Transforming Inheritance into Composition
A Reengineering Pattern*

Benedikt Schulz Thomas Genfler

27th September 1999

Abstract

Transforming Inherintance into Composition is a reengineering pattern describing a solution to a
recurring reengineering problem. The problem is that transforming an inheritance relationship into
a component relationship using delegation without affecting correctness and functionality of systems
is a time-consuming and error-prone task. Solving this problem leads to more flexible and more
comprehensible systems. The problem is recurring, because cases of misuse of inheritance are very
common in almost every object-oriented system. Solving the problem is time-consuming and error-
prone because the necessary changes possibly affect the whole system and thus cannot be performed
locally.

Introduction

Object-oriented design patterns such as those presented in [GHJV95] describe a solution for a recurring
design problem. They help software engineers in designing a system based on the requirements they
discovered during the analysis phase. The right use of design pattern leads to a system which is flexible
enough to allow for easy modification — sometimes even at run-time — of those parts of the system which
were considered to be a matter of change in later versions of the system due to a change of the initial
requirements.

The world is hostile, though: It is likely that requirements will change unexpectedly and in an un-
foreseeable way. This requires flexibility in parts of the system which was not foreseen and therefore
these parts will have been designed in an inflexible way. This is where reengineering patterns come into
play: Reengineering patterns describe solutions to recurring reengineering problems. These reengineer-
ing problems occur when new or changed requirements cannot be satisfied by easy and local changes to
the design.

To draw a clear dividing line between design patterns and reengineering patterns: Whereas design
patterns describe a “good design” reengineering patterns describe how to change a legacy design into a
good design. Since these changes are far away from being trivial or local, the description of the “good
design” as in [GHJV95] does not enable software engineers to perform the necessary changes.

This paper presents the reengineering pattern Transforming Inheritance into Composition which sup-
ports the software engineer in making parts of the system more flexible by introducing the powerful
technique of delegation. The format of the reengineering pattern was developed during the FAMOOS
project which aims at the reengineering of object-oriented legacy systems into object-oriented frame-
works. The format is based on the design pattern format [GHIJV95] but it contains some new sections:

*Copyright © 1999 by Benedikt Schulz (bschulz@fzi.de) and Thomas Genfller (genssler@fzi.de), Forschungszen-
trum Informatik, Haid—und-Neu—-Str. 10-14, 76131 Karlsruhe, Germany. Permission is hereby granted to copy and
distribute this paper for the purpose of the EuroPLoP’99 conference and its proceedings.

e In the Structure section we describe two structures: A problem structure which suggests the
application of the reengineering pattern and a target structure which is the result of the application.

e Since reengineering patterns describe transformations of software systems there is a section on the
process of these transformations.

e Performing program transformations by hand is a difficult and error-prone task. Tools can help
significantly in the application of reengineering patterns, therefore there is a section about tool
support.

We used this form to communicate the lessons-learned of the project to the “normal” software engineer
to help solve reengineering tasks.

Thumbnail

In some cases the inheritance relationship between classes is too inflexible and hard to understand.
Therefore replace the inheritance relationship by a component relationship and delegate a set of methods
to this component.

Motivation

The following example occurred in a project which aimed at visualising hydraulic data of river parts.
The data was visualised in a two-dimensional diagram which changed over time. The user of the system
got the impression of seeing a film because of this animation.

The most crucial part in the system concerning efficiency was the subsystem which was responsible for
drawing lines on the screen: For every new frame of the animation the complete set of lines representing
the data had to be redrawn.

Initial Situation. In the first version of the system drawing lines was handled by the GDI subsystem
of the Win32s operating system. This was pretty efficient until a new requirement came into play. The
customers wanted to be able to change properties of the lines like colour, thickness, style, etc. The
GDI subsystem was not able to draw lines with customisable thickness in an efficient way however: The
system was showing rather a slide show than a film. The initial design is depicted in Figure 1.

