EuroPLoP’99 conference and its proceedings.

1Some patterns following an older version of this format have already been submitted to EuroPLoP ‘98, even more patterns will show up
in the upcoming FAMOOS handbook.



Use Type Inference

Thumbnail

It is hard to understand the structure and the workings of a software system writtenSmalltalk (or in any other
dynamically typed language) because of the lack of type declarations. Therefore add type annotations to the
program code, which document the system and which can additionally be used by sophisticated reengineering
tools.

Context

Apply this pattern when reengineering systems that are written inSmalltalk or in a similar, dynamically typed
programming language, where you have only limited knowledge about the system. Typical situations could be:

• You have to maintain and/or modify the software system, but you have only limited knowledge about its
inner workings. You are interested to learn, which types of objects of the system are manipulated by some
code your are working on, but this is difficult since you do not have type declarations in your source code
that provide you with that information.

• You want to support a reengineering task by some tools, but these tools rely on type information for the
system’s variables and methods. Most reengineering tools rely on such type information. Examples include
(but are not limited to) theSmalltalk Refactoring Browser [RBJ97]2 or tools that calculate software product
metrics (like those described in [CK94]).

• You want to reengineer or rewrite the system using a statically typed programming language3, but to achieve
this, you need appropriate type declarations for the system’s variables and methods.

Problem

In dynamically typed systems, the lack of static type information (i.e. the lack of type declarations for vari-
ables and method signatures) makes some reengineering tasks difficult or impossible, since such type information
usually represents prominent parts of a system’s semantics.

Example

Consider some code fragments for a dynamically typed application that manipulates drawings. Such an application
might have a classContainer for storing some objects. Listing 1 shows a methodadd that is used to add objects
to the container.

For reengineering purposes we might be interested in an answer to the following question: What kind of objects
can be stored in the container, that is, of what types are the objects, that are passed as arguments to theadd-
Method?

2The current implementation of the Refactoring Browser does not infer precise types for the system’s entities though, it relies on (unprecise)
heuristics instead.

3Banking houses and insurance companies, for example, are often interested in replacing existing Smalltalk applications with statically
typed Java or C++ applications.



add: anObject
contents add: anObject.
anObject draw.
”. . . ”

Listing 1: Methodadd in classContainer.

Forces

• To learn about the types of objects that are manipulated by some code you are looking at, you might consider
to manually trace the execution of your code and guess on what’s going on in your system, but for larger
systems, this is an infeasable and error-prone task.

• You could also try to capture that information by looking at method and variable names, but in many legacy
systems naming conventions do not exist or do not provide enough information about the object types and
the manipulations that are made with them (see our example above). Even worse, you can’t be sure that the
names do not lead you to wrong conclusions.

• To migrate from a dynamically typed language to a statically typed language, you could apply approaches
that do not rely on type information, like those proposed for the translation of Smalltalk applications to
Java in [EK98]. These approaches simulate Smalltalk’s dynamic type system in Java. The resulting code,
however, is not authentic Java code and hard to understand and maintain. Additionally such code has the
usual shortcomings of untyped code: it is not type safe.

Solution

Find out what types the variables and method parameters have and put this information into the source code, using
type annotations or comments.

In more detail:

1. Perform a program analysis of your dynamically typed object oriented legacy system.

2. Use the results of the program analysis to determine type information for the program’s variables, including
global and local variables, parameters and return values of methods. Based on this type information, add
type annotations to the program’s source code.

3. Use these type annotations to understand how your legacy system works or as additional semantic informa-
tion to more sophisticated reengineering tools.

This technique is calledtype inference, because you infer the type of an object at a certain place in the code by
tracing its way from its creation to the current place.

If we can enrich the code of our example application with type annotations (see listing 2)4 by using the techniques
described below we can easily find an answer to the question we asked above: OurContainer holds points,
lines, splines,. . . , so it has obviously something to do with some geometrical shapes that make up a drawing.

