
Data Accessor
Provide data abstraction to enhance reusability.

Author1 Marco Nissen
Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken
E-mail: marco@mpi-sb.mpg.de
URL: http://www.mpi-sb.mpg.de/~marco
Copyright © 1999 by Marco Nissen, Max-Planck-Institut für Informatik, Germany.
Permission granted for EuroPLoP for reprint.

Data Accessor intends to enhance reusability and flexibility of algorithms2
that need to access data. If an algorithm uses a standardized intermediate
data structure it is possible to reuse it for other ways of accessing data
only by adapting the Data Accessor. The algorithm remains the same.
This pattern abstracts data access as the iterator pattern abstracts
structural access.

Thumbnail

Data Manager. Also Known As

Example Imagine a car navigation system that aims to find the best route between
two cities according to a certain criteria. In detail, there are different
possibilities for the criteria, for example the following: "shortest distance",
"shortest driving time" and "lowest cost" (according to gas consumption).
The network will be represented by nodes and edges, where each node
corresponds to a city and each edge to a street. An edge additionally
contains a C-struct which again contains a double value for each of the
three values from above. An algorithm that computes shortest paths
between two cities may then easily be parameterized just by demanding a
pointer-to-member variable (in C++.)

The question is, what happens if the data is not stored explicitly, but
implicitly, i.e. has to be computed on-the-fly ? Assume for sake of
argument that the driving time depends not only on the distance between
two cities, but also on the current speed of the car at the current street.
To compute the shortest paths for shortest driving time, we therefore had
to proceed in two phases: first, compute all driving times explicitly,
second, run the algorithm.

The other possibility is to adapt the algorithm such that we have different
algorithms for different data, or one major algorithm that has case-
statements whenever data has to be computed. However, this complicates
resulting code and probably introduces new errors.

1 Pattern form adapted from [POSA96].
2 An algorithm is said to be reusable if it can be re-used in different environments

without changing the actual code. An algorithm is said to be flexible if its
behavior can be adapted without changing the actual code.

Data Accessor

Context Data Accessor is applicable if you are developing algorithms that rely on

complex data structures to be iterated and on attributes of the objects in
the data structures, that are unknown at the time of programming the
algorithm. More specifically, you cannot anticipate how the attributes are
implemented.

Algorithms that use underlying data structures require changes in the
algorithm-code when the data structures change. Data structure wrappers
cause improper conversion overhead3.

Problem

How can algorithms be implemented to be reusable in different environments
?

On the one hand, reuse of algorithms cause new problems (see problem
section). On the other hand, a different design approach might cause
unwanted overhead. On may observe that most algorithms when
accessing data exploit knowledge about the implementation of underlying
datastructures, i.e. they do something that is called "white box reuse". On
the contrary, we like to permit "black box reuse", i.e. we assume nothing
about the implementation of underlying data structure.

Forces

Basically, this pattern tries to balance between

• maximizing maintainability by reducing code complexity

• maximizing reusability by introducing black box reuse

• maximizing flexibility by permitting easy exchange of data
structures and adaptation of algorithm behavior

• minimizing performance overhead and increased number of
classes and objects caused by the additional indirection

• minimizing loss of efficiency due to decoupling is a point of
concern, because some algorithm can only operate if they know the
concrete implementation.

3 see the discussion of Adapter in the section Related Patterns

Data Accessor

Solution The idea is to provide one handler object for each single attribute, e.g. one
for colors, one for length and so on. We decouple data access from the
algorithm by introducing an additional indirection that manages the
access.

Concrete Data Accessor 1 Concrete Data Accessor 2

Object

da1.set(obj,0)
da2.set(obj,10)

Data Accessor
get(obj : Object) : Integer
set(obj : Object, value : Integer)

Client
do_something()

+da1

+obj

+da2

Figure 1: Abstract view on Data Accessors.

In the UML diagram in figure 1, an algorithm uses two handler objects
da1 and da2 , both inherited from "Abstract Data Accessor".
da1.set(obj,0) sets the value corresponding to the first Data Accessor
da1 and object obj to . da2.set(obj,10) sets the value corresponding to
the second Data Accessor da2 and object obj to 10. Note that da1.get(obj)
and da2.get(obj) generally give different results.

In the scenario from the example section the solution looks like this:
network algorithms often use several independent attributes for nodes
and edges while it is not clear if they are all stored in a single structure.

With Data Accessors it is more convenient to
express the idea of attributes since we do not have
to commit ourselves to a certain implementation
decision.

 : Client da1 : Concrete
Data Accessor

da2 : Concrete
Data Accessor

set(obj,0)

set(obj,10())

get(obj)

value

In the sequence diagram on the left, we will see
how the methods are called in both Data Accessor
and that the last computed value will be 0.