Some experiments with a new technology called DirectDraw (that is also a subsystem of the operating
system) revealed its superiority and thus the project manager decided to replace GDI with DirectDraw.

This led to serious problems: Since the class responsible for drawing lines was using functionality of
GDI by inheritance it was not possible just to replace it by DirectDraw. DirectDraw had a different
interface and so the implementation of a lot of methods which were responsible for drawing lines had
to be changed.

Final Situation. To avoid similar problems in the future the project manager decided not only to
change the the drawing system but additionally to introduce a flexible new design which should allow
for easy exchange of different drawing systems.

The new design got its flexibility mainly from one change: Instead of relying on inheritance to reuse
functionality, a component relationship together with the concept of delegation was used. This means
that a Shape-object no longer "knows” (directly or via inheritance) how to draw points but it rather

Graphic

drawPoint(){...}
getPhysicalPosition(){...}

A

Shape
draw(){...}
Circle Rectangle
/I draw a rectangle B
draw() {...} draw() {.}0- | — — —drawPoint(x,y);

Figure 1: Initial Situation

Shape
Graphic* impl K> p Graphic
abstract draw(){...} abstract drawPoint(){...}
drawPoint(x,y){...} O— — abstract getPhysicalPosition(){...}
getPhysicalPosition(){...} |

|

|
drawPoint(x,y)
{ impl.drawPoint(x,y) ; }

- ! ! . GraphicGDI GraphicDDraw e
Circle Rectangle
drawPoint() {...} drawPoint() {...}
draw() {...} draw() {...} getPhysicalPosition(){...} getPhysicalPosition(){...}

Figure 2: Target Structure

”knows” an object which ”knows” how to draw the points. Since objects can even be changed during
run-time of the system the flexibility of the system was significantly improved. The final design is
depicted in Figure 2 where new or changed entities are marked grey.

Some weeks after the redesign of the system it was revealed that the DirectDraw subsystem was not
automatically installed on all systems running Win32s. But since the system could check whether
DirectDraw was installed or not during run-time and since the drawing system was made exchangeable
during run-time this new fact did not lead to any problems.

In the end the target structure is an instance of the Bridge design pattern [GHJIV95]. (It was not possible
to use a Singleton Graphic acting as a facade to the libraries, because Graphic is not stateless and
can have different states for different Shape-objects.) The Transforming Inheritance into Composition
pattern is nevertheless not equivalent to the Bridge design pattern, because it not only describes “good”
target structures but rather the process of applying the Bridge design pattern to an existing object-
oriented legacy system.

Context

You review a legacy system. You look at a certain inheritance relationship and find out that

e you should have used a design pattern based on the Objectifier design pattern [Zim95] and the
technique of delegation (e.g., Bridge [GHJV95], Strategy [GHIJV95] or State [GHIJV95][DA96]) but
you have not used it.

e it was established mainly for code reuse. The code which was the reason for using inheritance now
has to be changed and so you want to remove the inheritance relationship because it is no longer
appropriate. You do not know how to do this without changing the functionality of the system.

Problem

In some cases, the inheritance relationship is not the appropriate solution. The relationship would have
been better modeled using a component relationship and delegation. Transforming your legacy design
to the new design without changing the functionality of the system is difficult and error-prone.

Forces

e The application of the reengineering pattern is difficult if the inheritance relationship is deeply
nested in the hierarchy because breaking the hierarchy means that all the methods which were
inherited (and this can be a large number) have to be delegated.

e The reengineering pattern should not be used in the following cases:

— Inheritance is the appropriate modelling technique for the problem (e.g., if there is a is-a
relationship between two classes).

— Introducing delegation would be too expensive with respect to efficiency. This has to be
considered especially when the delegation takes place within a loop which is processed a lot
of times.

— In statically typed languages: Clients use the two classes related via inheritance polymorphi-
cally and you do not want to change these clients.

e The application of the reengineering pattern can improve your design if you encounter one of the
following problems:

— You want to be able to change the implementation of an abstraction in a more flexible way,
maybe even at run-time (Bridge design pattern).The actual design does not allow for this
kind of flexibility.