We learn from this example that type annotations like those given in listing 2 make code much easier to understand
and that they contain valuable information about the inner workings of a system.

4A type annotation for a method is denoted as a comment in the Smalltalk-like code examples and has the form” R×A1× . . .×An → X
”, whereR, A1 . . . An, X are sets containing types (classes of the system). This means, that the receiver object of a method send can have
the types inR, theith argument object can be of one of the types inAi, and the result of the message send has one of the types inX. Thus,
the methodadd in listing 2 is used for aContainer, accepts aPoint-, Line- or Spline-object as an argument and returns nothing (or
self, respectively.)



add: anObject
” {Container} × {Point, Line, Spline,. . .} → {} ”
contents add: anObject.
anObject draw
”. . . ”

Listing 2: Methodadd annotated with type information.

Implementation

Type inference ususally can’t be done manually for reasonable large and complex applications. Therfore, we have
to automate the task of computing type information for variables and method signatures.

To implement a tool or other means to get the information, we observe that during the runtime of the system, type
information propagates through the system’s expressions and statements: Upon creation, each object has a certain
type assigned to it, and this type information is spread to all expressions and statements (including variable and
method parameter expressions), that do some operations with the object. Thus, to infer types for the variables and
methods of the system, we need to inspect object creations and the data flow through the system.

Basically we can do this in two ways: We either can execute the application and collect the type information we
are interested in during its runtime(dynamic type inference) or we can use static program analysis techniques
[ASU86] (static type inference) to analyze the applications source code and compute how the type information
flows through the application’s expressions. We will cover both approaches in some more detail below.

Dynamic type inference. With dynamic type inference, we modify the application or its runtime environment,
to have it record the runtime type information for us.

1. Determine the most common execution paths through your program, that is, determine the most common
usage scenarios of your legacy system. In some cases you might be able to use already existing testing
scenarios for this. In other cases, determining these common usage scenarios might be difficult, especially
if you don’t know much about the system.

2. Instrument the code with instructions that record the data flow through your system and that collect the
runtime types of the system’s variables. [RBFDDar] describes how to modify the runtime libraries of a
Smalltalk environment to achieve this with only minor changes to the application’s code.

3. Run the system and have it execute the most common usage scenarios you collected in step 1.

4. Use the recorded runtime type information to put type annotations into the source code.

Static type inference. With static type inference, we need a tool that has to read in the complete source code
of the application and analyzes it to construct a data flow graph. This is done by representing the application’s
expressions as nodes in the graph, and by modeling the dependencies between them as edges. The dependencies
that are taken into account to construct the data flow graph are given by the following rules:

1. An assignment var := expr generates a data flow from the right hand side expressionexpr to the
variablevar on the left hand side.

2. A variable access generates a data flow from the variable being accessed to the surrounding expression.

3. A method invocation generates a data flow from the actual argument expressions to the formal arguments
of the invoked method, and from the result of the invoked method to the invoking expression.



x := 0;
y := 2.5;
x := y;

2.5
{Float}

y
{Float}

0
{Int}

x
{Int, Float}

Figure 1: Data flow graph.

max: b
(self < b)

ifTrue: [ˆb]
ifFalse: [ˆself]

Invocation ofmax:
x := 1 max: 2

a
{Int}

result
{Int}

max

1
{Int}

2
{Int}

x
{Int}

b
{Int}

Figure 2: Data flow across method boundaries

A data flow graph for a short piece of code is shown in figure 1.

For each node the tool then tries to compute the set of classes the corresponding expression can hold instances
of. It starts by determining type information for the program’s literal expressions and object creation statements
(which are represented as source nodes in the graph) and moves that information along the edges through the
graph. Each node then carries the union set of all type information of its predecessors. In figure 1, for example,
the node forx carries the type information{Int, Float}, since it depends on the type information of the nodes for
y and0.

Some subtle problems arise, whenever method invocations cause data flows across method boundaries (as given
by rule 3). Such a case is shown in figure 2.