Data Accessor

setInfinity(ei,distance_da);
queue.push(source);
distance.set(source,0);

Distance Length "Shortest Distance" Length "Shortest Driving Time"Length "Lowest Cost"

Graph Iterator

Object

Priority Queue

Adjacency Iterator

+obj

Edge Iterator

+obj Shortest Path Algorithm
setInfinity(it : Edge Iterator, distance : Data Accessor)
Dijkstra(source : Object)

+queue

+ai

+ei

Data Accessor
get(obj : Object) : Double
set(obj : Object, value : Double)

+length +distance

Figure 2: Illustration of expressing attributes with Data Accessors: each kind of "Length"-
Data Accessor fits for the algorithm.

In the UML diagram in figure 2, the algorithm code is represented by a
shortest path algorithm that is invoked with the parameter source. Source
and ai are objects of type adjacency iterator which traverses the adjacency
structure of a graph. Edge iterator traverses the set of edges of a graph.
queue is a priority queue that is needed by the algorithm. Now, the
algorithm uses two Data Accessors, length and distance to store these
values. In the beginning of the algorithm, all distances are initialized to
infinity and that of the source node to zero. The rest is a straightforward
implementation of a shortest path algorithm (Dijkstra, in our case).

The point here is the application of the two Data Accessors which make
the algorithm independent of how data access is done. For example,
computing length values for edges in the graph can be exchanged easily
by replacing the length Data Accessor, i.e. if the algorithm computes
shortest paths according to shortest distance, we can also compute
shortest paths according to lowest cost just by a simple replacement.

Data Accessor

JavaTM Sample Code

In Java, it is possible to implement Data Accessors as classes that
implement the following interface4:

public interface DataAccessor {
 public Double get (Object obj);
 public void set (Object obj, Double value);
 }

A very simple Data Accessor may look like this:

public class LengthEuclideanDistance
 implements DataAccessor {
 public Double get (Object obj) {
 return ...
 // compute Euclidean distance value for obj
 }
 public void set (Object obj, Double value) {
 // store the value
 }
 }

Similarly, different Data Accessors can be written for "shortest driving
time" (LengthShortestTime) and "lowest cost" (LengthLowestCost).

An application of the Data Accessors may look like this (DataAccessor pred
will be used for storing the predecessor relation of a shortest path tree):

DataAccessor distance=new DistanceAccessor();
DataAccessor length=new LengthEuclideanDistance();
DataAccessor pred=new PredecessorAccessor();
Algorithm(distance,length,pred);

4 this example is taken from [NW96]

Data Accessor

C++

The implementation for Java can be used in a similar way for C++, as well.
The base class looks like this5:

class DataAccessor {
public:
 double get(Object obj);
 void set(Object obj, double value);
 };

For sake of argument we want to permit something like the following code,
which prints all data that is stored in a certain sequence (like array or
list):

void printData(Iterator it, Iterator end,
 DataAccessor da) {
 while(it!=end) {
 cout << "Value at position ";
 cout << it.getPos() << ": ";
 cout << da.get(it);
 cout << endl;
 ++it;
 }
 }

Say, we want to compare an algorithm that works on precomputed values
with the case in which we compute all values on-line. With this pattern, it
will be very easy: write one algorithm (like the one above) that takes two
iterators for the structural access and one Data Accessor for data access.
The rest consists of two implementations of Data Accessors, one for the
case in which all values were precomputed and one for the other case in
which all values were computed on-line.

If the container is a parameterized array and if it has two methods for data
access (getData and setData) we get the following:

class ArrayDataAccessor : DataAccessor {
 array& MyArray;
public:
 ArrayDataAccessor(array& A) : MyArray(A) {}
 double get(iterator it) {
 return MyArray.getData(it); }
 void set(iterator it, double val) {
 MyArray.setData(it,val); }
};

5 Object is the base class for all objects that are to be used by the class

DataAccessor.

Data Accessor

The other case looks like this (here, Functor is a class that implements
operator()):

class OnlineDataAccessor : DataAccessor {
 Functor functor;
public:
 OnlineDataAccessor(Functor f) { functor=f; }
 double get(iterator it) {
 return functor(it.getPos()); }
 void set(iterator it, double val) { }
};

The simple algorithm from above can now be called for a precomputed
array:

array A;
ArrayDataAccessor ada(A);
printData(A.begin(),A.end(),ada);

...or for the other case6...

SpecialFunctor f;
OnlineDataAccessor oda(f);
PrintData(A.begin(),A.end(),oda);

Actually, it is possible to use the template mechanism of C++ intensively
to get maximal efficiency and reusability7.