— You want to extend the class system with new classes which share the same interface but
differ in their behaviour (Strategy design pattern). The actual design does not allow for this
kind of flexibility.

— You have a lot of conditional statements in your code because the behaviour of an object
depends strongly on its current state. You want to get rid of these conditionals (State design
pattern).

Reengineering Goals. The goal of the Transforming Inheritance into Composition reengineering
pattern is to help software engineers to apply a design pattern relying on the Objectifier design pattern
and delegation to an existing design. In particular the pattern aims at

e increasing run-time flexibility. This is achieved because after the application of the reengineering
pattern you will be able to change the component during run-time.

e increasing static flexibility (configurability). This is achieved because after the application of the
reengineering pattern you will be able extend the component class hierarchy independently from
the abstraction.

e increasing comprehensibility. This is achieved because the reengineering pattern can remove in-
heritance for code reuse which is hard to understand from your system.

Related Patterns. The Transforming Inheritance into Composition reengineering pattern is related
to all design patterns which rely on the Objectifier design pattern [Zim95] and delegation like

e Bridge
o Strategy

e State

According to [Zim97] this reengineering pattern does not only describe a suitable target structure for a
certain problem (like a design pattern) but the process of how to apply a design pattern to an existing
design.

Structure

The problem structure is depicted in Figure 3. The Transforming Inheritance into Composition reengi-
neering pattern leads you to the target structure depicted in Figure 4

Participants.

e Base is the root of the inheritance tree.

¢ Component (Graphic) is the class which gets cut out from the inheritance hierarchy to serve as
a provider of certain services. The inheritance relationship to Base may remain in existence.

e Delegator (Shape) is the class which uses services from Component by inheritance in Figure 3.
After application of the reengineering pattern in Figure 4 Delegator will make use of these services
by delegation.

e Leaf 1, Leaf 2, ... (Circle, Rectangle, ...) are the leafs of the inheritance hierarchy

e Component_A, Component B, ... (GraphicGDI, GraphicDDraw, ...) are the subclasses of
Component implementing the services of their super-class in different ways..

Collaborations.

e Delegator makes use of servicel (drawPoint) provided by Component. This is done

— in the problem structure by executing inherited methods from Component whereas
— in the target structure the execution of these methods is delegated to Component.

Base

+mBase()

f

Component

+service1()

1

Delegator

+service1()
+service2()

1

Leaf_1 Leaf 2

+mLeaf() +mLeaf()

Figure 3: Problem Structure for the reengineering pattern

Consequences. The advantages and disadvantages of the target structure in comparison to the prob-
lem structure are discussed in the following:

e Positive benefits

— Transforming inheritance into composition solves an important and basic reengineering prob-
lem and the application of the reengineering pattern allows for the introduction of several
known design patterns [GHIV95].

— Since abstraction and implementation are separated, changing the implementation does not
require recompilation but only rebinding of the system.

— The implementors of servicel can be designed to form a separate inheritance tree. (This is
suggested by the class ComponentA in Figure 4.) This is impossible before the application of
the reengineering pattern.

e Negative liabilities
— The execution of servicel provided by Delegator will take longer in the target structure

because it has to be delegated. This may be critical if servicel is needed a lot of times.

— The target structure is slightly more difficult to implement since the attribute of Delegator
named comp has to be initialised whenever a new instance of Delegator is created and
destroyed whenever that instance is deleted.

Process

The process mainly relies on the idea of combining the approach of considering design patterns as
operators [Zim97] (rather than building blocks) and the refactoring approach presented in [Opd92].
This idea is presented and discussed in detail in [SGMZ98].