There are some well proven techniques to allow for an analysis which keeps track of these inter-method data flows
in an efficient and practicable way. One of these is Agesen’s Cross Product Algorithm [Age95]5. The basic idea is
to create seperate sub graphs for each method and link all those subgraphs together in an appropriate and efficient
way.

5There are other algorithms that also allow the tracking of data flow across method boundaries, for example [PS91], [OPS92], [PC94], but
Agesen’s algorithm is superior to most of these, because it is easy to understand and computes precise type information in a very efficient
way[Age94].



After the graph has been completly built up and all type information has been propagated through it, the type
information associated with the graph’s nodes can be used to annotate the source code of the application.

Discussion

A problem of using type inference to reveal some information about a legacy system arises from the fact that
we analyze the data flow through an application. To make our approach work, we have to analyze the complete
source code of an executable application (including libraries), or, if we are using dynamic type inference, we have
to execute an adapted version of the system. This might be a problem in some cases when parts of the source code
are not available and/or a runnable version of the system cannot be produced. Furthermore, frameworks and class
libraries cannot be analyzed without application code using or instantiating them. Then, however, the inferred
types are only valid in the specialized context of the particular application.

Static type inference algorithms usually have to overcome some difficulties: static analysis is complex and the
results are often unprecise. Agesen’s static type inference algorithm, as sketched above, addresses these difficulties
in an appropriate way6. However, since the algorithm is very complicated it is difficult to implement it in a correct
way and produce a reliable tool out of it. This is an issue, if you can’t use one of the already existing tools (see
for example [Li98]).

However, once a tool for performing such an analysis has been built, it can be used on other reengineering projects
as well and then it quickly pays of its rather high development costs.

Dynamic type inference has serious limitations when being applied to larger systems: You have to ensure, that the
most important parts of the system are covered by the analysis in a sufficient way, which might not be feasable for
larger systems, at least, if you do not have test cases or usage scenarios available.

Related Reengineering Patterns

Type annotations document the inner workings of a legacy system. We can therefore see type inference as a tech-
nique to improve your knowledge about the legacy system. Thus, this pattern relates with all other reengineering
patterns that describereverse engineering techniques, i.e. analyses of the source code of legacy systems to extract
additional semantic information and improve the understanding of the systems.

Also, this pattern is related with the reengineering patternMissing Technical Documentation, which describes a
set of general techniques to improve the documentation of a software system.7

Known Uses

ObjectShare has used type annotations (like those that can be computed by applying this pattern) to document
large parts of the source code to theVisualworks Smalltalk environment. This emphasizes that type annotations
are of great help understanding source code.

The GOOSE tool set (and related tools) that support the reengineering of C++ applications by visualizing soft-
ware structures [Ciu97], checking design heuristics [BC98] and calculating software metrics [Mar97] can analyze
Smalltalk applications after type inference is used and the source code is enriched with type annotations.

The University of Stuttgart, Germany, has developed a tool calledSmalltalk Explorer which is used to explore
existing Smalltalk applications. It heavily relies on the type inference algorithm presented here. Type annotations
are used to allow for an easy navigation through unknown Smalltalk code by documenting which classes are
manipulating which other classes and by introducing hyperlinks between them[Li98].

6A detailed discussion of the algorithm, especially regarding complexity and precision can be found in [Age95] or in [Bau98].
7The patternMissing Technical Documentation is included the FAMOOS handbook’s collection of reengineering patterns. Its thumbnail

is given byImprove the understandability of a software system by adding comments to the system’s source code that provide (higher level)
design information.



The type inference algorithm is also used to facilitate a mostly automatic translation of dynamically typed Smalltalk
applications into statically typed Java applications [Bau98]. Since most of Smalltalk’s concepts can be mapped
upon suitable Java concepts the most prominent issue is to infer appropriate static types for the resulting Java code.
This is done by computing type annotations (as described above) and transforming them into type declarations.
In more detail, to map a type annotation to a type declaration, a class must be found (or created by refactorings),
that is a common abstraction to all classes included in the type annotation.