Maintainability: code that is based on Data Accessors separates data
access from the actual algorithm code. One can concentrate on the
algorithm without bothering about how data access is actually done. If we
have different ways of data accesses like array access and "on-the-fly"-
computation it should be clear that different implementations lead to
different versions of the algorithm unless we provide a uniform interface to
both ways. This is what is done by introducing Data Accessors. Once we
have implemented a set of Data Accessors for a fixed set of corresponding
objects we may reuse them without any effort, just by exchanging the
class.

Resulting
Context

6 SpecialFunctor does the mentioned on-line computation and it is derived from

Functor
7 Actually, this can also be implemented in GJ, a generic version of Java -- see

[BOSW97] and [NW96].

Data Accessor

Reusability: if an algorithm is implemented using this pattern, changes in
the underlying data structures only require changes in the used Data
Accessors. Thus, the algorithm code remains unchanged when the
implementation of a data access changes.

In the car navigation system from the example section, the application of
design patterns can be very fruitful. We write one algorithm that is able to
compute shortest paths between two locations and parameterize it with
graph iterators for structural abstraction and Data Accessors for data
access abstraction. For each of the possible attributes, we write one Data
Accessor and the algorithm can be reused in every case.

Flexibility: suppose we have a Data Accessor for "driving time" on the
edges of the network and the algorithm works together with it. If we like to
add some plausibility checking procedure for the times, it can be easily
done by writing a wrapper class for the Data Accessor that changes it into
a checking one (application of the observer pattern). For example, it
corrects all durations if they are less than three minutes. Another
possibility is to add some caching to "on-the-fly"-computation Data
Accessors.

Benefits of this pattern are:

• enhanced maintainability, reusability and flexibility
• algorithms can be adapted to future environments without

changing the actual code of the algorithm
• adding attributes to existing objects does not result in changing

the objects

Drawbacks of this pattern are:

• additional indirection and hence, more complicated structure
• increased number of classes and objects

On the one hand this pattern clearly introduces a more complex
structure, for there are additional class dependencies which would not
exist if the algorithm were implemented without Data Accessors. On the
other hand, the code complexity introduced is very low, because the
design is clearly very simple. On the performance side, it has been shown
that the overhead caused by Data Accessors is very little if you compute
shortest paths in a network generated by railroad data ([KNW97]: the
overhead ranged from 10% to 68%). This promises to be an acceptable
price in view of the benefits, if the drawbacks are not critical. Examples
for critical situations are real-time systems or cases in which it can be
anticipated that algorithms will never be reused.

Data Accessor

• The graph iterator example illustrates the use of Data Accessor in the
C++-Library of Efficient Data Types and Algorithms [LEDA].

Known Uses

• The Standard Template Library [MS96] provides access to containers
via iterators but implements data access by using the *-operator of the
iterator class. This results in restricting the access to one distinct data
attribute per object of a container, which might be adequate for sorting
algorithms but is definitely not for graph algorithms. The
straightforward work-around for multiple attributes, i.e. container that
store structures complicates the design and destroys reusability in
algorithms (algorithms need to know the names of the member
variables in the structure - or at least the offset). Another possibility is
to use function pointers, but this leads to further complications and
probably run-time overhead.

If you are planning to write algorithms and associate only one
attribute to a single structural entity of a container which is always
stored explicitly in a storage cell, [MS96] is the design of your choice.
In any other case you should prefer8 Data Accessors in order to avoid
code complexity.

• Iterator: Iterator may be used for abstraction of structural access
instead of a direct connection of underlying objects and Data Accessor.
For example, in graphs there are nodes and edges and three (basic)
types of iterators: node iterators, edge iterators and adjacency iterators
(the latter traverse the neighborhood of fixed nodes). Here, a Data
Accessor can be responsible for an attribute of nodes or edges. If
'color' is a Data Accessor that represents the color attribute of nodes
and 'it' is a node iterator that traverses the node set of a graph, then
it will be easy to access the correct attribute of the underlying node:
'color.get(it)' (or 'color.set(it, value)').
This additional indirection for structural access has its drawbacks
(indirection), but also benefits (higher flexibility) - this is discussed in
more detail in the iterator pattern.

Related
Patterns

• Adapter: Adapter is similar in that it enhances reusability, but
Adapter adapts signatures while Data Accessor provides a clean design
that makes adapting interfaces superfluous whenever we have
different interfaces for different ways of data access.

8 However, it is possible to do complicate things in STL like having a collection of
collections of attributes and iterate over the main collection. Data Access is done
by accessing the elements of the sub-collection. Unfortunately, this is nothing
more than a dynamic variant of the class in the example section.