Base

+mBase()
Component
1.1
1 +service1()
Delegator
-comp : Cémponent Delegator::service1()
+service1() { comp->servicel();}
+service2()
A
Leaf 1 Leaf 2 Component_A Component_B
+mLeaf() +mLeaf() +service1() +service1()

Figure 4: Target Structure for the reengineering pattern

Detection. Since violations against flexibility issues can only be detected if you know where flexibility
is needed and which kind of flexibility (e.g., run-time flexibility, configurability) is needed, an algorithmic
detection is difficult. However, you can

e ask people who designed and implemented the system if there is a case where they wanted to be
able to change the implementation of an interface at run-time and this was not possible.

e look for methods with a large amount of conditional statements. The behaviour of an object may
depend strongly on its internal state.

e look for two classes, one inheriting from the other, which are never used polymorphically. This
means that a variable declared as super-class is never used for an instance of the subclass.

Recipe. In this section we show how to apply the Transforming Inheritance into Composition reengi-
neering pattern and what kind of reengineering operations have to be applied. If we name entities (like
classes, methods and attributes) we refer to the participants of the problem structure depicted in Figure
3 and the target structure depicted in Figure 4.

1. Create a new attribute comp of Component in the class Delegator. Change the constructor method
of Delegator so that it initialises the attribute comp with a new instance of Component. If you
plan to add several subclasses of Component later on (you should do so!) than add a new formal
argument to the constructor method of Delegator which will serve as an indicator of which
concrete subclass of Component to use.

2. Copy all the signatures of the methods from Component which are visible to Delegator to
Delegator. For each added method add an implementation which delegates the execution of
the method to the corresponding method of Component. For an example, see the implementation
of Delegator:servicel() in Figure 4.

3. Remove the inheritance relationship between Component and Delegator. Caution: In statically
typed languages you will not be able to use an instance of Delegator polymorphically as an
instance of Component after this step. In particular it is not possible any more to cast instances
of Delegator to Component.

Difficulties. If you decide to introduce an additional formal parameter to the constructor of Delegator
then every piece of code that creates an instance of Delegator has to be changed. In languages which
support default values for formal parameters this problem can be resolved by defining an appropriate
default value (e.g., Component if this class is not made abstract).

If there is no way to avoid polymorphism between Delegator and Component but you still have strong
reasons to apply the Transforming Inheritance into Composition reengineering pattern and you are using
a statically typed language, you can omit removing the inheritance relationship between Component and
Delegator. You should be aware of the fact, that you might have the following problem: The class
Component has two parts:

e One part of the methods represents set of utility services. You made Delegator inherit from
Component because you wanted to be able to use these services without re-implementing them.

o The other part of the methods represents the “real” interface of Delegator. You made Delegator
inherit from Component because you wanted to establish an is-a relationship between Delegator
and Component to be able to use instances of both classes polymorphically.

In this case consider spliting the Component class into two separate classes.

Language Specific Issues.

e In C++ you should realise the attribute comp as a pointer. Otherwise you will not be able to use
polymorphism for the inheritance tree with root Component.

e In dynamically typed languages like SMALLTALK it is not necessary that two classes are related
via an inheritance link to use them polymorphically. This means, for example, that you can still
use instances of Component and Delegator together in one container object.

Discussion

Since the detection of the problem structure is far away from being an algorithmic, tool supported
process, you should not explicitly look for this problem structure. But since software development is
an iterative process you will find the problem structure while trying to extend or modify your system.
Once you have found the problem structure in your code, you should strongly consider the application
of the Transforming Inheritance into Composition reengineering pattern.

The relevance of this reengineering pattern is high: In a lot of companies which were early adopters of the
object-oriented paradigm, the maturity of the software engineers concerning object-oriented technology
was low. This resulted in an overuse of inheritance, mainly for code reuse. These software defects can
be removed by the application of the reengineering pattern.

The concept of delegation and the Objectifier design pattern [Zim95] are the fundamentals of this
reengineering pattern and the resulting target structure is closely related to the Bridge, Strategy and
State design patterns [GHJV95]. A good understanding of these design patterns helps to use the
reengineering pattern.