Acknowledgements

I would like to thank all people who helped me writing early versions of this pattern, in particular Oliver Ciupke
and Benedikt Schulz. Thanks are also due to Jutta Eckstein and Christa Schwanninger who, as EuroPLoP shep-
herds, suggested a lot of improvements to the pattern and its structure and taught me a lot on writing a pattern in
general. Further thanks go to St´ephane Ducasse and Sander Tichelaar for additional comments, as well as to all
people who “workshopped” this paper during EuroPLoP’99.

References

[Age94] Ole Agesen. Constrained-based type inference and parametric polymorphism. InProceedings of
the First International Static Analysis Symposium (SAS ’94), volume 864 ofLNCS. Springer-Verlag,
1994.

[Age95] Ole Agesen. The Cartesian product algorithm. In Walter Olthoff, editor,Proceedings of the 9th
European Conference on Object-Oriented Programming (ECOOP’95), volume 952 ofLNCS, pages
2–26, Berlin, GER, August 1995. Springer-Verlag.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers – Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, USA, 1986.

[Bau98] Markus Bauer. Reengineering von Smalltalk nach Java. Master’s thesis, Institut f¨ur Algorithmen
und Datenstrukturen, Universt¨at Karlsruhe, 1998.

[BC98] Holger Bär and Oliver Ciupke. Exploiting design heuristics for automatic problem detection. In
Stéphane Ducasse and Joachim Weisbrod, editors,Proceedings of the ECOOP Workshop on Experi-
ences in Object-Oriented Re-Engineering, number 6/7/98 in FZI Report, June 1998.

[Ciu97] Oliver Ciupke. Analysis of object-oriented programs using graphs. In Jan Bosch and Stuart Mitchell,
editors,Object-Oriented Technology – Ecoop’97 Workshop Reader, volume 1357 ofLecture Notes
in Computer Science, pages 270–271, Jyv¨askylä, Finnland, March 1997. Springer.

[CK94] S. R. Chidamber and C. F. Kemerer. A Metric Suite for Object-Oriented Design.IEEE Transactions
on Software Engineering, 20(6):476–493, June 1994.

[EK98] R. L. Engelbrecht and D. G. Kourie. Issues in translating Smalltalk to Java. In Kai Koskimies, editor,
Compiler Construction 98, volume 1383 ofLNCS. Springer, 1998.

[Li98] Jinhua Li. Maintenance support for untyped object-oriented systems.http://www.
informatik.uni-stuttgart.de/ifi/se/people/li/, 1998.

[Mar97] Radu Marinescu. The use of software metrics in the design of object oriented s ystems. Master’s
thesis, UniversitÿPolytechicäTimisoara, sep 1997.

[OPS92] Nicholas Oxhoj, Jens Palsberg, and Michael I. Schwartzbach. Making type inference practical. In
Ole Lehrmann Madsen, editor,ECOOP ’92, European Conference on Object-Oriented Program-
ming, Utrecht, The Netherlands, volume 615 ofLecture Notes in Computer Science, pages 329–349.
Springer-Verlag, New York, N.Y., 1992.



[PC94] J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented languages.ACM
SIGPLAN Notices, 29(10):324–324, October 1994.

[PS91] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. Technical Report
DAIMI PB - 345, Computer Science Department, Aarhus University, March 1991.

[RBFDDar] Pascal Rapicault, Mireille Blay-Fornarino, St´ephane Ducasse, and Anne-Marie Dery. Dynamic
type inference to support object-oriented reengineering in Smalltalk. In Serge Demeyer and Jan
Bosch, editors,Object-Oriented Technology (ECOOP’98 Workshop Reader), LNCS (forthcoming).
Springer-Verlag, 1998, To appear.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.Journal of Theory
and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.