Data Accessor

There are the following drawbacks when using adapters:
Writing adapters to cope with different interfaces yields to erroneous
and complicated software. Adapters also cause performance overhead
because of the indirection code. For example, we have an algorithm A,
a handler object H and some objects O. The algorithm uses the
methods of the intermediate object H for accessing the attributes of o
in O. Unfortunately, H needs to be changed if we want to re-use A in a
different environment. Here, the interface of the handler object is as
complicated as many attributes and objects types there are in the
algorithm.

Additionally, adapter sometimes make objects loose their identity,
which can be bad. More precisely, if an object adapter is used, the
original object and new one which contains the other are different. In
C++, where object-identity is often done by using "=", the according
operator has to be overloaded.

• Template Method: Template Method is similar to this pattern, but it
decouples primitive operations from algorithms while Data Accessor
decouples data access from algorithms.

• Property List [SR98]: If you have to add an attribute to an existing
class that uses a property list, you can add a new slot to it and
simulate having a new attribute with the object. Algorithms that use
Data Accessors express this demand in a descriptive way, i.e. they are
not interested in the way data access is actually implemented.
Therefore, property lists are a way for implementing the mechanism of
Data Accessors. Adding a new slot in a property list to add a new
attribute results in writing a new Data Accessor for it.

However, replacement of Data Accessors by Property Lists commits the
algorithm to the use of Property Lists, i.e. if somebody does not want
to use them because of efficiency reasons, it would not be possible to
adapt the algorithm without changing the code.

More dramatically, the use of "anything" could eliminate type-safety.

• Pseudo-Reference [A99]: In the very special case in which an element
A is associated with a single other element A', it is better to use this
pattern. In this pattern, A is replaced by a pseudo reference Â, which
knows not only A but also knows how to compute A' by calling an
associated reference system. However, this mechanism complicates
data access if multiple different data is associated with elements.

Data Accessor

Idioms

• Functor: A functor is a technique for parameterizing algorithms
with primitive computations, while the Data Accessor pattern
addresses the more abstract question of data access. Sometimes
Data Accessors are implemented similarly as functors. Note that
Data Accessors are more like an idea and using functor is an
implementation technique.

• Function Pointer: Function pointers provide a means of
parameterization of algorithms like functors but is again a
technique. If we provide one function pointer for "get"-access and
one function pointer for "set"-access we get something which is
virtually the same as a Data Accessor. The difference to the sketch-
image lies in implementation, but not in the intent.

• Type Parameterization: The template mechanism in C++ or
genericity in Java [BOSW97] permit type abstraction in algorithms.
This enables us to write parameterized stacks or parameterized
sorting algorithms. This differs from data access abstraction, i.e.
templates are a way of implementation for abstraction.

I like to thank Peter Sommerlad for shepherding this pattern. Special
thanks to the Writers Workshop at EuroPLoP for giving suggestions for
improvement.

Credits

Data Accessor

A99 References
Aguiar, Ademar:
Pseudo-Reference. Proceedings of the EuroPLoP '99

BOSW97
G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler:
Making the Future Safe for the Past: Adding Genericity to the Java Programming
Language .
Proceedings of the 12th ACM Symposium on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA '97)

GHJV95
E. Gamma, R. Helm R. Johnson and J. Vlissides:
Design patterns. Addison-Wesley, 1995.

KNW97
D. Kühl, M. Nissen, K. Weihe:
Efficient, adaptable implementations of graph algorithms.
WAE, Workshop on Algorithms Engineering, '97.

KW97
D. Kühl and K. Weihe:
Data Access templates. C++ Report, 9/7, 15 and 18-21, 1997.

LEDA
K. Mehlhorn and S. Näher:
LEDA - A Platform for Combinatorial and Geometric Computing.
Cambridge University Press, 1999.
LEDA homepage: http://www.mpi-sb.mpg.de/LEDA/.

MN97
K. Mehlhorn and S. Näher:
The LEDA Platform of Combinatorial and Geometric Computing.
to appear with Cambridge University Press, 1999.

MS96
Musser, David R. and Saini, Atul:
STL tutorial and reference guide : C++ [plus plus] programming with the standard
template library. Addison Wesley, 1996.

NW96
M. Nissen and K. Weihe:
Attribute Classes in Java and Language Extensions. Konstanzer Schriften in
Mathematik und Informatik, Universität Konstanz (66/1996)
Web: http://www.informatik.uni-konstanz.de/~ nissen/JavaPaper/

SR98
Sommerlad, Peter and Rüedi, Marcel:
Do-it-yourself Reflection. Proceedings of the EuroPLoP '98

POSA96
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern Oriented Software Architecture – a System of Patterns.
John Wiley and Sons, 1996.