Tool

The detection of pairs of classes which are never used polymorphically can be done with the tool-set
Goose [BCI8][Ciu99]. Goose can not only detect missing polymorphism but a lot of other design defects
which occur in object-oriented systems.

Since the application of the reengineering pattern relies on the application of refactorings [Opd92]
you can use every tool which supports this technique, such as the Refactoring Browser [RBJ97] for
SMALLTALK, which is the most advanced refactoring tool. The Refactoring Browser is described and
available for free at http://st-www.cs.uiuc.edu/~brant/Refactory/.

For a subset of C++ we implemented a prototype to support refactorings. This tool is called RefaC++
and described in [Moh98]. RefaC++ can perform a subset of the refactorings presented in [Opd92] and
can also apply the Bridge design pattern automatically.

Currently, we are developing a refactoring tool for JAVA which will be integrated into the commercial
CASE tool Together/J. We already support the introduction of several design patterns (e.g., Bridge,
State, Strategy) into object-oriented systems and there will soon be more supported design patterns.

Applied
Transforming Inheritance into Composition has been applied in the following known cases:

e The reengineering pattern was applied with success in the project described in the motivation
section. It was possible to increase the flexibility of the system so that the new requirement
(DirectDraw not available on every Win32s installation) could be fulfilled without problems.

e Currently we are analysing and flexibilising a graphical information system for a German middle-
sized enterprise. We found several design flaws which have been corrected by applying this reengi-
neering pattern.

e [RJ96] describes how frameworks evolve. In the White-box Framework design pattern [RJ96]
the engineer is encouraged to use inheritance for reuse because it is easier to understand and to
reuse. In later stages of the framework development inheritance has to be replaced by polymorphic
composition.

References

[BC98| H. Béir and O. Ciupke. Exploiting design heuristics for automatic problem detection. In
Stéphane Ducasse and Joachim Weisbrod, editors, Proceedings of the ECOOP Workshop on
Ezperiences in Object-Oriented Re-Engineering, number 6/7/98 in FZI Report, June 1998.

[Ciu99] O. Ciupke. Automatic Detection of Design Problems in Object-Oriented Reengineering.
Accepted at the TOOLS USA 99 conference, March 1999.

[DA96] P. Dyson and B. Anderson. State patterns. In First European Conference on Pattern Lan-
guages of Programming, 1996.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[Moh98] B. Mohr. Reorganisation objektorientierter Systeme. Masters thesis, Forschungszentrum
Informatik (FZI) an der Universitit Karlsruhe (TH), March 1998.

[Opd92]

W. F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of Illinois,
1992.

[RBJ97] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for smalltalk. http://st-
www.cs.uiuc.edu/users/brant /Refactory /RefactoringBrowser.html, April 1997.

[RJ96) D. Roberts and R. Johnson. Evolving frameworks - a pattern language for developing object-
oriented frameworks. http://st-www.cs.uiuc.edu/users/droberts/evolve.html, 1996.

[SGMZ98] B. Schulz, T. GenBler, B. Mohr, and W. Zimmer. On the computer aided introduction of
design patterns into object-oriented systems. In 27th Conference on Technology of Object-
Oriented Languages and Systems (TOOLS). IEEE, 1998.

[Zim95] W. Zimmer. Relationships between design patterns. In J. Coplien and D.C. Schmidt, editors,
Pattern Languages of Program Design. Addison-Wesley, 1995.

[Zim97] W. Zimmer. Frameworks und Entwurfsmuster. Ph.D. thesis, Universitit Karlsruhe, 1997.

Acknowledgements

Parts of this work have been funded by the European Union under the projects FAMOOS no. Esprit
21975 and TROOP no. Esprit 27291. Many thanks to the people that have commented on earlier
versions of this document: Markus Bauer, Oliver Ciupke, Serge Demeyer, Stéphane Ducasse and Sander

Tichelaar.

We thank our shepard at EuroPLoP 1999, James Noble, for his valuable comments that

helped to improve the pattern a lot. Last but not least we’d like to thank the people who workshop’ed
the paper at the conference.

